A quixotic view of spatial bias in modelling the distribution of species and their diversity
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article, Review
Grant support
862480
European Commission
J33C22001190001
Ministero dell'Università e della Ricerca
PubMed
39242713
PubMed Central
PMC11332097
DOI
10.1038/s44185-023-00014-6
PII: 10.1038/s44185-023-00014-6
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Review MeSH
Ecological processes are often spatially and temporally structured, potentially leading to autocorrelation either in environmental variables or species distribution data. Because of that, spatially-biased in-situ samples or predictors might affect the outcomes of ecological models used to infer the geographic distribution of species and diversity. There is a vast heterogeneity of methods and approaches to assess and measure spatial bias; this paper aims at addressing the spatial component of data-driven biases in species distribution modelling, and to propose potential solutions to explicitly test and account for them. Our major goal is not to propose methods to remove spatial bias from the modelling procedure, which would be impossible without proper knowledge of all the processes generating it, but rather to propose alternatives to explore and handle it. In particular, we propose and describe three main strategies that may provide a fair account of spatial bias, namely: (i) how to represent spatial bias; (ii) how to simulate null models based on virtual species for testing biogeographical and species distribution hypotheses; and (iii) how to make use of spatial bias - in particular related to sampling effort - as a leverage instead of a hindrance in species distribution modelling. We link these strategies with good practice in accounting for spatial bias in species distribution modelling.
Biogeography BayCEER University of Bayreuth Universitaetsstraße 30 95440 Bayreuth Germany
Center for Biodiversity and Global Change Yale University New Haven CT USA
CICGE Universidade do Porto Porto Portugal
Department of Biogeography and Global Change Museo Nacional de Ciencias Naturales Madrid Spain
Department of Ecology and Evolution University of Lausanne 1015 Lausanne Switzerland
Dept of Ecology and Evolutionary Biology Yale University New Haven CT USA
Federal University of Goiás Campus Central Anápolis Brazil
Institute of Earth Surface Dynamics University of Lausanne 1015 Lausanne Switzerland
Knowledge Infrastructures Campus Fryslan University of Groningen Leeuwarden The Netherlands
MARBEC Univ Montpellier CNRS Ifremer IRD Sète France
Rui Nabeiro Biodiversity Chair MED Institute University of Évora Évora Portugal
School of Geography University of Nottingham Nottingham UK
University of Parma Parma Italy
University of Sassari Department of Chemistry Physics Mathematics and Natural Sciences Sassari Italy
See more in PubMed
Draper, D. Assessment and propagation of model uncertainty. J. R. Stat. Soc. Ser. B57, 45–97 (1995).
Le Rest, K., Pinaud, D., Monestiez, P., Chadoeuf, J. & Bretagnolle, V. Spatial leave-one-out cross-validation for variable selection in the presence of spatial autocorrelation. Glob. Ecol. Biogeogr.23, 811–820 (2014).10.1111/geb.12161 DOI
Pereira, J., Saura, S. & Jordan, F. Single-node vs. multi-node centrality in landscape graph analysis: key habitat patches and their protection for 20 bird species in NE Spain. Methods Ecol. Evol.8, 1458–1467 (2017).10.1111/2041-210X.12783 DOI
Van Horne, B. Density as a misleading indicator of habitat quality. J. Wildlife Manag.47, 893 (1983).10.2307/3808148 DOI
Ricotta, C., Godefroid, S. & Rocchini, D. Patterns of native and exotic species richness in the urban flora of Brussels: rejecting the “rich get richer” model. Biol. Invasions12, 233–240 (2010).10.1007/s10530-009-9445-0 DOI
Marcantonio, M., Rocchini, D., Geri, F., Bacaro, G. & Amici, V. Biodiversity, roads, & landscape fragmentation: Two Mediterranean cases. Appl. Geogr.42, 63–72 (2013).10.1016/j.apgeog.2013.05.001 DOI
Newmark, W. D., Jenkins, C. N., Pimm, S. L., McNeally, P. B. & Halley, J. M. Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc. Natl Acad. Sci.114, 9635–9640 (2017). 10.1073/pnas.1705834114 PubMed DOI PMC
Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett.8, 993–1009 (2005). 10.1111/j.1461-0248.2005.00792.x PubMed DOI
Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett.16, 1424–1435 (2013). 10.1111/ele.12189 PubMed DOI PMC
Lecours, V., Gabor, L., Edinger, E. and Devillers, R. Fine-scale habitat characterization of The Gully, the Flemish Cap, and the Orphan Knoll, Northwest Atlantic, with a focus on cold-water corals. In Seafloor Geomorphology as Benthic Habitat (eds. Harris, P., Baker, E) 735–751 (Elsevier, 2020).
Santini, L., Benitez-Lopez, A., Maiorano, L., Cengic, M. & Huijbregts, M. A. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib.27, 1035–1050 (2021).10.1111/ddi.13252 DOI
Segal, R. D., Massaro, M., Carlile, N. & Whitsed, R. Small-scale species distribution model identifies restricted breeding habitat for an endemic island bird. Anim. Conserv.24, 959–969 (2021).10.1111/acv.12698 DOI
Dallas, T. A. & Hastings, A. Habitat suitability estimated by niche models is largely unrelated to species abundance. Glob. Ecol. Biogeogr.27, 1448–1456 (2018).10.1111/geb.12820 DOI
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol.4, 1044–1059 (2020). 10.1038/s41559-020-1198-2 PubMed DOI
Bokma, F., Bokma, J. & Monkkonen, M. Random processes and geographic species richness patterns: Why so few species in the north? Ecography24, 43–49 (2001).10.1034/j.1600-0587.2001.240106.x DOI
Schwartz, M. A. The importance of stupidity in scientific research. J. Cell Sci.121, 1771–1771 (2008). 10.1242/jcs.033340 PubMed DOI
Guisan, A., Thuiller, W. & Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).
