Sampling and modelling rare species: Conceptual guidelines for the neglected majority
Language English Country England, Great Britain Media print-electronic
Document type Journal Article
PubMed
35098624
DOI
10.1111/gcb.16114
Knihovny.cz E-resources
- Keywords
- bias, detectability, distribution change, methods, occupancy, rare species, sampling, spatial data, species distribution modelling, survey,
- MeSH
- Biodiversity * MeSH
- Publication type
- Journal Article MeSH
Biodiversity conservation faces a methodological conundrum: Biodiversity measurement often relies on species, most of which are rare at various scales, especially prone to extinction under global change, but also the most challenging to sample and model. Predicting the distribution change of rare species using conventional species distribution models is challenging because rare species are hardly captured by most survey systems. When enough data are available, predictions are usually spatially biased towards locations where the species is most likely to occur, violating the assumptions of many modelling frameworks. Workflows to predict and eventually map rare species distributions imply important trade-offs between data quantity, quality, representativeness and model complexity that need to be considered prior to survey and analysis. Our opinion is that study designs need to carefully integrate the different steps, from species sampling to modelling, in accordance with the different types of rarity and available data in order to improve our capacity for sound assessment and prediction of rare species distribution. In this article, we summarize and comment on how different categories of species rarity lead to different types of occurrence and distribution data depending on choices made during the survey process, namely the spatial distribution of samples (where to sample) and the sampling protocol in each selected location (how to sample). We then clarify which species distribution models are suitable depending on the different types of distribution data (how to model). Among others, for most rarity forms, we highlight the insights from systematic species-targeted sampling coupled with hierarchical models that allow correcting for overdispersion and spatial and sampling sources of bias. Our article provides scientists and practitioners with a much-needed guide through the ever-increasing diversity of methodological developments to improve the prediction of rare species distribution depending on rarity type and available data.
Department of Life Sciences Natural History Museum London UK
Department of Plant Sciences University of Oxford Oxford UK
Faculty of Biology University of Duisburg Essen Essen Germany
Institute of Plant Sciences University of Bern Bern Switzerland
School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
See more in PubMed
Aguilera, P. A., Fernández, A., Reche, F., & Rumí, R. (2010). Hybrid Bayesian network classifiers: Application to species distribution models. Environmental Modelling & Software, 25, 1630-1639. https://doi.org/10.1016/j.envsoft.2010.04.016
Aizpurua, O., Paquet, J.-Y., Brotons, L., & Titeux, N. (2015). Optimising long-term monitoring projects for species distribution modelling: How atlas data may help. Ecography, 38(1), 29-40. https://doi.org/10.1111/ecog.00749
Alsos, I. G., Lammers, Y., Yoccoz, N. G., Jørgensen, T., Sjögren, P., Gielly, L., & Edwards, M. E. (2018). Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. PLoS One, 13(4), e0195403. https://doi.org/10.1371/journal.pone.0195403
Altermatt, F., Little, C. J., Mächler, E., Wang, S., Zhang, X., & Blackman, R. C. (2020). Uncovering the complete biodiversity structure in spatial networks: The example of riverine systems. Oikos, 129(5), 607-618. https://doi.org/10.1111/oik.06806
Amano, T., Lamming, J. D. L., & Sutherland, W. J. (2016). Spatial gaps in global biodiversity information and the role of citizen science. BioScience, 66(5), 393-400. https://doi.org/10.1093/biosci/biw022
Anderson, R. P., & Gonzalez, I. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecological Modelling, 222(15), 2796-2811. https://doi.org/10.1016/j.ecolmodel.2011.04.011
Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1), 42-47. https://doi.org/10.1016/j.tree.2006.09.010
Araújo, M. B., Williams, P. H., & Fuller, R. J. (2002). Dynamics of extinction and the selection of nature reserves. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1504), 1971-1980. https://doi.org/10.1098/rspb.2002.2121
Aubry, K. B., Raley, C. M., & McKelvey, K. S. (2017). The importance of data quality for generating reliable distribution models for rare, elusive, and cryptic species. PLoS One, 12(6), e0179152. https://doi.org/10.1371/journal.pone.0179152
Austin, M. P., Cunningham, R. B., & Fleming, P. M. (1984). New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio, 55(1), 11-27. https://doi.org/10.1007/BF00039976
Azaele, S., Cornell, S. J., & Kunin, W. E. (2012). Downscaling species occupancy from coarse spatial scales. Ecological Applications, 22, 1004-1014. https://doi.org/10.1890/11-0536.1
Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo?absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3(2), 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.x
Barwell, L. J., Azaele, S., Kunin, W. E., & Isaac, N. J. B. (2014). Can coarse-grain patterns in insect atlas data predict local occupancy? Diversity and Distributions, 20, 895-907.
Beng, K. C., & Corlett, R. T. (2020). Applications of environmental DNA (eDNA) in ecology and conservation: Opportunities, challenges and prospects. Biodiversity and Conservation, 29, 2089-2121. https://doi.org/10.1007/s10531-020-01980-0
Benito, B. M., Martínez-Ortega, M. M., Muñoz, L. M., Lorite, J., & Peñas, J. (2009). Assessing extinction-risk of endangered plants using species distribution models: A case study of habitat depletion caused by the spread of greenhouses. Biodiversity and Conservation, 18(9), 2509-2520. https://doi.org/10.1007/s10531-009-9604-8
Bird, T. J., Bates, A. E., Lefcheck, J. S., Hill, N. A., Thomson, R. J., Edgar, G. J., Stuart-Smith, R. D., Wotherspoon, S., Krkosek, M., Stuart-Smith, J. F., Pecl, G. T., Barrett, N., & Frusher, S. (2014). Statistical solutions for error and bias in global citizen science datasets. Biological Conservation, 173, 144-154. https://doi.org/10.1016/j.biocon.2013.07.037
Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S., Knapp, M., Yu, D. W., & de Bruyn, M. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution, 29, 358-367. https://doi.org/10.1016/j.tree.2014.04.003
Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73-77. https://doi.org/10.1016/j.ecolmodel.2013.12.012
Bowler, D. E., Nilsen, E. B., Bischof, R., O’Hara, R. B., Yu, T. T., Oo, T., Aung, M., & Linnell, J. D. C. (2019). Integrating data from different survey types for population monitoring of an endangered species: the case of the Eld's deer. Scientific Reports, 9, 7766. https://doi.org/10.1038/s41598-019-44075-9
Breiner, F. T., Guisan, A., Bergamini, A., & Nobis, M. P. (2015). Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6, 1210-1218. https://doi.org/10.1111/2041-210X.12403
Bruelheide, H., Dengler, J., Jiménez-Alfaro, B., Purschke, O., Hennekens, S. M., Chytrý, M., Pillar, V. D., Jansen, F., Kattge, J., Sandel, B., Aubin, I., Biurrun, I., Field, R., Haider, S., Jandt, U., Lenoir, J., Peet, R. K., Peyre, G., Sabatini, F. M., … Zverev, A. (2019). sPlot-A new tool for global vegetation analyses. Journal of Vegetation Science, 30, 161-186. https://doi.org/10.1111/jvs.12710
Brummitt, N. A., Bachman, S. P., Griffiths-Lee, J., Lutz, M., Moat, J. F., Farjon, A., Donaldson, J. S., Hilton-Taylor, C., Meagher, T. R., Albuquerque, S., Aletrari, E., Andrews, A. K., Atchison, G., Baloch, E., Barlozzini, B., Brunazzi, A., Carretero, J., Celesti, M., Chadburn, H., … Nic Lughadha, E. M. (2015). Green plants in the red: A baseline global assessment for the IUCN sampled red list index for plants. PLoS One, 10(8), e0135152. https://doi.org/10.1371/journal.pone.0135152
Buckland, S. T., Rexstad, E. A., Marques, T. A., & Oedekoven, C. S. (2015). Distance sampling: Methods and applications. Springer.
