Comparing Deep Learning Performance for Chronic Lymphocytic Leukaemia Cell Segmentation in Brightfield Microscopy Images
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39246684
PubMed Central
PMC11378236
DOI
10.1177/11779322241272387
PII: 10.1177_11779322241272387
Knihovny.cz E-zdroje
- Klíčová slova
- Cell detection, U-net++, cell segmentation, chronic lymphocytic leukaemia cells, image analysis,
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: This article focuses on the detection of cells in low-contrast brightfield microscopy images; in our case, it is chronic lymphocytic leukaemia cells. The automatic detection of cells from brightfield time-lapse microscopic images brings new opportunities in cell morphology and migration studies; to achieve the desired results, it is advisable to use state-of-the-art image segmentation methods that not only detect the cell but also detect its boundaries with the highest possible accuracy, thus defining its shape and dimensions. METHODS: We compared eight state-of-the-art neural network architectures with different backbone encoders for image data segmentation, namely U-net, U-net++, the Pyramid Attention Network, the Multi-Attention Network, LinkNet, the Feature Pyramid Network, DeepLabV3, and DeepLabV3+. The training process involved training each of these networks for 1000 epochs using the PyTorch and PyTorch Lightning libraries. For instance segmentation, the watershed algorithm and three-class image semantic segmentation were used. We also used StarDist, a deep learning-based tool for object detection with star-convex shapes. RESULTS: The optimal combination for semantic segmentation was the U-net++ architecture with a ResNeSt-269 background with a data set intersection over a union score of 0.8902. For the cell characteristics examined (area, circularity, solidity, perimeter, radius, and shape index), the difference in mean value using different chronic lymphocytic leukaemia cell segmentation approaches appeared to be statistically significant (Mann-Whitney U test, P < .0001). CONCLUSION: We found that overall, the algorithms demonstrate equal agreement with ground truth, but with the comparison, it can be seen that the different approaches prefer different morphological features of the cells. Consequently, choosing the most suitable method for instance-based cell segmentation depends on the particular application, namely, the specific cellular traits being investigated.
Zobrazit více v PubMed
Scarfò L, Ferreri AJ, Ghia P. Chronic lymphocytic leukaemia. Crit Rev Oncol Hematol. 2016;104:169-182. doi:10.1016/j.critrevonc.2016.06.003 PubMed DOI
Bosch F, Dalla-Favera R. Chronic lymphocytic leukaemia: from genetics to treatment. Nat Rev Clin Oncol. 2019;16:684-701. doi:10.1038/s41571-019-0239-8 PubMed DOI
Manukyan G, Mikulkova Z, Turcsanyi P, et al.. Towards a better characterisation of leukemic cells in chronic lymphocytic leukaemia: cell-size heterogeneity reflects their activation status and migratory abilities. Cancers (Basel). 2021;13:4922. doi:10.3390/cancers13194922 PubMed DOI PMC
Oscier D, Else M, Matutes E, Morilla R, Strefford JC, Catovsky D. The morphology of CLL revisited: the clinical significance of prolymphocytes and correlations with prognostic/molecular markers in the LRF CLL4 trial. Br J Haematol. 2016;174:767-775. doi:10.1111/bjh.14132 PubMed DOI PMC
Davids MS, Burger JA. Cell trafficking in chronic lymphocytic leukemia. Open J Hematol. 2012;3:-3. doi:10.13055/ojhmt_3_s1_03.120221 PubMed DOI PMC
Ashwini A, Sriram SR, Sheela JJJ. Detection of chronic lymphocytic leukemia using Deep Neural Eagle Perch Fuzzy Segmentation – a novel comparative approach. Biomed Signal Process Control. 2024;90:105905. doi:10.1016/j.bspc.2023.105905 DOI
Chatap N, Shibu S. Analysis of blood samples for counting leukemia cells using Support Vector Machine and Nearest Neighbor. IOSR J Comp Eng. 2014;16:79-87.