Bittner, T., Jaeschke, A., Reineking, B. & Beierkuhnlein, C. Comparing modelling approaches at two levels of biological organisation - Climate change impacts on selected Natura 2000 habitats. J. Veg. Sci.22, 699–710 (2011).10.1111/j.1654-1103.2011.01266.x DOI
Saupe, E. E. et al. Variation in niche and distribution model performance: The need for a priori assessment of key causal factors. Ecol. Modell237–238, 11–22 (2012).10.1016/j.ecolmodel.2012.04.001 DOI
Inman, R., Franklin, J., Esque, T. & Nussear, K. Comparing sample bias correction methods for species distribution modeling using virtual species. Ecosphere12, e03422 (2021).10.1002/ecs2.3422 DOI
Thompson, J. N. Variation in interspecific interactions. Annu. Rev. Ecol. Syst.19, 65–87 (1988).10.1146/annurev.es.19.110188.000433 DOI
Pereira, J., Battiston, F. & Jordan, F. Priority areas for protection of plant-pollinator interaction networks in the Atlantic Forest. Ecol. Indic.136, 108598 (2022).10.1016/j.ecolind.2022.108598 DOI
Tobler, M. W. et al. Joint species distribution models with species correlations and imperfect detection. Ecology100, e02754 (2019). 10.1002/ecy.2754 PubMed DOI
Gavish, Y. et al. Accounting for biotic interactions through alpha-diversity constraints in stacked species distribution models. Methods Ecol. Evol.8, 1092–1102 (2017).10.1111/2041-210X.12731 DOI
Norberg, A. et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr.89, e01370 (2019).10.1002/ecm.1370 DOI
Zurell, D. et al. Testing species assemblage predictions from stacked and joint species distribution models. J. Biogeogr.47, 101–113 (2020).10.1111/jbi.13608 DOI
Wisz, M. S. et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev.88, 15–30 (2013). 10.1111/j.1469-185X.2012.00235.x PubMed DOI PMC
Mateo, R. G., Felicisimo, A. M., Pottier, J., Guisan, A. & Munoz, J. Do stacked species distribution models reflect altitudinal diversity patterns? PLoS ONE7, e32586 (2012). 10.1371/journal.pone.0032586 PubMed DOI PMC
Peterson, A. T., Navarro-Siguenza, A. G. & Benitez-Diaz, H. The need for continued scientific collecting; a geographic analysis of Mexican bird specimens. Ibis140, 288–294 (1998).10.1111/j.1474-919X.1998.tb04391.x DOI
Hirzel, A. & Guisan, A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol. Modell.157, 331–341 (2002).10.1016/S0304-3800(02)00203-X DOI
Albert, C. H., Graham, C. H., Yoccoz, N. G., Zimmermann, N. E. & Thuiller, W. Applied sampling in ecology and evolution - integrating questions and designs. Ecography33, 1028–1037 (2010).10.1111/j.1600-0587.2010.06421.x DOI
Leitao, P. J., Moreira, F. & Osborne, P. E. Effects of geographical data sampling bias on habitat models of species distributions: a case study with steppe birds in southern Portugal. Int. J. Geogr. Inform. Sci.25, 439–453 (2011).10.1080/13658816.2010.531020 DOI
Tessarolo, G., Rangel, T. F., Araujo, M. B. & Hortal, J. Uncertainty associated with survey design in species distribution models. Divers. Distrib.20, 1258–1269 (2014).10.1111/ddi.12236 DOI
Vollering, J., Halvorsen, R., Auestad, I. & Rydgren, K. Bunching up the background betters bias in species distribution models. Ecography42, 1717–1727 (2019).10.1111/ecog.04503 DOI
Tessarolo, G., Lobo, J. M., Rangel, T. F. & Hortal, J. High uncertainty in the effects of data characteristics on the performance of species distribution models. Ecol. Indic.121, 107147 (2021).10.1016/j.ecolind.2020.107147 DOI
Graham, C. H. et al. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol.45, 239–247 (2008).10.1111/j.1365-2664.2007.01408.x DOI
Moudry, V. & Simova, P. Influence of positional accuracy, sample size and scale on modelling species distributions: a review. Int. J. Geogr. Inform. Sci.26, 2083–2095 (2012).10.1080/13658816.2012.721553 DOI
Hefley, T. J., Brost, B. M. & Hooten, M. B. Bias correction of bounded location errors in presence-only data. Methods Ecol. Evol.8, 1566–1573 (2017).10.1111/2041-210X.12793 DOI
Guisan, A. & Rahbek, C. SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J. Biogeogr.38, 1433–1444 (2011).10.1111/j.1365-2699.2011.02550.x DOI
Jaeschke, A. et al. Biotic interactions in the face of climate change: a comparison of three modelling approaches. PLoS ONE7, e51472 (2012). 10.1371/journal.pone.0051472 PubMed DOI PMC
Dawson, M. N. et al. An horizon scan of biogeography. Front. Biogeogr.5, fb_18854 (2013). 10.21425/F55218854 PubMed DOI PMC
Bruelheide, H. et al. sPlot - A new tool for global vegetation analyses. J. Veg. Sci.30, 161–186 (2019).10.1111/jvs.12710 DOI
Sabatini, F. M. et al. sPlotOpen—An environmentally balanced, open-access, global dataset of vegetation plots. Glob. Ecol. Biogeogr.30, 1740–1764 (2021).10.1111/geb.13346 DOI
Zizka, A. et al. CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol.10, 744–751 (2019).10.1111/2041-210X.13152 DOI
Anderson, R. P. et al. Optimizing biodiversity informatics to improve information flow, data quality, and utility for science and society. Front. Biogeogr.12, e47839 (2020).10.21425/F5FBG47839 DOI
Grattarola, F., Bowler, D. & Keil, P. Integrating presence-only and presence-absence data to model changes in species geographic ranges: An example of yaguarundí in Latin America. Preprint available at EcoEvorxiv: 10.32942/osf.io/67c4u (2022).