Bunce, R., Carey, P., Maskell, L., Norton, L., Scott, R., Smart, S., & Wood, C. (2014). Countryside Survey 2007 vegetation plot data.
Burnham, K. P., & Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research, 33(2), 261-304. https://doi.org/10.1177/0049124104268644
Butchart, S. H. M., Marco, M. D., & Watson, J. E. M. (2016). Formulating smart commitments on biodiversity: Lessons from the Aichi targets. Conservation Letters, 9(6), 457-468. https://doi.org/10.1111/conl.12278
Bystriakova, N., Peregrym, M., Erkens, R. H. J., Bezsmertna, O., & Schneider, H. (2012). Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Systematics and Biodiversity, 10(3), 305-315. https://doi.org/10.1080/14772000.2012.705357
Calatayud, J., Andivia, E., Escudero, A., Melián, C. J., Bernardo-Madrid, R., Stoffel, M., Aponte, C., Medina, N. G., Molina-Venegas, R., Arnan, X., Rosvall, M., Neuman, M., Noriega, J. A., Alves-Martins, F., Draper, I., Luzuriaga, A., Ballesteros-Cánovas, J. A., Morales-Molino, C., Ferrandis, P., … Madrigal-González, J. (2019). Positive associations among rare species and their persistence in ecological assemblages. Nature Ecology & Evolution, 4(1), 40-45. https://doi.org/10.1038/s41559-019-1053-5
Carey, P. D., Wallis, S., Emmett, B., Maskell, L., Murphy, J., Norton, L., Simpson, I., & Smart, S. (2008). Countryside Survey: UK headline messages from 2007.
Carmona, C. P., de Bello, F., Sasaki, T., Uchida, K., & Pärtel, M. (2017). Towards a common toolbox for rarity: A response to Violle et al. Trends in Ecology & Evolution, 32(12), 889-891. https://doi.org/10.1016/j.tree.2017.09.010
Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E., & Rinaldo, A. (2018). Estimating species distribution and abundance in river networks using environmental DNA. Proceedings of the National Academy of Sciences, 115(46), 11724-11729. https://doi.org/10.1073/pnas.1813843115
Carraro, L., Stauffer, J. B., & Altermatt, F. (2021). How to design optimal eDNA sampling strategies for biomonitoring in river networks. Environmental DNA, 3(1), 157-172. https://doi.org/10.1002/edn3.137
Chandler, M., See, L., Copas, K., Bonde, A. M. Z., López, B. C., Danielsen, F., Legind, J. K., Masinde, S., Miller-Rushing, A. J., Newman, G., Rosemartin, A., & Turak, E. (2017). Contribution of citizen science towards international biodiversity monitoring. Biological Conservation, 213, 280-294. https://doi.org/10.1016/j.biocon.2016.09.004
Chandler, R., & Hepinstall-Cymerman, J. (2016). Estimating the spatial scales of landscape effects on abundance. Landscape Ecology, 31, 1383-1394. https://doi.org/10.1007/s10980-016-0380-z
Chandler, R. B., Royle, J. A., & King, D. I. (2011). Inference about density and temporary emigration in unmarked populations. Ecology, 92, 1429-1435. https://doi.org/10.1890/10-2433.1
Chen, S. H., & Pollino, C. A. (2012). Good practice in Bayesian network modelling. Environmental Modelling & Software, 37, 134-145. https://doi.org/10.1016/j.envsoft.2012.03.012
Chiffard, J., Marciau, C., Yoccoz, N. G., Mouillot, F., Duchateau, S., Nadeau, I., Fontanilles, P., & Besnard, A. (2020). Adaptive niche-based sampling to improve ability to find rare and elusive species: Simulations and field tests. Methods in Ecology and Evolution, 11(8), 899-909. https://doi.org/10.1111/2041-210X.13399
Courchamp, F., Angulo, E., Rivalan, P., Hall, R. J., Signoret, L., Bull, L., & Meinard, Y. (2006). Rarity value and species extinction: The anthropogenic allee effect. PLoS Biology, 4(12), e415. https://doi.org/10.1371/journal.pbio.0040415
Cristescu, M. E., & Hebert, P. D. N. (2018). Uses and misuses of environmental DNA in biodiversity science and conservation. Annual Review of Ecology, Evolution, and Systematics, 49(1), 209-230. https://doi.org/10.1146/annurev-ecolsys-110617-062306
Cunningham, R. B., & Lindenmayer, D. B. (2005). Modeling count data of rare species: Some statistical issues. Ecology, 86(5), 1135-1142. https://doi.org/10.1890/04-0589
Dallas, T. A., & Hastings, A. (2018). Habitat suitability estimated by niche models is largely unrelated to species abundance. Global Ecology and Biogeography, 27(12), 1448-1456. https://doi.org/10.1111/geb.12820
Deguines, N., Julliard, R., de Flores, M., & Fontaine, C. (2012). The whereabouts of flower visitors: contrasting land-use preferences revealed by a country-wide survey based on citizen science. PLoS One, 7, e45822. https://doi.org/10.1371/journal.pone.0045822
Dénes, F. V., Silveira, L. F., & Beissinger, S. R. (2015). Estimating abundance of unmarked animal populations: Accounting for imperfect detection and other sources of zero inflation. Methods in Ecology and Evolution, 6, 543-556. https://doi.org/10.1111/2041-210X.12333
Didham, R. K., Basset, Y., Collins, C. M., Leather, S. R., Littlewood, N. A., Menz, M. H. M., Müller, J., Packer, L., Saunders, M. E., Schönrogge, K., Stewart, A. J. A., Yanoviak, S. P., & Hassall, C. (2020). Interpreting insect declines: Seven challenges and a way forward. Insect Conservation and Diversity, 13(2), 103-114. https://doi.org/10.1111/icad.12408
Diekmann, M., Kühne, A., & Isermann, M. (2007). Randomvs non-random sampling: Effects on patterns of species abundance, species richness and vegetation-environment relationships. Folia Geobot, 42, 179.
