- MeSH
- Humans MeSH
- Pulse utilization MeSH
- Heart Rate physiology MeSH
- Stroke Volume physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Congress MeSH
This article is focused on the preliminary study of detecting different types of phobias from the electrodermal activity signal. Electrodermal activity is independent of parasympathetic activity; therefore, it is an ideal indicator of phobias. An automatic algorithm was created for the detection of phobias, which evaluates the presence of a stress reaction to a stimulus in the form of an image sequence representing the given phobia. The results obtained using the proposed algorithm were confronted with the data provided by individual respondents in the questionnaire. By comparison, it was found that the proposed algorithm detected a greater number of phobias than reported by the respondents. According to the achieved results, we can state that electrodermal activity can serve as a means of objectifying the presence of phobias in individuals.
- MeSH
- Phobic Disorders * diagnostic imaging MeSH
- Humans MeSH
- Stress, Psychological MeSH
- Signal Detection, Psychological * physiology MeSH
- Research Design MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
We present a compact surface plasmon resonance (SPR) biosensor for the detection of bisphenol A (BpA), an endocrine-disrupting chemical. The biosensor is based on an SPR sensor platform (SPRCD) and the binding inhibition detection format. The detection of BpA in PBS and wastewater was performed at concentrations ranging from 0.05 to 1,000 ng/ml. The limit of detection for BpA in PBS and wastewater was estimated to be 0.08 and 0.14 ng/ml, respectively. It was also demonstrated that the biosensor can be regenerated for repeated use. Results achieved with the SPR biosensor are compared with those obtained using ELISA and HPLC methods.
Capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D) was employed for fast determination of meldonium (MEL) in urine samples. Background electrolyte consisting of 2M acetic acid (pH 2.3) was used for separation of MEL from cationic compounds present in urine samples and the overall analysis time was less than 4min per sample. Direct injection of urine samples was possible after 1:9 dilution with deionized water. This simple sample pretreatment was sufficient to eliminate possible matrix effects on CE performance and allowed for precise and sensitive determination of free MEL in urine. Excellent linearity (r(2)≥0.9998) was obtained for two concentration ranges, 0.02-4μgmL(-1) and 2-200μgmL(-1), by simply changing injection time from 10 to 2s without the need for additional dilution of urine samples. Limit of detection was 0.015μgmL(-1) and average recoveries from urine samples spiked at 0.02-123.5μgmL(-1) MEL ranged from 97.6-99.9%. Repeatability of migration times and peak areas was better than 0.35% and 4.2% for intraday and 0.95% and 4.7% for interday measurements, respectively. The above reported data proved good applicability of the CE-C(4)D method to determination of various MEL concentrations in urine samples and good long-term performance of the analytical system. The method might be particularly useful in analyses of large batches of samples for initial testing of MEL-positive vs. MEL-negative urine samples.
- MeSH
- Doping in Sports MeSH
- Electric Conductivity MeSH
- Electrophoresis, Capillary methods MeSH
- Electrolytes MeSH
- Humans MeSH
- Methylhydrazines urine MeSH
- Substance Abuse Detection methods MeSH
- Water MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
One of the most widely investigated functions of the brain is vision. Whereas special attention is often paid to motion detection and its modulation by attention, comparatively still little is known about the structural background of this function. We therefore, examined the white matter microstructural background of coherent motion detection. A random-dot kinematogram paradigm was used to measure the sensitivity of healthy individuals׳ to movement coherence. The potential correlation was investigated between the motion detection threshold and the white matter microstructure as measured by high angular resolution diffusion MRI. The Track Based Spatial Statistics method was used to address this correlation and probabilistic tractography to reveal the connection between identified regions. A significant positive correlation was found between the behavioural data and the local fractional anisotropy in the posterior part of the right superior frontal gyrus, the right juxta-cortical superior parietal lobule, the left parietal white matter, the left superior temporal gyrus and the left optic radiation. Probabilistic tractography identified pathways that are highly similar to the segregated attention networks, which have a crucial role in the paradigm. This study draws attention to the structural determinant of a behavioural function.
- MeSH
- Anisotropy MeSH
- White Matter anatomy & histology physiology MeSH
- Differential Threshold physiology MeSH
- Diffusion Magnetic Resonance Imaging MeSH
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Brain anatomy & histology physiology MeSH
- Neural Pathways anatomy & histology physiology MeSH
- Psychophysics MeSH
- Photic Stimulation MeSH
- Signal Detection, Psychological physiology MeSH
- Motion Perception physiology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Viruses are common causes of food- and waterborne diseases worldwide. Conventional identification of these agents is based on cultivation, antigen detection, electron microscopy, or real-time PCR. Because recent technological advancements in detection methods are focused on fast and robust analysis, a rapid multiplexing technology, which can detect a broad spectrum of pathogenic viruses connected to food or water contamination, was utilized. A new semiquantitative magnetic bead-based multiplex system has been designed for simultaneous detection of several targets in one reaction. The system includes adenoviruses 40/41 (AdV), rotavirus A (RVA), norovirus (NoV), hepatitis E virus (HEV), hepatitis A virus (HAV), and a target for external control of the system. To evaluate the detection system, interlaboratory ring tests were performed in four independent laboratories. Analytical specificity of the tool was tested on a cohort of pathogenic agents and biological samples with quantitative PCR as a reference method. Limit of detection (analytical sensitivity) of 5 × 100 (AdV, HEV, and RVA) and 5 × 101 (HAV and NoV) genome equivalents per reaction was reached. This robust, senstivie, and rapid multiplexing technology may be used to routinely monitor and manage viruses in food and water to prevent food and waterborne diseases.
Bisphenol A (BpA) is a chemical that is extensively used in common plastic products, such as food and drink containers. It can leach from the plastics and penetrate into the human body, where it acts as an endocrine disruptor with significant risks to human health. In order to minimize the exposure of human populations to BpA, methods for the detection of BpA are needed. In this work, we present a novel surface plasmon resonance (SPR) biosensor for ultrasensitive detection of BpA. Our approach combines a binding inhibition assay with functionalized gold nanoparticles for the enhancement of sensor response. We demonstrate that the developed biosensor enables the detection of BpA in a wide range of concentrations (0.01 to 100,000 ng/mL) with an extremely low limit of detection-5.2 pg/mL.