Ficetola, G. F. et al. An evaluation of the robustness of global amphibian range maps. J. Biogeogr.41, 211–221 (2014).10.1111/jbi.12206 DOI
Williams, K. J., Belbin, L., Austin, M. P., Stein, J. L. & Ferrier, S. Which environmental variables should I use in my biodiversity model? Int. J. Geogr. Inform. Sci.26, 2009–2047 (2012).10.1080/13658816.2012.698015 DOI
Lomolino, M.V. Conservation biogeography. In Frontiers of biogeography: new directions in the geography of nature (eds. Lomolino, M.V., Heaney, L.R) 293–296 (Sinauer Associates, Sunderland, MA, 2004).
Kuper, W., Sommer, J. H., Lovett, J. C. & Barthlott, W. Deficiency in African plant distribution data—missing pieces of the puzzle. Botanical J. Linnean Soc.150, 355–368 (2006).10.1111/j.1095-8339.2006.00494.x DOI
Duputie, A., Zimmermann, N. E. & Chuine, I. Where are the wild things? Why we need better data on species distribution. Glob. Ecol. Biogeogr.23, 457–467 (2014).10.1111/geb.12118 DOI
Sousa-Baena, M. S., Garcia, L. C. & Peterson, A. T. Completeness of digital accessible knowledge of the plants of Brazil and priorities for survey and inventory. Divers. Distrib.20, 369–381 (2014).10.1111/ddi.12136 DOI
Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun.6, 8221 (2015). 10.1038/ncomms9221 PubMed DOI PMC
Wuest, R. O. et al. Macroecology in the age of Big Data - Where to go from here? J. Biogeogr.47, 1–12 (2020).10.1111/jbi.13633 DOI
Dennis, R. L. H., Sparks, T. H. & Hardy, P. B. Bias in butterfly distribution maps: the effects of sampling effort. J. Insect Conserv.3, 33–42 (1999).10.1023/A:1009678422145 DOI
Hortal, J., Jimenez-Valverde, J., Gomez, J. F., Lobo, J. M. & Baselga, A. Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos117, 847–858 (2018).10.1111/j.0030-1299.2008.16434.x DOI
Kéry, M. Towards the modelling of true species distributions. J. Biogeogr.38, 617–618 (2011).10.1111/j.1365-2699.2011.02487.x DOI
Gaiji, S. et al. Content assessment of the primary biodiversity data published through GBIF network: status, challenges and potentials. Biodivers. Inform.8, 94–172 (2013).
Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Ann. Rev. Ecol. Evol. Syst.46, 523–549 (2015).10.1146/annurev-ecolsys-112414-054400 DOI
Anderson, R.P. et al. Final report of the task group on GBIF data fitness for use in distribution modelling. Global Biodiversity Information Facility. 1-27(2016).