Domínguez Lozano, F., Moreno Saiz, J. C., Sainz Ollero, H., & Schwartz, M. W. (2007). Effects of dynamic taxonomy on rare species and conservation listing: Insights from the Iberian vascular flora. Biodiversity and Conservation, 16(14), 4039-4050. https://doi.org/10.1007/s10531-007-9206-2
Dorazio, R. M. (2014). Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. Global Ecology and Biogeography, 23(12), 1472-1484. https://doi.org/10.1111/geb.12216
Dormann, C. F., Calabrese, J. M., Guillera-Arroita, G., Matechou, E., Bahn, V., Bartoń, K., Beale, C. M., Ciuti, S., Elith, J., Gerstner, K., Guelat, J., Keil, P., Lahoz-Monfort, J. J., Pollock, L. J., Reineking, B., Roberts, D. R., Schröder, B., Thuiller, W., Warton, D. I., … Hartig, F. (2018). Model averaging in ecology: A review of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecological Monographs, 88(4), 485-504. https://doi.org/10.1002/ecm.1309
Dormann, C., McPherson, J., Araújo, M., Bivand, R., Bolliger, J., Carl, G., Davies, R., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., Peres-Neto, P., Reineking, B., Schröder, B., Schurr, F., & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30, 609-628. https://doi.org/10.1111/j.2007.0906-7590.05171.x
El-Gabbas, A., & Dormann, C. F. (2018). Improved species-occurrence predictions in data-poor regions: using large-scale data and bias correction with down-weighted Poisson regression and Maxent. Ecography, 41, 1161-1172. https://doi.org/10.1111/ecog.03149
Ellis-Soto, D., Merow, C., Amatulli, G., Parra, J. L., & Jetz, W. (2021). Continental-scale 1 km hummingbird diversity derived from fusing point records with lateral and elevational expert information. Ecography, 44(4), 640-652. https://doi.org/10.1111/ecog.05119
Enquist, B. J., Condit, R., Peet, R. K., Schildhauer, M., & Thiers, B. M. (2016). Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. https://peerj.com/preprints/2615v2; doi:https://doi.org/10.7287/peerj.preprints.2615v2
Enquist, B. J., Feng, X., Boyle, B., Maitner, B., Newman, E. A., Jørgensen, P. M., Roehrdanz, P. R., Thiers, B. M., Burger, J. R., Corlett, R. T., Couvreur, T. L. P., Dauby, G., Donoghue, J. C., Foden, W., Lovett, J. C., Marquet, P. A., Merow, C., Midgley, G., Morueta-Holme, N., … McGill, B. J. (2019). The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 5(11), eaaz0414. https://doi.org/10.1126/sciadv.aaz0414
Fisher, R. A., Corbet, A. S., & Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. The Journal of Animal Ecology, 12(1), 42-58. https://doi.org/10.2307/1411
Fithian, W., Elith, J., Hastie, T., & Keith, D. A. (2015). Bias correction in species distribution models: Pooling survey and collection data for multiple species. Methods in Ecology and Evolution, 6, 424-438. https://doi.org/10.1111/2041-210X.12242
Fleschutz, M. M., Gálvez, N., Pe’er, G., Davies, Z. G., Henle, K., & Schüttler, E. (2016). Response of a small felid of conservation concern to habitat fragmentation. Biodiversity and Conservation, 25(8), 1447-1463. https://doi.org/10.1007/s10531-016-1118-6
Fletcher, D., MacKenzie, D., & Villouta, E. (2005). Modelling skewed data with many zeros: a simple approach combining ordinary and logistic regression. Environmental and Ecological Statistics, 12, 45-54. https://doi.org/10.1007/s10651-005-6817-1
Fontaine, B., Bouchet, P., Van Achterberg, K., Alonso-Zarazaga, M. A., Araujo, R., Asche, M., Aspöck, U., Audisio, P., Aukema, B., Bailly, N., Balsamo, M., Bank, R. A., Barnard, P., Belfiore, C., Bogdanowicz, W., Bongers, T., Boxshall, G., Burckhardt, D., Camicas, J.-L., … Willmann, R. (2007). The European union’s 2010 target: Putting rare species in focus. Biological Conservation, 139(1), 167-185. https://doi.org/10.1016/j.biocon.2007.06.012
Fortin, M.-J., Drapeau, P., & Legendre, P. (1989). Spatial autocorrelation and sampling design in plant ecology. Vegetatio, 83, 209-222. https://doi.org/10.1007/BF00031693
Galante, P. J., Alade, B., Muscarella, R., Jansa, S. A., Goodman, S. M., & Anderson, R. P. (2018). The challenge of modeling niches and distributions for data-poor species: A comprehensive approach to model complexity. Ecography, 41(5), 726-736. https://doi.org/10.1111/ecog.02909
Gärdenfors, U., Hilton-Taylor, C., Mace, G. M., & Rodríguez, J. P. (2001). The application of IUCN Red List criteria at regional levels. Conservation Biology, 15(5), 1206-1212. https://doi.org/10.1111/j.1523-1739.2001.00112.x
Gaston, K. J. (1998). Species-range size distributions: Products of speciation, extinction and transformation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1366), 219-230. https://doi.org/10.1098/rstb.1998.0204
Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
Giraud, C., Calenge, C., Coron, C., & Julliard, R. (2016). Capitalizing on opportunistic data for monitoring relative abundances of species. Biometrics, 72(2), 649-658. https://doi.org/10.1111/biom.12431
Green, R. H., & Young, R. C. (1993). Sampling to detect rare species. Ecological Applications, 3(2), 351-356. https://doi.org/10.2307/1941837
Greig-Smith, P. (1964). Quantitative plant ecology. Butterworths.
Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., Steffen, W., Glaser, G., Kanie, N., & Noble, I. (2013). Sustainable development goals for people and planet. Nature, 495(7441), 305-307. https://doi.org/10.1038/495305a
Grimm-Seyfarth, A., & Klenke, R. (2019). Wie findet man schwer zu erfassende Arten? Vorteile und Limitierungen von Artenspürhunden. In C. Schüler, & P. Kaul (Eds.), Faszinosum Spürhunde-Dem Geruch auf der Spur. Tagungsergebnisse des 4. Symposiums für Odorologie im Diensthundewesen an der Hochschule Bonn-Rhein-Sieg.: Vol. Band 2 (Schriften der Arbeitsgemeinschaft Odorologie e.V., pp. 40-47).