Acharya V, Kumar P. Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Med Biol Eng Comput. 2019;57:1783-1811. doi:10.1007/s11517-019-01984-1 PubMed DOI
Gu W, Sun K. AYOLOv5: improved YOLOv5 based on attention mechanism for blood cell detection. Biomed Signal Process Control. 2024;88:105034. doi:10.1016/j.bspc.2023.105034 DOI
Fırat H. Classification of microscopic peripheral blood cell images using multibranch lightweight CNN-based model. Neural Comput Appl. 2024;36:1599-1620. doi:10.1007/s00521-023-09158-9 DOI
Liang M, Zhong J, Shannon CS, Agrawal R, Ai Y. Intelligent image-based deformability assessment of red blood cells via dynamic shape classification. Sens Actuators B Chem. 2024;401:135056. doi:10.1016/j.snb.2023.135056 DOI
Ali N, Liu X, Wang W, et al.. Blood cell characterization based on deep learning and diffraction phase microscopy. Opt Commun. 2024;561:130522. doi:10.1016/j.optcom.2024.130522 DOI
Meijering E, Dzyubachyk O, Smal I. Methods for cell and particle tracking. Methods Enzymol. 2012;504:183-200. doi:10.1016/B978-0-12-391857-4.00009-4 PubMed DOI
Greenwald NF, Miller G, Moen E, et al.. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat Biotechnol. 2022;40:555-565. doi:10.1038/s41587-021-01094-0 PubMed DOI PMC
Zhang J, Hu J. Image segmentation based on 2D Otsu method with histogram analysis. Paper presented at: 2008 International Conference on Computer Science and Software Engineering, 2008. doi:10.1109/CSSE.2008.206 DOI
Malpica N, de Solórzano CO, Vaquero JJ, et al.. Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry. 1997;28:289-297. doi:10.1002/(sici)1097-0320(19970801)28 PubMed DOI
Zhou X, Li F, Yan J, Wong ST. A novel cell segmentation method and cell phase identification using Markov model. IEEE Trans Inf Technol Biomed. 2009;13:152-157. doi:10.1109/TITB.2008.2007098 PubMed DOI PMC
Buggenthin F, Marr C, Schwarzfischer M, et al.. An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy. BMC Bioinformatics. 2013;14:297. doi:10.1186/1471-2105-14-297 PubMed DOI PMC
Molnar C, Jermyn IH, Kato Z, et al.. Accurate morphology preserving segmentation of overlapping cells based on active contours. Sci Rep. 2016;6:32412. doi:10.1038/srep32412 PubMed DOI PMC
Braiki M, Benzinou A, Nasreddine K, Mouelhi A, Labidi S, Hymery N. Human dendritic cells segmentation based on K-means and active contour. Paper presented at: Image and Signal Processing: 8th International Conference, ICISP 2018, July 2-4, 2018; Cherbourg. Springer-Verlag. doi:10.1007/978-3-319-94211-7_3 DOI
Niaz A, Iqbal E, Akram F, Kim J, Choi KN. Self-initialized active contours for microscopic cell image segmentation. Sci Rep. 2022;12:14947. doi:10.1038/s41598-022-18708-5 PubMed DOI PMC
Maška M, Ulman V, Delgado-Rodriguez P, et al.. The cell tracking challenge: 10 years of objective benchmarking. Nat Methods. 2023;20:1010-1020. doi:10.1038/s41592-023-01879-y PubMed DOI PMC
Voigt SP, Ravikumar K, Basu B, et al.. Automated image processing workflow for morphological analysis of fluorescence microscopy cell images. JOM. 2021;73:2356-2365. doi:10.1007/s11837-021-04707-w DOI
Salvi M, Morbiducci U, Amadeo F, et al.. Automated segmentation of fluorescence microscopy images for 3D cell detection in human-derived cardiospheres. Sci Rep. 2019;9:6644. doi:10.1038/s41598-019-43137-2 PubMed DOI PMC
Kowal M, Żejmo M, Skobel M, Korbicz J, Monczak R. Cell nuclei segmentation in cytological images using convolutional neural network and seeded watershed algorithm. J Digit Imaging. 2020;33:231-242. doi:10.1007/s10278-019-00200-8 PubMed DOI PMC
Englbrecht F, Ruider IE, Bausch AR. Automatic image annotation for fluorescent cell nuclei segmentation. PLoS ONE. 2021;16:e0250093. doi:10.1371/jour nal.pone.0250093 PubMed PMC
Gudla PR, Zaki G, Shachar S, Misteli T, Pegoraro G. Deep learning based segmentation of nuclei from fluorescence microscopy images. Microsc Microanal. 2019;25:1376-1377. doi:10.1017/S143192761900761X PubMed DOI
de Bruijne M. Machine learning approaches in medical image analysis: from detection to diagnosis. Med Image Anal. 2016;33:94-97. doi:10.1016/j.media.2016.06.032 PubMed DOI
Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019;19:64. doi:10.1186/s12874-019-0681-4 PubMed DOI PMC
Bradbury L, Wan JW. A spectral k-means approach to bright-field cell image segmentation. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4748-4751. doi:10.1109/IEMBS.2010.5626380 PubMed DOI
Nasir AA, Mashor MY, Mohamed Z. Segmentation based approach for detection of malaria parasites using moving k-means clustering. Paper presented at: 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, 2012. doi:10.1109/IECBES.2012.6498073 DOI
Abbas N, Mohamad DB. Microscopic RGB color images enhancement for blood cells segmentation in YCbCr color space for k-means clustering. J Theor Appl Inf Technol. 2013;55:117-125.