Girardello, M. et al. Gaps in butterfly inventory data: a global analysis. Biol. Conserv.236, 289–295 (2019).10.1016/j.biocon.2019.05.053 DOI
Moudrý, V. & Devillers, R. Quality and usability challenges of global marine biodiversity databases: An example for marine mammal data. Ecol. Inform.56, 101051 (2020).10.1016/j.ecoinf.2020.101051 DOI
Hughes, A. C. et al. Sampling biases shape our view of the natural world. Ecography44, 1259–1269 (2021).10.1111/ecog.05926 DOI
Raja, N. B. et al. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol.6, 145–154 (2022). 10.1038/s41559-021-01608-8 PubMed DOI
Higgins, S. I. et al. A physiological analogy of the niche for projecting the potential distribution of plants. J. Biogeogr.39, 2132–2145 (2012).10.1111/j.1365-2699.2012.02752.x DOI
Owens, H. L. et al. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Modell.263, 10–18 (2013).10.1016/j.ecolmodel.2013.04.011 DOI
Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trend. Ecol. Evol.33, 790–802 (2018).10.1016/j.tree.2018.08.001 PubMed DOI
Qiao, H. et al. An evaluation of transferability of ecological niche models. Ecography42, 521–534 (2019).10.1111/ecog.03986 DOI
Stohlgren, T. J., Jarnevich, C. S., Esaias, W. E. & Morisette, J. T. Bounding species distribution models. Curr. Zool.57, 642–647 (2011).10.1093/czoolo/57.5.642 DOI
Mesgaran, M. B., Cousens, R. D. & Webber, B. L. Here be dragons: a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models. Divers. Distrib.20, 1147–1159 (2014).10.1111/ddi.12209 DOI
Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol.12, 1620–1633 (2021).10.1111/2041-210X.13650 DOI
Shcheglovitova, M. & Anderson, R. P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sampl6e sizes. Ecol. Modell.269, 9–17 (2013).10.1016/j.ecolmodel.2013.08.011 DOI
De Oliveira, G., Rangel, T. F., Lima-Ribeiro, M. S., Terribile, L. C. & Diniz-Filho, J. A. F. Evaluating, partitioning, and mapping the spatial autocorrelation component in ecological niche modeling: a new approach based on environmentally equidistant records. Ecography37, 637–647 (2014).10.1111/j.1600-0587.2013.00564.x DOI
Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun.11, 4540 (2020). 10.1038/s41467-020-18321-y PubMed DOI PMC
Tessarolo, G., Ladle, R. J., Lobo, J. M., Rangel, T. F. & Hortal, J. Using maps of biogeographical ignorance to reveal the uncertainty in distributional data hidden in species distribution models. Ecography44, 1743–1755 (2021).10.1111/ecog.05793 DOI
Thibaud, E., Petitpierre, B., Broennimann, O., Davison, A. C. & Guisan, A. Measuring the relative effect of factors affecting species distribution model predictions. Methods Ecol. Evol.5, 947–955 (2014).10.1111/2041-210X.12203 DOI
Chevalier, M. et al. Low spatial autocorrelation in mountain biodiversity data and model residuals. Ecosphere12, e03403 (2021).10.1002/ecs2.3403 DOI
Meyer, H. & Pebesma, E. Machine learning-based global maps of ecological variables and the challenge of assessing them. Nat. Commun.13, 2208 (2022). 10.1038/s41467-022-29838-9 PubMed DOI PMC
Bruelheide, H. et al. Global trait-environment relationships of plant communities. Nat. Ecol. Evol2, 1906–1917 (2018). 10.1038/s41559-018-0699-8 PubMed DOI
Heberling, J. M., Miller, J. T., Noesgaard, D., Weingart, S. B. & Schigel, D. Data integration enables global biodiversity synthesis. Proc. Natl Acad. Sci.118, e2018093118 (2021). 10.1073/pnas.2018093118 PubMed DOI PMC
Maldonado, C. et al. Species diversity and distribution in the era of Big Data. Glob. Ecol. Biogeogr.24, 973–984 (2015). 10.1111/geb.12326 PubMed DOI PMC
Troudet, J. et al. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep.7, 9132 (2017). 10.1038/s41598-017-09084-6 PubMed DOI PMC
Nunez, M. A. & Amano, T. Monolingual searches can limit and bias results in global literature reviews. Nat. Ecol. Evol.5, 264 (2021a). 10.1038/s41559-020-01369-w PubMed DOI
Nunez, M. A., Chiuffo, M. C., Pauchard, A. & Zenni, R. D. Making ecology really global. Trend. Ecol. Evol.36, 766–769 (2021b).10.1016/j.tree.2021.06.004 PubMed DOI
Adamo, M. et al. Plant scientists’ research attention is skewed towards colourful, conspicuous and broadly distributed flowers. Nat. Plants7, 574–578 (2021). 10.1038/s41477-021-00912-2 PubMed DOI
Sanchez-Fernandez, D. et al. Don’t forget subterranean ecosystems in climate change agendas. Nat. Climate Change11, 458–459 (2021).10.1038/s41558-021-01057-y DOI
Bini, L. M., Diniz-Filho, J. A. F., Rangel, T. F. L., Bastos, R. P. & Pinto, M. P. Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Divers. Distrib.12, 475–482 (2006).10.1111/j.1366-9516.2006.00286.x DOI
Oliver, R. Y., Meyer, C., Ranipeta, A., Winner, K. & Jetz, W. Global and national trends, gaps, and opportunities in documenting and monitoring species distributions. PLoS Biol.19, e3001336 (2021). 10.1371/journal.pbio.3001336 PubMed DOI PMC
Sastre, P. & Lobo, J. M. Taxonomist survey biases and the unveiling of biodiversity patterns. Biol. Conserv.142, 462–467 (2009).10.1016/j.biocon.2008.11.002 DOI
Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol.8, e1000385 (2010). 10.1371/journal.pbio.1000385 PubMed DOI PMC
Yang, W., Ma, K. & Kreft, H. Geographical sampling bias in a large distributional database and its effects on species richness-environment models. J. Biogeogr.40, 1415–1426 (2013).10.1111/jbi.12108 DOI
Kadmon, R., Farber, O. & Danin, A. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol. Appl.14, 401–413 (2004).10.1890/02-5364 DOI