Grimm-Seyfarth, A., Zarzycka, A., Nitz, T., Heynig, L., Weissheimer, N., Lampa, S., & Klenke, R. (2019). Performance of detection dogs and visual searches for scat detection and discrimination amongst related species with identical diets. Nature Conservation, 37, 81. https://doi.org/10.3897/natureconservation.37.48208
Guélat, J., & Kéry, M. (2018). Effects of spatial autocorrelation and imperfect detection on species distribution models. Methods in Ecology and Evolution, 9(6), 1614-1625. https://doi.org/10.1111/2041-210X.12983
Guillera-Arroita, G., Lahoz-Monfort, J. J., Elith, J., Gordon, A., Kujala, H., Lentini, P. E., McCarthy, M. A., Tingley, R., & Wintle, B. A. (2015). Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography, 24(3), 276-292. https://doi.org/10.1111/geb.12268
Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution models: With applications in R. Cambridge University Press.
Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I. T., Regan, T. J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., Martin, T. G., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith, J., Schwartz, M. W., Wintle, B. A., Broennimann, O., Austin, M., Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424-1435.
Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147-186. https://doi.org/10.1016/S0304-3800(00)00354-9
Hagen, C. A., Pavlacky, D. C., Adachi, K., Hornsby, F. E., Rintz, T. J., & McDonald, L. L. (2016). Multiscale occupancy modeling provides insights into range-wide conservation needs of Lesser Prairie-Chicken (Tympanuchus pallidicinctus). The Condor American Ornithological Society, 118, 597-612.
Hamilton, S. H., Pollino, C. A., & Jakeman, A. J. (2015). Habitat suitability modelling of rare species using Bayesian networks: Model evaluation under limited data. Ecological Modelling, 299, 64-78. https://doi.org/10.1016/j.ecolmodel.2014.12.004
Hao, T., Elith, J., Guillera-Arroita, G., & Lahoz-Monfort, J. J. (2019). A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Diversity and Distributions, 25(5), 839-852. https://doi.org/10.1111/ddi.12892
Hao, T., Elith, J., Lahoz-Monfort, J. J., & Guillera-Arroita, G. (2020). Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography, 43(4), 549-558. https://doi.org/10.1111/ecog.04890
Harrison, X. A. (2014). Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ, 2, e616. https://doi.org/10.7717/peerj.616
Harte, J., & Kinzig, A. P. (1997). On the implications of species-area relationships for endemism, spatial turnover, and food web patterns. Oikos, 80(3), 417-427. https://doi.org/10.2307/3546614
Hartley, S., & Kunin, W. E. (2003). Scale dependency of rarity, extinction risk, and conservation priority. Conservation Biology, 17(6), 1559-1570. https://doi.org/10.1111/j.1523-1739.2003.00015.x
Hedgren, O., & Weslien, J. (2008). Detecting rare species with random or subjective sampling: A case study of red-listed saproxylic beetles in boreal Sweden: Random or subjective sampling. Conservation Biology, 22, 212-215. https://doi.org/10.1111/j.1523-1739.2007.00848.x
Hefley, T. J., Baasch, D. M., Tyre, A. J., & Blankenship, E. E. (2014). Correction of location errors for presence-only species distribution models. Methods in Ecology and Evolution, 5(3), 207-214. https://doi.org/10.1111/2041-210X.12144
Helmstetter, N. A., Conway, C. J., Stevens, B. S., & Goldberg, A. R. (2021). Balancing transferability and complexity of species distribution models for rare species conservation. Diversity and Distributions, 27(1), 95-108. https://doi.org/10.1111/ddi.13174
Henle, K., Davies, K. F., Kleyer, M., Margules, C., & Settele, J. (2004). Predictors of species sensitivity to fragmentation. Biodiversity & Conservation, 13(1), 207-251. https://doi.org/10.1023/B:BIOC.0000004319.91643.9e
Henle, K., Kunin, W., Schweiger, O., Schmeller, D. S., Grobelnik, V., Matsinos, Y., Pantis, J., Penev, L., Potts, S. G., Ring, I., Similä, J., Tzanopoulos, J., van den Hove, S., Baguette, M., Clobert, J., Excoffier, L., Framstad, E., Grodzińska-Jurczak, M., Lengyel, S., … Settele, J. (2010). Securing the conservation of biodiversity across administrative levels and spatial, temporal, and ecological scales-Research needs and approaches of the SCALES project. GAIA-Ecological Perspectives for Science and Society, 19(3), 187-193. https://doi.org/10.14512/gaia.19.3.8
Hermoso, V., Kennard, M. J., & Linke, S. (2015). Evaluating the costs and benefits of systematic data acquisition for conservation assessments. Ecography, 38(3), 283-292. https://doi.org/10.1111/ecog.00792
Hines, J., & Keil, P. (2020). Common competitors and rare friends. Nature Ecology & Evolution, 4(1), 8-9. https://doi.org/10.1038/s41559-019-1071-3
Hoffmann, A., Penner, J., Vohland, K., Cramer, W., Doubleday, R., Henle, K., Kõljalg, U., Kühn, I., Kunin, W. E., Negro, J. J., & Häuser, C. L. (2014). Improved access to integrated biodiversity data for science, practice, and policy-the European Biodiversity Observation Network (EU BON) (pp. 49-66). Nature Conservation Pensoft Publishers.
Hollerbach, L., Heurich, M., Reiners, T. E., & Nowak, C. (2018). Detection dogs allow for systematic non-invasive collection of DNA samples from Eurasian lynx. Mammalian Biology, 90, 42-46. https://doi.org/10.1016/j.mambio.2018.02.003
Howard, C., Stephens, P. A., Pearce-Higgins, J. W., Gregory, R. D., & Willis, S. G. (2014). Improving species distribution models: The value of data on abundance. Methods in Ecology and Evolution, 5(6), 506-513. https://doi.org/10.1111/2041-210X.12184
IPBES. (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. .
Işik, K. (2011). Rare and endemic species: Why are they prone to extinction? Turkish Journal of Botany, 35(4), 411-417.
Jakob, C., Ponce-Boutin, F., & Besnard, A. (2014). Coping with heterogeneity to detect species on a large scale: N-mixture modeling applied to red-legged partridge abundance. The Journal of Wildlife Management, 78(3), 540-549. https://doi.org/10.1002/jwmg.686
Jeliazkov, A., Bas, Y., Kerbiriou, C., Julien, J.-F., Penone, C., & Le Viol, I. (2016). Large-scale semi-automated acoustic monitoring allows to detect temporal decline of bush-crickets. Global Ecology and Conservation, 6, 208-218. https://doi.org/10.1016/j.gecco.2016.02.008
Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters, 4(2), 150-157. https://doi.org/10.1111/j.1755-263X.2010.00158.x
Jiguet, F., Devictor, V., Julliard, R., & Couvet, D. (2012). French citizens monitoring ordinary birds provide tools for conservation and ecological sciences. Acta Oecologica, 44, 58-66. https://doi.org/10.1016/j.actao.2011.05.003
Jiménez-Valverde, A., Aragón, P., & Lobo, J. M. (2021). Deconstructing the abundance-suitability relationship in species distribution modelling. Global Ecology and Biogeography, 30(1), 327-338. https://doi.org/10.1111/geb.13204
Joseph, L. N., Elkin, C., Martin, T. G., & Possingham, H. P. (2009). Modeling abundance using N-mixture models: the importance of considering ecological mechanisms. Ecological Applications, 19.
Joseph, L. N., Field, S. A., Wilcox, C., & Possingham, H. P. (2006). Presence-absence versus abundance data for monitoring threatened species. Conservation Biology, 20(6), 1679-1687. https://doi.org/10.1111/j.1523-1739.2006.00529.x
Keil, P., Belmaker, J., Wilson, A. M., Unitt, P., & Jetz, W. (2013). Downscaling of species distribution models: A hierarchical approach. Methods in Ecology and Evolution, 4(1), 82-94. https://doi.org/10.1111/j.2041-210x.2012.00264.x
Keil, P., & Chase, J. M. (2019). Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nature Ecology & Evolution, 3(3), 390-399. https://doi.org/10.1038/s41559-019-0799-0
Keil, P., Pereira, H. M., Cabral, J. S., Chase, J. M., May, F., Martins, I. S., & Winter, M. (2018). Spatial scaling of extinction rates: Theory and data reveal nonlinearity and a major upscaling and downscaling challenge. Global Ecology and Biogeography, 27(1), 2-13. https://doi.org/10.1111/geb.12669
Kenkel, N. C., Juhász-Nagy, P., & Podani, J. (1990). On sampling procedures in population and community ecology. In G. Grabherr, L. Mucina, M. B. Dale, & C. J. F. T. Braak (Eds.), Progress in theoretical vegetation science (pp. 195-207). Springer. https://doi.org/10.1007/978-94-009-1934-1_17
Kéry, M. (2018). Identifiability in N-mixture models: A large-scale screening test with bird data. Ecology, 99(2), 281-288. https://doi.org/10.1002/ecy.2093
Kéry, M., & Royle, J. A. (2015). Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS: Volume 1: Prelude and static models. Academic Press.
Krebs, C. J. (1989). Ecological methodology. Harper & Row.
Kunin, W. E. (1998). Extrapolating species abundance across spatial scales. Science, 281(5382), 1513-1515. https://doi.org/10.1126/science.281.5382.1513
Kunin, W. E., & Gaston, K. J. (1993). The biology of rarity: Patterns, causes and consequences. Trends in Ecology & Evolution, 8(8), 298-301. https://doi.org/10.1016/0169-5347(93)90259-R
Le Lay, G., Engler, R., Franc, E., & Guisan, A. (2010). Prospective sampling based on model ensembles improves the detection of rare species. Ecography, 33, 1015-1027. https://doi.org/10.1111/j.1600-0587.2010.06338.x
Le Rest, K., Pinaud, D., Monestiez, P., Chadoeuf, J., & Bretagnolle, V. (2014). Spatial leave-one-out cross-validation for variable selection in the presence of spatial autocorrelation. Global Ecology and Biogeography, 23(7), 811-820. https://doi.org/10.1111/geb.12161
Leese, F., Sander, M., Buchner, D., Elbrecht, V., Haase, P., & Zizka, V. M. A. (2021). Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. Environmental DNA, 3(1), 261-276. https://doi.org/10.1002/edn3.177
Lin, Y.-P., Lin, W.-C., Wang, Y.-C., Lien, W.-Y., Ding, T.-S., Lee, P.-F., Wu, T.-Y., Klenke, A., Schmeller, D. S., & Henle, K. (2014). An optimal spatial sampling approach for modelling the distribution of species. In I. K. Henle, S. Potts, W. Kunin, Y. Matsinos, J. Simila, J. Pantis, V. Grobelnik, L. Penev, & J. Settele (Eds.), Scaling in ecology and biodiversity conservation. Pensoft Publishers.
Lomba, A., Pellissier, L., Randin, C., Vicente, J., Moreira, F., Honrado, J., & Guisan, A. (2010). Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 143, 2647-2657. https://doi.org/10.1016/j.biocon.2010.07.007
MacCracken, J. G., Garlich-Miller, J., Snyder, J., & Meehan, R. (2012). Bayesian belief network models for species assessments: An example with the Pacific walrus. Wildlife Society Bulletin, 37, 226-235. https://doi.org/10.1002/wsb.229
Mächler, E., Little, C. J., Wüthrich, R., Alther, R., Fronhofer, E. A., Gounand, I., Harvey, E., Hürlemann, S., Walser, J.-C., & Altermatt, F. (2019). Assessing different components of diversity across a river network using eDNA. Environmental DNA, 1(3), 290-301. https://doi.org/10.1002/edn3.33
MacKenzie, D. I. (2006). Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Elsevier.
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., & Hines, J. E. (2017). Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Elsevier.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew Royle, J., & Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
Mackenzie, D. I., & Royle, J. A. (2005). Designing occupancy studies: General advice and allocating survey effort. Journal of Applied Ecology, 42(6), 1105-1114. https://doi.org/10.1111/j.1365-2664.2005.01098.x
Madow, W. G. (1953). On the theory of systematic sampling, III. Comparison of centered and random start systematic sampling. The Annals of Mathematical Statistics, 24, 101-106. https://doi.org/10.1214/aoms/1177729087
Magurran, A. E., Baillie, S. R., Buckland, S. T., Dick, J. M. P., Elston, D. A., Scott, E. M., Smith, R. I., Somerfield, P. J., & Watt, A. D. (2010). Long-term datasets in biodiversity research and monitoring: Assessing change in ecological communities through time. Trends in Ecology & Evolution, 25(10), 574-582. https://doi.org/10.1016/j.tree.2010.06.016
Magurran, A. E., & Henderson, P. A. (2003). Explaining the excess of rare species in natural species abundance distributions. Nature, 422(6933), 714-716. https://doi.org/10.1038/nature01547
Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X., & Pino, J. (2013). Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biological Conservation, 166, 221-230. https://doi.org/10.1016/j.biocon.2013.07.001
Marcot, B. G., Hohenlohe, P. A., Morey, S., Holmes, R., Molina, R., Turley, M. C., Huff, M. H., & Laurence, J. A. (2006a). Characterizing species at risk II: Using Bayesian belief networks as decision support tools to determine species conservation categories under the northwest forest plan. Ecology and Society, 11. https://doi.org/10.5751/ES-01781-110212
Marcot, B. G., Steventon, J. D., Sutherland, G. D., & McCann, R. K. (2006b). Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation. Canadian Journal of Forest Research, 36(12), 3063-3074. https://doi.org/10.1139/x06-135
Marsh, C. J., Gavish, Y., Kunin, W. E., & Brummitt, N. A. (2019). Mind the gap: Can downscaling area of occupancy overcome sampling gaps when assessing IUCN red list status? Diversity and Distributions, 25, 1832-1845.