Oliveira, U. et al. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers. Distrib.22, 1232–1244 (2016).10.1111/ddi.12489 DOI
Geldmann, J. et al. What determines spatial bias in citizen science? Exploring four recording schemes with different proficiency requirements. Divers. Distrib.22, 1139–1149 (2016).10.1111/ddi.12477 DOI
Ronquillo, C. et al. Assessing spatial and temporal biases and gaps in the publicly available distributional information of iberian mosses. Biodivers. Data J.8, e53474 (2020). 10.3897/BDJ.8.e53474 PubMed DOI PMC
Petersen, T. K., Speed, J. D. M., Grotan, V. & Austrheim, G. Species data for understanding biodiversity dynamics: The what, where and when of species occurrence data collection. Ecol. Solut. Evid.2, e12048 (2021).10.1002/2688-8319.12048 DOI
Pärtel, M., Sabatini, F. M., Morueta-Holme, N., Kreft, H. & Dengler, J. Macroecology of vegetation - Lessons learnt from the Virtual Special Issue. J. Veg. Sci.33, e13121 (2022).10.1111/jvs.13121 DOI
Rodrigues, A. S. L. et al. A global assessment of amphibian taxonomic effort and expertise. Bioscience60, 798–806 (2010).10.1525/bio.2010.60.10.6 DOI
Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett.19, 992–1006 (2016). 10.1111/ele.12624 PubMed DOI
Costa, G. C., Nogueira, C., Machado, R. B. & Colli, G. R. Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers. Conserv.19, 883–899 (2010).10.1007/s10531-009-9746-8 DOI
Rocchini, D. et al. Accounting for uncertainty when mapping species distributions: The need for maps of ignorance. Progr. Phys. Geogr.35, 211–226 (2011).10.1177/0309133311399491 DOI
Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl.19, 181–197 (2009). 10.1890/07-2153.1 PubMed DOI
Beck, J., Boller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform.19, 10–15 (2014).10.1016/j.ecoinf.2013.11.002 DOI
Barbosa, A. M., Pautasso, M. & Figueiredo, D. Species-people correlations and the need to account for survey effort in biodiversity analyses. Divers. Distrib.19, 1188–1197 (2013).10.1111/ddi.12106 DOI
Chevalier, M., Broennimann, O., Cornuault, J. & Guisan, A. Data integration methods to account for spatial niche truncation effects in regional projections of species distribution. Ecol. Appl.31, e02427 (2021). 10.1002/eap.2427 PubMed DOI
Acevedo, P., Jimenez-Valverde, A., Lobo, J. M. & Real, R. Delimiting the geographical background in species distribution modelling. J. Biogeogr.39, 1383–1390 (2012).10.1111/j.1365-2699.2012.02713.x DOI
Jimenez-Valverde, A., Acevedo, P., Barbosa, A. M., Lobo, J. M. & Real, R. Discrimination capacity in species distribution models depends on the representativeness of the environmental domain. Glob. Ecol. Biogeogr22, 508–516 (2013).10.1111/geb.12007 DOI
Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inform. Sci.35, 213–226 (2021).10.1080/13658816.2020.1798968 DOI
Sobral-Souza, T. et al. Knowledge gaps hamper understanding the relationship between fragmentation and biodiversity loss: the case of Atlantic Forest fruit-feeding butterflies. PeerJ9, e11673 (2021). 10.7717/peerj.11673 PubMed DOI PMC
McCune, J. L., Rosner-Katz, H., Bennett, J. R., Schuster, R. & Kharouba, H. M. Do traits of plant species predict the efficacy of species distribution models for finding new occurrences? Ecol. Evol.10, 5001–5014 (2020). 10.1002/ece3.6254 PubMed DOI PMC
Guo, C. et al. Uncertainty in ensemble modelling of large-scale species distribution: effects from species characteristics and model techniques. Ecol. Modell.306, 67–75 (2015).10.1016/j.ecolmodel.2014.08.002 DOI
Jimenez-Valverde, A., Lobo, J. M. & Hortal, J. Not as good as they seem: the importance of concepts in species distribution modelling. Divers. Distrib.14, 885–890 (2008).10.1111/j.1472-4642.2008.00496.x DOI
Jeliazkov, A. et al. Sampling and modelling rare species: conceptual guidelines for the neglected majority. Glob. Change Biol.28, 3754–3777 (2022).10.1111/gcb.16114 PubMed DOI
Anderson, R. P. & Raza, A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr.37, 1378–1393 (2010).10.1111/j.1365-2699.2010.02290.x DOI
Hattab, T. et al. A unified framework to model the potential and realized distributions of invasive species within the invaded range. Divers. Distrib.23, 806–819 (2017).10.1111/ddi.12566 DOI
Lembrechts, J. J., Lenoir, J., Scheffers, B. & De Frenne, P. Designing countrywide and regional microclimate networks. Glob. Ecol. Biogeogr.30, 1168–1174 (2021).10.1111/geb.13290 DOI
Fourcade, Y., Engler, J. O., Rodder, D. & Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PloS ONE9, e97122 (2014). 10.1371/journal.pone.0097122 PubMed DOI PMC
Nunez-Penichet, C. et al. Selection of sampling sites for biodiversity inventory: Effects of environmental and geographical considerations. Methods Ecol. Evol13, 1595–1607 (2022).10.1111/2041-210X.13869 DOI
Whittaker, R. H. A criticism of the plant association and climatic climax concepts. Northwest Sci.26, 17–31 (1951).
Austin, M. P., Cunningham, R. B. & Fleming, P. M. New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio55, 11–27 (1984).10.1007/BF00039976 DOI
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spthin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography38, 541–545 (2015).10.1111/ecog.01132 DOI
Fourcade, Y. Fine-tuning niche models matters in invasion ecology.A lesson from the land planarian Obama nungara.Ecol. Modell.457, 109686 (2021).10.1016/j.ecolmodel.2021.109686 DOI
Varela, S., Anderson, R. P., Garcia-Valdes, R. & Fernandez-Gonzalez, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography37, 1084–1091 (2014).