Marsh, C. J., Louzada, J., Beiroz, W., & Ewers, R. M. (2013). Optimising bait for pitfall trapping of amazonian dung beetles (Coleoptera: Scarabaeinae). PLoS One, 8(8), e73147. https://doi.org/10.1371/journal.pone.0073147
Martin, T. G., Wintle, B. A., Rhodes, J. R., Kuhnert, P. M., Field, S. A., Low-Choy, S. J., Tyre, A. J., & Possingham, H. P. (2005). Zero tolerance ecology: Improving ecological inference by modelling the source of zero observations: Modelling excess zeros in ecology. Ecology Letters, 8, 1235-1246. https://doi.org/10.1111/j.1461-0248.2005.00826.x
Maxwell, S. L., Fuller, R. A., Brooks, T. M., & Watson, J. E. M. (2016). Biodiversity: The ravages of guns, nets and bulldozers. Nature News, 536(7615), 143. https://doi.org/10.1038/536143a
McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., Dornelas, M., Enquist, B. J., Green, J. L., He, F., Hurlbert, A. H., Magurran, A. E., Marquet, P. A., Maurer, B. A., Ostling, A., Soykan, C. U., Ugland, K. I., & White, E. P. (2007). Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 10(10), 995-1015. https://doi.org/10.1111/j.1461-0248.2007.01094.x
McInerny, G. J., & Purves, D. W. (2011). Fine-scale environmental variation in species distribution modelling: Regression dilution, latent variables and neighbourly advice. Methods in Ecology and Evolution, 2(3), 248-257. https://doi.org/10.1111/j.2041-210X.2010.00077.x
McKinney, M. L. (1997). How do rare species avoid extinction? A paleontological view. In W. E. Kunin, & K. J. Gaston (Eds.), The biology of rarity: Causes and consequences of rare-Common differences (pp. 110-129). Springer. https://doi.org/10.1007/978-94-011-5874-9_7
McRae, L., Deinet, S., & Freeman, R. (2017). The diversity-weighted living planet index: Controlling for taxonomic bias in a global biodiversity indicator. PLoS One, 12(1), 1-20. https://doi.org/10.1371/journal.pone.0169156
Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
Merow, C., Wilson, A. M., & Jetz, W. (2017). Integrating occurrence data and expert maps for improved species range predictions. Global Ecology and Biogeography, 26(2), 243-258. https://doi.org/10.1111/geb.12539
Mesgaran, M. B., Cousens, R. D., & Webber, B. L. (2014). Here be dragons: A tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models. Diversity and Distributions, 20(10), 1147-1159. https://doi.org/10.1111/ddi.12209
Milner-Gulland, E. J., & Rowcliffe, J. M. (2007). Conservation and sustainable use: A handbook of techniques. Oxford University Press.
Molenberghs, G., Verbeke, G., & Demétrio, C. G. B. (2007). An extended random-effects approach to modeling repeated, overdispersed count data. Lifetime Data Analysis, 13(4), 513-531. https://doi.org/10.1007/s10985-007-9064-y
Mordecai, R. S., Mattsson, B. J., Tzilkowski, C. J., & Cooper, R. J. (2011). Addressing challenges when studying mobile or episodic species: Hierarchical Bayes estimation of occupancy and use. Journal of Applied Ecology, 48, 56-66. https://doi.org/10.1111/j.1365-2664.2010.01921.x
Morrison, W. R. III, Lohr, J. L., Duchen, P., Wilches, R., Trujillo, D., Mair, M., & Renner, S. S. (2009). The impact of taxonomic change on conservation: Does it kill, can it save, or is it just irrelevant? Biological Conservation, 142(12), 3201-3206. https://doi.org/10.1016/j.biocon.2009.07.019
Nekola, J. C., Šizling, A. L., Boyer, A. G., & Storch, D. (2008). Artifactions in the log-transformation of species abundance distributions. Folia Geobot, 43, 259-268. https://doi.org/10.1007/s12224-008-9020-y
Nichols, J. D., Bailey, L. L., O’Connell, A. F. Jr, Talancy, N. W., Campbell Grant, E. H., Gilbert, A. T., Annand, E. M., Husband, T. P., & Hines, J. E. (2008). Multi-scale occupancy estimation and modelling using multiple detection methods. Journal of Applied Ecology, 45, 1321-1329. https://doi.org/10.1111/j.1365-2664.2008.01509.x
Norberg, A., Abrego, N., Blanchet, F. G., Adler, F. R., Anderson, B. J., Anttila, J., Araújo, M. B., Dallas, T., Dunson, D., Elith, J., Foster, S. D., Fox, R., Franklin, J., Godsoe, W., Guisan, A., O'Hara, B., Hill, N. A., Holt, R. D., Hui, F. K. C., … Ovaskainen, O. (2019). A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 89(3), e01370. https://doi.org/10.1002/ecm.1370
O’Hara, R. B., & Kotze, D. J. (2014). Do not log-transform count data. Methods in Ecology and Evolution, 118-122. https://doi.org/10.1111/j.2041-210X.2010.00021.x
Ota, H. (2000). Current status of the threatened amphibians and reptiles of Japan. Population Ecology, 42(1), 5-9. https://doi.org/10.1007/s101440050003
Ovaskainen, O., & Soininen, J. (2011). Making more out of sparse data: Hierarchical modeling of species communities. Ecology, 92(2), 289-295. https://doi.org/10.1890/10-1251.1
Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, L., Dunson, D., Roslin, T., & Abrego, N. (2017). How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 20(5), 561-576. https://doi.org/10.1111/ele.12757
Owens, H. L., Campbell, L. P., Dornak, L. L., Saupe, E. E., Barve, N., Soberón, J., Ingenloff, K., Lira-Noriega, A., Hensz, C. M., Myers, C. E., & Peterson, A. T. (2013). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling, 263, 10-18. https://doi.org/10.1016/j.ecolmodel.2013.04.011
Pacifici, K., Simons, T. R., & Pollock, K. H. (2008). Effects of vegetation and background noise on the detection process in auditory avian point-count surveys. The Auk, 125(3), 600-607. https://doi.org/10.1525/auk.2008.07078
Pavlacky, D. C., Blakesley, J. A., White, G. C., Hanni, D. J., & Lukacs, P. M. (2012). Hierarchical multi-scale occupancy estimation for monitoring wildlife populations. The Journal of Wildlife Management, 76, 154-162. https://doi.org/10.1002/jwmg.245
Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecological Applications, 19(1), 181-197. https://doi.org/10.1890/07-2153.1
Pollock, K. H., Nichols, J. D., Brownie, C., & Hines, J. E. (1990). Statistical inference for capture-recapture experiments. Wildlife Monographs, 107, 3-97.
Pollock, L. J., Morris, W. K., & Vesk, P. A. (2012). The role of functional traits in species distributions revealed through a hierarchical model. Ecography, 35(8), 716-725. https://doi.org/10.1111/j.1600-0587.2011.07085.x
Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O’Hara, R. B., Parris, K. M., Vesk, P. A., & McCarthy, M. A. (2014). Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution, 5(5), 397-406. https://doi.org/10.1111/2041-210X.12180
Pouteau, R., Meyer, J.-Y., Taputuarai, R., & Stoll, B. (2012). Support vector machines to map rare and endangered native plants in Pacific islands forests. Ecological Informatics, 9, 37-46. https://doi.org/10.1016/j.ecoinf.2012.03.003
Preston, F. W. (1948). The commonness, and rarity, of species. Ecology, 29(3), 254-283. https://doi.org/10.2307/1930989
Qiao, H., Feng, X., Escobar, L. E., Peterson, A. T., Soberón, J., Zhu, G., & Papeş, M. (2019). An evaluation of transferability of ecological niche models. Ecography, 42(3), 521-534. https://doi.org/10.1111/ecog.03986
Rabinowitz, D. (1981). Seven forms of rarity. In H. Synge (Ed.), The biological aspects of rare plant conservation (pp. 205-217). Riley.
Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography, 41(4), 629-643. https://doi.org/10.1111/jbi.12227
Raes, N., & ter Steege, H. (2007). A null-model for significance testing of presence-only species distribution models. Ecography, 30(5), 727-736. https://doi.org/10.1111/j.2007.0906-7590.05041.x
Rands, M. R. W., Adams, W. M., Bennun, L., Butchart, S. H. M., Clements, A., Coomes, D., Entwistle, A., Hodge, I., Kapos, V., Scharlemann, J. P. W., Sutherland, W. J., & Vira, B. (2010). Biodiversity conservation: Challenges beyond 2010. Science, 329(5997), 1298-1303. https://doi.org/10.1126/science.1189138
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. SAGE.
Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M., & Gough, K. C. (2014). REVIEW: The detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology. Journal of Applied Ecology, 51, 1450-1459. https://doi.org/10.1111/1365-2664.12306
Risely, K., Baillie, S., Eaton, M., Joys, A., Musgrove, A., Noble, D., Renwick, A., & Wright, L. (2010). Breeding bird survey 2009 (p. 559). BTO.
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., & Dormann, C. F. (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8), 913-929. https://doi.org/10.1111/ecog.02881
Roberts, D. L., Taylor, L., & Joppa, L. N. (2016). Threatened or data deficient: Assessing the conservation status of poorly known species. Diversity and Distributions, 22(5), 558-565. https://doi.org/10.1111/ddi.12418
Robinson, O. J., Ruiz-Gutierrez, V., & Fink, D. (2018). Correcting for bias in distribution modelling for rare species using citizen science data. Diversity and Distributions, 24(4), 460-472. https://doi.org/10.1111/ddi.12698
Rocchini, D., Garzon-Lopez, C. X., Marcantonio, M., Amici, V., Bacaro, G., Bastin, L., Brummitt, N., Chiarucci, A., Foody, G. M., Hauffe, H. C., He, K. S., Ricotta, C., Rizzoli, A., & Rosà, R. (2017). Anticipating species distributions: Handling sampling effort bias under a Bayesian framework. Science of the Total Environment, 584-585, 282-290. https://doi.org/10.1016/j.scitotenv.2016.12.038
Rocchini, D., Hortal, J., Lengyel, S., Lobo, J. M., Jiménez-Valverde, A., Ricotta, C., Bacaro, G., & Chiarucci, A. (2011). Accounting for uncertainty when mapping species distributions: The need for maps of ignorance. Progress in Physical Geography: Earth and Environment, 35(2), 211-226. https://doi.org/10.1177/0309133311399491
Rosenstock, S. S., Anderson, D. R., Giesen, K. M., Leukering, T., & Carter, M. F. (2002). Landbird counting techniques: current practices and an alternative. The Auk, 119, 46-53. https://doi.org/10.1093/auk/119.1.46
Rosner-Katz, H., McCune, J. L., & Bennett, J. R. (2020). Using stacked SDMs with accuracy and rarity weighting to optimize surveys for rare plant species. Biodiversity and Conservation, 29(11), 3209-3225. https://doi.org/10.1007/s10531-020-02018-1
Royle, J. A. (2004). N-mixture models for estimating population size from spatially replicated counts. Biometrics, 60, 108-115.
Royle, J. A., & Nichols, J. D. (2003). Estimating abundance from repeated presence-absence data or point counts. Ecology, 84(3), 777-790.
Saupe, E. E., Barve, V., Myers, C. E., Soberón, J., Barve, N., Hensz, C. M., Peterson, A. T., Owens, H. L., & Lira-Noriega, A. (2012). Variation in niche and distribution model performance: The need for a priori assessment of key causal factors. Ecological Modelling, 237-238, 11-22. https://doi.org/10.1016/j.ecolmodel.2012.04.001
Schüttler, E., Klenke, R., Galuppo, S., Castro, R. A., Bonacic, C., Laker, J., & Henle, K. (2017). Habitat use and sensitivity to fragmentation in America’s smallest wildcat. Mammalian Biology, 86(1), 1-8. https://doi.org/10.1016/j.mambio.2016.11.013
Schwartz, M. W., & Simberloff, D. (2001). Taxon size predicts rates of rarity in vascular plants. Ecology Letters, 4, 464-469.