Anderson, R. P. & Gonzalez Jr, I. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol. Modell.222, 2796–2811 (2011).10.1016/j.ecolmodel.2011.04.011 DOI
Gabor, L., Moudry, V., Bartak, V. & Lecours, V. How do species and data characteristics affect species distribution models and when to use environmental filtering? Int. J. Geogr. Inform. Sci.34, 1567–1584 (2020).10.1080/13658816.2019.1615070 DOI
Dormann, C. F. et al. Model averaging in ecology: a review of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecol. Monogr.88, 485–504 (2018).10.1002/ecm.1309 DOI
Hao, T., Elith, J., Guillera-Arroita, G. & Lahoz-Monfort, J. J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib.25, 839–852 (2019).10.1111/ddi.12892 DOI
Hao, T., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography43, 549–558 (2020).10.1111/ecog.04890 DOI
Amano, T., Lamming, J. D. L. & Sutherland, W.-J. Spatial gaps in global biodiversity information and the role of citizen science. Bioscience66, 393–400 (2016).10.1093/biosci/biw022 DOI
Wolf, S. et al. Citizen science plant observations encode global trait patterns. Nat. Ecol. Evol.6, 1850–1859 (2022). 10.1038/s41559-022-01904-x PubMed DOI
Theobald, E. J. et al. Global change and local solutions: Tapping the unrealized potential of citizen science for biodiversity research. Biol. Conserv.181, 236–244 (2015).10.1016/j.biocon.2014.10.021 DOI
Lobo, J. M. et al. KnowBR: An application to map the geographical variation of survey effort and identify well-surveyed areas from biodiversity databases. Ecol. Indic.91, 241–248 (2018).10.1016/j.ecolind.2018.03.077 DOI
Mokany, K., Harwood, T. D., Overton, J. M., Barker, G. M. & Ferrier, S. Combining alpha- and beta-diversity models to fill gaps in our knowledge of biodiversity. Ecol. Lett.14, 1043–1051 (2011). 10.1111/j.1461-0248.2011.01675.x PubMed DOI
Chevalier, M., Zarzo-Arias, A., Guélat, J., Mateo, R. G. & Guisan, A. Accounting for niche truncation to improve spatial and temporal predictions of species distributions. Front. Ecol. Evol.10, 944116 (2022).10.3389/fevo.2022.944116 DOI
Boggs, S. W. An atlas of ignorance: A needed stimulus to honest thinking and hard work. Proc. Am. Philos. Soc.93, 253–258 (1949).
Ladle, R. J. & Hortal, J. Mapping species distributions: living with uncertainty. Front. Biogeogr.5, 8–9 (2013).10.21425/F55112942 DOI
Konig, C. et al. Biodiversity data integration-the significance of data resolution and domain. PLoS Biol.17, e3000183 (2019). 10.1371/journal.pbio.3000183 PubMed DOI PMC
Ellis-Soto, D., Merow, C., Amatulli, G., Parra, J. L. & Jetz, W. Continental-scale 1 km hummingbird diversity derived from fusing point records with lateral and elevational expert information. Ecography44, 640–652 (2021).10.1111/ecog.05119 DOI
Palmer, M. W. How should one count species? Nat. Areas J.15, 124–135 (1995).
Cazzolla Gatti, R. et al. The number of tree species on Earth. Proc. Natl Acad. Sci.119, e2115329119 (2022). 10.1073/pnas.2115329119 PubMed DOI PMC
Soberón, J. M., Llorente, J. B. & Oñate, L. The use of specimen-label databases for conservation purposes: an example using Mexican Papilionid and Pierid butterflies. Biodivers. Conserv.9, 1441–1466 (2000).10.1023/A:1008987010383 DOI
Bystriakova, N., Peregrym, M., Erkens, R. H. J., Bezsmertna, O. & Schneider, H. Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Syst. Biodivers.10, 305–315 (2012).10.1080/14772000.2012.705357 DOI
Zurell, D. et al. The virtual ecologist approach: simulating data and observers. Oikos119, 622–635 (2010).10.1111/j.1600-0706.2009.18284.x DOI
Miller, J. A. Virtual species distribution models: Using simulated data to evaluate aspects of model performance. Progr. Phys. Geogr.38, 117–128 (2014).10.1177/0309133314521448 DOI
Moudry, V. Modelling species distributions with simulated virtual species. J. Biogeogr.42, 1365–1366 (2015).10.1111/jbi.12552 DOI
Fernandes, R. F., Scherrer, D. & Guisan, A. How much should one sample to accurately predict the distribution of species assemblages? A virtual community approach. Ecol. Inform.48, 125–134 (2018).10.1016/j.ecoinf.2018.09.002 DOI
Meynard, C. N., Leroy, B. & Kaplan, D. M. Testing methods in species distribution modelling using virtual species: what have we learnt and what are we missing? Ecography42, 2021–2036 (2019).10.1111/ecog.04385 DOI
Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Climate Change2, 619–622 (2012).10.1038/nclimate1514 DOI
Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat.132, 652–661 (1988).10.1086/284880 DOI
Zurell, D. et al. Benchmarking novel approaches for modelling species range dynamics. Glob. Change Biol.22, 2651–2664 (2016).10.1111/gcb.13251 PubMed DOI PMC
Brun, P. et al. Model complexity affects species distribution projections under climate change. J. Biogeogr.47, 130–142 (2020).10.1111/jbi.13734 DOI
Schweiger, A. H., Irl, S. D. H., Steinbauer, M. J., Dengler, J. & Beierkuhnlein, C. Optimizing sampling approaches along ecological gradients. Methods Ecol. Evol.7, 463–471 (2016).10.1111/2041-210X.12495 DOI
Meynard, C. N. & Kaplan, D. M. Using virtual species to study species distributions and model performance. J. Biogeogr.40, 1–8 (2013).10.1111/jbi.12006 DOI
Hirzel, A. H., Helfer, V. & Metral, F. Assessing habitat-suitability models with a virtual species. Ecol. Modell.145, 111–121 (2011).10.1016/S0304-3800(01)00396-9 DOI
Leroy, B., Meynard, C. N., Bellard, C. & Courchamp, F. virtualspecies, an R package to generate virtual species distributions. Ecography39, 599–607 (2016).10.1111/ecog.01388 DOI
Qiao, H. et al. NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography39, 805–813 (2016).10.1111/ecog.01961 DOI
De Paor, D. G. & Whitmeyer, S. J. Geological and geophysical modeling on virtual globes using KML, COLLADA, and Javascript. Comput. Geosci.37, 100–110 (2011).10.1016/j.cageo.2010.05.003 DOI
Wallace, A. R. On the law which has regulated the introduction of new species. Ann. Mag. Nat. Hist.16, 184–196 (1855).10.1080/037454809495509 DOI
Pillar, V. D., Sabatini, F. M., Jandt, U., Camiz, S. & Bruelheide, H. Revealing the functional traits linked to hidden environmental factors in community assembly. J. Veg. Sci.32, e12976 (2011).
Cazzolla Gatti, R. A century of biodiversity: Some open questions and some answers. Biodiversity18, 175–185 (2017).10.1080/14888386.2017.1407257 DOI
Qiao, H., Peterson, A. T., Ji, L. & Hu, J. Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling. Methods Ecol. Evol.8, 1804–1812 (2017).10.1111/2041-210X.12832 DOI
Winsberg, E. Sanctioning models: The epistemology of simulation. Sci. Context12, 275–292 (1999).10.1017/S0269889700003422 DOI
Winsberg, E. Simulated experiments: Methodology for a virtual world. Philos. Sci.70, 105–125 (2003).10.1086/367872 DOI
Peck, S. L. Simulation as experiment: a philosophical reassessment for biological modeling. Trend Ecol. Evol.19, 530–534 (2004).10.1016/j.tree.2004.07.019 PubMed DOI
Rangel, T. F. L., Diniz-Filho, J. A. F. & Colwell, R. K. Species richness and evolutionary niche dynamics: a spatial pattern-oriented simulation experiment. Am. Nat.170, 602–616 (2007). 10.1086/521315 PubMed DOI
Nakazawa, Y. Niche breadth, environmental landscape, and physical barriers: their importance as determinants of species distributions. Biol. J. Linnean Soc.108, 241–250 (2013).10.1111/j.1095-8312.2012.02018.x DOI
Nakazawa, Y. & Peterson, A. T. Effects of climate history and environmental grain on species’ distributions in Africa and South America. Biotropica47, 292–299 (2015).10.1111/btp.12212 DOI
Darroch, S. A. & Saupe, E. E. Reconstructing geographic range-size dynamics from fossil data. Paleobiology44, 25–39 (2018).10.1017/pab.2017.25 DOI
Kadmon, R., Farber, O. & Danin, A. A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl.13, 853–867 (2003).10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2 DOI
Foody, G. M. GIS: stressing the geographical. Progr. Phys. Geogr.28, 152–158 (2004).10.1191/0309133304pp407pr DOI
Osborne, P. E., Foody, G. M. & Suarez-Seoane, S. Non-stationarity and local approaches to modelling the distributions of wildlife. Divers. Distrib.13, 313–323 (2007).10.1111/j.1472-4642.2007.00344.x DOI
Foody, G. M. GIS: biodiversity applications. Progr. Phys. Geogr.32, 223–235 (2008).10.1177/0309133308094656 DOI
Hortal, J., Lobo, J. M. & Jimenez-Valverde, A. Limitations of biodiversity databases: case study on seed-plant diversity in Tenerife (Canary Islands). Conserv. Biol.21, 853–863 (2007). 10.1111/j.1523-1739.2007.00686.x PubMed DOI
Ficetola, G. F. et al. Sampling bias inverts ecogeographical relationships in island reptiles. Glob. Ecol. Biogeogr.23, 1303–1313 (2014).10.1111/geb.12201 DOI
Rocchini, D. et al. Anticipating species distributions: handling sampling effort bias under a Bayesian framework. Sci. Total Environ.584–585, 282–290 (2017). 10.1016/j.scitotenv.2016.12.038 PubMed DOI
Miller, D. L., Burt, M. L., Rexstad, E. A. & Thomas, L. Spatial models for distance sampling data: recent developments and future directions. Methods Ecolo. Evol.4, 1001–1010 (2013).10.1111/2041-210X.12105 DOI
Barry, S. C. & Welsh, A. H. Generalized additive modelling and zero inflated count data. Ecol. Modell.157, 179–188 (2002).10.1016/S0304-3800(02)00194-1 DOI
Schmera, D. & Eros, T. The role of sampling effort, taxonomical resolution and abundance weight in multivariate comparison of stream dwelling caddisfly assemblages collected from riffle and pool habitats. Ecol. Indic.11, 230–239 (2011).10.1016/j.ecolind.2010.03.009 DOI
Lark, R. M. Spatially nested sampling schemes for spatial variance components: scope for their optimization. Comput. Geosci.37, 1633–1641 (2011).10.1016/j.cageo.2010.12.010 DOI
Lark, R. M. Exploring scale-dependent correlation of soil properties by nested sampling. Eur. J. Soil Sci.56, 307–317 (2005).10.1111/j.1365-2389.2004.00672.x DOI
Rousset, F. & Ferdy, J.-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography37, 781–790 (2014).10.1111/ecog.00566 DOI
Rousset, F., Ferdy, J.-B. and Courtiol, A. spaMM: Mixed-Effect Models, with or without Spatial Random Effects. R package version 3.11.14. (2021). https://CRAN.R-project.org/package=spaMM.