Simkins, A. T., Buchanan, G. M., Davies, R. G., & Donald, P. F. (2020). The implications for conservation of a major taxonomic revision of the world’s birds. Animal Conservation, 23(4), 345-352. https://doi.org/10.1111/acv.12545
Smith, C. S., Howes, A. L., Price, B., & McAlpine, C. A. (2007). Using a Bayesian belief network to predict suitable habitat of an endangered mammal-The Julia Creek dunnart (Sminthopsis douglasi). Biological Conservation, 139(3), 333-347. https://doi.org/10.1016/j.biocon.2007.06.025
Southwood, T. R. E., & Henderson, P. A. (2009). Ecological methods. John Wiley & Sons.
Standley, L. A. (1992). Taxonomic issues in rare species protection. Rhodora, 94(879), 218-242.
Steyer, K., Simon, O., Kraus, R. H. S., Haase, P., & Nowak, C. (2013). Hair trapping with valerian-treated lure sticks as a tool for genetic wildcat monitoring in low-density habitats. European Journal of Wildlife Research, 59(1), 39-46. https://doi.org/10.1007/s10344-012-0644-0
Stohlgren, T. J., Jarnevich, C. S., Esaias, W. E., & Morisette, J. T. (2011). Bounding species distribution models. Current Zoology, 57(5), 642-647. https://doi.org/10.1093/czoolo/57.5.642
Sullivan, B. L., Phillips, T., Dayer, A. A., Wood, C. L., Farnsworth, A., Iliff, M. J., Davies, I. J., Wiggins, A., Fink, D., Hochachka, W. M., Rodewald, A. D., Rosenberg, K. V., Bonney, R., & Kelling, S. (2017). Using open access observational data for conservation action: A case study for birds. Biological Conservation, 208, 5-14. https://doi.org/10.1016/j.biocon.2016.04.031
ter Steege, H., Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., Phillips, O. L., Castilho, C. V., Magnusson, W. E., Molino, J.-F., Monteagudo, A., Núñez Vargas, P., Montero, J. C., Feldpausch, T. R., Coronado, E. N. H., Killeen, T. J., Mostacedo, B., Vasquez, R., Assis, R. L., … Silman, M. R. (2013). Hyperdominance in the Amazonian Tree Flora. Science, 342(6156). https://doi.org/10.1126/science.1243092
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), 145-148. https://doi.org/10.1038/nature02121
Thompson, S. K. (1990). Adaptive cluster sampling. Journal of the American Statistical Association, 85, 1050-1059. https://doi.org/10.1080/01621459.1990.10474975
Thompson, S. K. (2013a). Adaptive web sampling in ecology. Statistical Methods and Applications, 22, 33-43. https://doi.org/10.1007/s10260-012-0222-3
Thompson, W. L. (2002). Towards reliable bird surveys: Accounting for individuals present but not detected. The Auk, 119, 18-25. https://doi.org/10.1093/auk/119.1.18
Thompson, W. (2013b). Sampling rare or elusive species: Concepts, designs, and techniques for estimating population parameters. Island Press.
Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., & Zimmermann, N. E. (2019). Uncertainty in ensembles of global biodiversity scenarios. Nature Communications, 10(1), 1-9. https://doi.org/10.1038/s41467-019-09519-w
Tobler, M. W., Kéry, M., Hui, F. K. C., Guillera-Arroita, G., Knaus, P., & Sattler, T. (2019). Joint species distribution models with species correlations and imperfect detection. Ecology, 100(8), e02754. https://doi.org/10.1002/ecy.2754
Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling, 203(3), 312-318. https://doi.org/10.1016/j.ecolmodel.2006.11.033
Van Echelpoel, W., Boets, P., Landuyt, D., Gobeyn, S., Everaert, G., Bennetsen, E., Mouton, A., & Goethals, P. L. M. (2015). Chapter 6 - Species distribution models for sustainable ecosystem management. In Y.-S. Park, S. Lek, C. Baehr, S. E. Jørgensen (Eds.), Developments in environmental modelling (pp. 115-134). Elsevier. https://www.sciencedirect.com/science/article/pii/B9780444635365000089
van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J., & Raes, N. (2016). Minimum required number of specimen records to develop accurate species distribution models. Ecography, 39(6), 542-552. https://doi.org/10.1111/ecog.01509
Varela, S., Anderson, R. P., García-Valdés, R., & Fernández-González, F. (2014). Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography, 37(11), 1084-1091. https://doi.org/10.1111/j.1600-0587.2013.00441.x
Violle, C., Thuiller, W., Mouquet, N., Munoz, F., Kraft, N. J. B., Cadotte, M. W., Livingstone, S. W., & Mouillot, D. (2017). Functional rarity: The ecology of outliers. Trends in Ecology & Evolution, 32(5), 356-367. https://doi.org/10.1016/j.tree.2017.02.002
Weber, M. M., Stevens, R. D., Diniz-Filho, J. A. F., & Grelle, C. E. V. (2017). Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography, 40(7), 817-828. https://doi.org/10.1111/ecog.02125
Welsh, A. H., Cunningham, R. B., & Chambers, R. L. (2000). Methodology for estimating the abundance of rare animals: Seabird nesting on North East Herald Cay. Biometrics, 56, 22-30. https://doi.org/10.1111/j.0006-341X.2000.00022.x
Wilcox, T. M., McKelvey, K. S., Young, M. K., Jane, S. F., Lowe, W. H., Whiteley, A. R., & Schwartz, M. K. (2013). Robust detection of rare species using environmental DNA: The importance of primer specificity. PLoS One, 8, e59520. https://doi.org/10.1371/journal.pone.0059520
Williams, B. K., Nichols, J. D., & Conroy, M. J. (2002). Analysis and management of animal populations. Elsevier Science.
Williams, K. J., Belbin, L., Austin, M. P., Stein, J. L., & Ferrier, S. (2012). Which environmental variables should I use in my biodiversity model? International Journal of Geographical Information Science, 26(11), 2009-2047. https://doi.org/10.1080/13658816.2012.698015
Willson, J. D., Winne, C. T., & Todd, B. D. (2011). Ecological and methodological factors affecting detectability and population estimation in elusive species. The Journal of Wildlife Management, 75, 36-45. https://doi.org/10.1002/jwmg.15
Yoccoz, N. G., Nichols, J. D., & Boulinier, T. (2001). Monitoring of biological diversity in space and time. Trends in Ecology & Evolution, 16(8), 446-453. https://doi.org/10.1016/S0169-5347(01)02205-4
Zurell, D., Elith, J., & Schröder, B. (2012). Predicting to new environments: Tools for visualizing model behaviour and impacts on mapped distributions. Diversity and Distributions, 18(6), 628-634. https://doi.org/10.1111/j.1472-4642.2012.00887.x
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. (2009). Zero-truncated and zero-inflated models for count data. Mixed effects models and extensions in ecology with R 261-293.