Lozier, J. D., Aniello, P. & Hickerson, M. J. Predicting the distribution of Sasquatch in western North America: anything goes with ecological niche modelling. J. Biogeogr.36, 1623–1627 (2009).10.1111/j.1365-2699.2009.02152.x DOI
Tessarolo, G., Ladle, R., Rangel, T. & Hortal, J. Temporal degradation of data limits biodiversity research. Ecol. Evol.7, 6863–6870 (2017). 10.1002/ece3.3259 PubMed DOI PMC
Foody, G. M. Impacts of imperfect reference data on the apparent accuracy of species presence-absence models and their predictions. Global Ecol. Biogeogr.20, 498–508 (2011).10.1111/j.1466-8238.2010.00605.x DOI
Beale, C. M. & Lennon, J. J. Incorporating uncertainty in predictive species distribution modelling. Philos. Transac. R. Soc. B367, 247–258 (2012).10.1098/rstb.2011.0178 PubMed DOI PMC
Sanchez-Fernandez, D., Lobo, J. M., Abellan, P., Ribera, I. & Millan, A. Bias in freshwater biodiversity sampling: the case of Iberian water beetles. Divers. Distrib.14, 754–762 (2008).10.1111/j.1472-4642.2008.00474.x DOI
Gomez-Rodriguez, C., Bustamante, J., Díaz-Paniagua, C. & Guisan, A. Integrating detection probabilities in species distribution models of amphibians breeding in Mediterranean temporary ponds. Divers. Distrib.18, 260–272 (2012).10.1111/j.1472-4642.2011.00837.x DOI
Ficetola, G. F., Bonardi, A., Sindaco, R. & Padoa-Schioppa, E. Estimating patterns of reptile biodiversity in remote regions. J. Biogeogr.40, 1202–1211 (2013).10.1111/jbi.12060 DOI
Barbosa, A. M., Fontaneto, D., Marini, L. & Pautasso, M. Is the human population a large-scale indicator of the species richness of ground beetles? Animal Conserv.13, 432–441 (2010).10.1111/j.1469-1795.2010.00363.x DOI
Fontaneto, D., Barbosa, A. M., Segers, H. & Pautasso, M. The ‘rotiferologist’ effect and other global correlates of species richness in monogonont rotifers. Ecography35, 174–182 (2012).10.1111/j.1600-0587.2011.06850.x DOI
Real, R., Barbosa, A. M. & Bull, J. W. Species Distributions, quantum theory, and the enhancement of biodiversity measures. Syst. Biol.66, 453–462 (2017). PubMed
Wasof, S. et al. Disjunct populations of European vascular plant species keep the same climatic niches. Glob. Ecol. Biogeogr.24, 1401–1412 (2015).10.1111/geb.12375 DOI
McCarthy, M. A. & Masters, P. Profiting from prior information in Bayesian analyses of ecological data. J. Appl. Ecol.42, 1012–1019 (2005).10.1111/j.1365-2664.2005.01101.x DOI
Elith, J., Burgman, M. A. & Regan, H. M. Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecol. Modell.157, 313–329 (2002).10.1016/S0304-3800(02)00202-8 DOI
Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr.41, 629–643 (2014).10.1111/jbi.12227 DOI
Rosner-Katz, H., McCune, J. L. & Bennett, J. R. Using stacked SDMs with accuracy and rarity weighting to optimize surveys for rare plant species. Biodivers. Conserv.29, 3209–3225 (2020).10.1007/s10531-020-02018-1 DOI
Zurell, D., Elith, J. & Schroder, D. Predicting to new environments: tools for visualizing model behaviour and impacts on mapped distributions. Divers. Distrib.18, 628–634 (2012).10.1111/j.1472-4642.2012.00887.x DOI
Brooks, T. M. et al. Coverage provided by the global protected-area system: is it enough? BioScience54, 1081–1091 (2004).10.1641/0006-3568(2004)054[1081:CPBTGP]2.0.CO;2 DOI
Dorling, D. Area Cartograms: Their Use and Creation. Concepts and Techniques in Modern Geography (CATMOG) 59 (Univ. of East Anglia, Norwich, U.K.) (1996).
Gastner, M. T. & Newman, M. E. J. Diffusion-based method for producing density-equalizing maps. Proc. Natl Acad. Sci.101, 7499–7504 (2004). 10.1073/pnas.0400280101 PubMed DOI PMC