Savkare SS, Narote SP. Blood cell segmentation from microscopic blood images. Paper presented at: 2015 International Conference on Information Processing (ICIP), 2015. doi:10.1109/INFOP.2015.7489435 DOI
Jung S, Heo H, Park S, Jung SU, Lee K. Benchmarking deep learning models for instance segmentation. Appl Sci. 2022;12:8856. doi:10.3390/app12178856 DOI
Gu W, Bai S, Kong L. A review on 2D instance segmentation based on deep neural networks. Image and Vision Comp. 2022;120:104401. doi:10.1016/j.imavis.2022.104401 DOI
Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods. 2021;18:100-106. doi:10.1038/s41592-020-01018-x PubMed DOI
Mahani GK, Li R, Evangelou N, et al.. Bounding box based weakly supervised deep convolutional neural network for medical image segmentation using an uncertainty guided and spatially constrained loss. Paper presented at: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022. doi:10.1109/ISBI52829.2022.9761558 DOI
Schmidt U, Weigert M, Broaddus C, Myers G. Cell detection with star-convex polygons. Paper presented at: Medical Image Computing and Computer Assisted Intervention–MICCAI, 2018. doi:10.1007/978-3-030-00934-2_30 DOI
Chen J, Zhang B. Segmentation of overlapping cervical cells with mask region convolutional neural network. Comput Math Methods Med. 2021;2021:3890988. doi:10.1155/2021/3890988 PubMed DOI PMC
Hung J, Goodman A, Ravel D, et al.. Keras R-CNN: library for cell detection in biological images using deep neural networks. BMC Bioinform. 2020;21:300. doi:10.1186/s12859-020-03635-x PubMed DOI PMC
Falk T, Mai D, Bensch R, et al.. U-Net: deep learning for cell counting, detection, and morphometry [published correction appears in Nat Methods. 2019;16(4):351]. Nat Methods. 2019;16:67-70. doi:10.1038/s41592-018-0261-2 PubMed DOI
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Paper presented at: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015. doi:10.1007/978-3-319-24574-4_28 DOI
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39:640-651. doi:10.1109/TPAMI.2016.2572683 PubMed DOI
Siddique N, Paheding S, Elkin CP, Devabhaktuni V. U-Net and its variants for medical image segmentation: a review of theory and applications. IEEE Access. 2021;9:82031-82057. doi:10.1109/ACCESS.2021.3086020 DOI
Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-net: learning dense volumetric segmentation from sparse annotation. Paper presented at: Medical Image Computing and Computer Assisted Intervention–MICCAI 2016. Lecture Notes in Computer Science, 2016. doi:10.1007/978-3-319-46723-8_49 DOI
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Paper presented at: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. doi:10.1109/CVPR.2016.90 DOI
Oktay O, Schlemper J, Folgoc LL, et al.. Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999, 2018.
Szegedy C, Liu W, Jia Y, et al.. Going deeper with convolutions. Paper presented at: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. doi:10.1109/CVPR.2015.7298594 DOI
Cai S, Tian Y, Lui H, Zeng H, Wu Y, Chen G. Dense-UNet: a novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network. Quant Imaging Med Surg. 2020;10:1275-1285. doi:10.21037/qims-19-1090 PubMed DOI PMC
Alom MZ, Yakopcic C, Hasan M, Taha TM, Asari VK. Recurrent residual U-Net for medical image segmentation. J Med Imaging (Bellingham). 2019;6:014006. doi:10.1117/1.JMI.6.1.014006 PubMed DOI PMC
Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. UNet++: a nested U-Net architecture for medical image segmentation. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018;11045:3-11. doi:10.1007/978-3-030-00889-5_1 PubMed DOI PMC
Hu J, Shen L, Albanie S, Sun G, Wu E. Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell. 2020;42:2011-2023. doi:10.1109/TPAMI.2019.2913372 PubMed DOI
Abd-Ellah MK, Khalaf AAM, Awad AI, Hamed HFA. TPUAR-Net: two parallel U-Net with asymmetric residual-based deep convolutional neural network for brain tumor segmentation. Paper presented at: Image Analysis and Recognition, 2019. doi:10.1007/978-3-030-27272-2_9 DOI
Wu Y, Shen H, Tan Y, Shi Y. Automatic liver tumor segmentation used the cascade multi-scale attention architecture method based on 3D U-Net. Int J Comput Assist Radiol Surg. 2022;17:1915-1922. doi:10.1007/s11548-022-02653-9 PubMed DOI
Li H, Li A, Wang M. A novel end-to-end brain tumor segmentation method using improved fully convolutional networks. Comput Biol Med. 2019;108:150-160. doi:10.1016/j.compbiomed.2019.03.014 PubMed DOI
Piantadosi G, Sansone M, Fusco R, Sansone C. Multi-planar 3D breast segmentation in MRI via deep convolutional neural networks. Artif Intell Med. 2020;103:101781. doi:10.1016/j.artmed.2019.101781 PubMed DOI
Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. Paper presented at: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. doi:10.1109/CVPR.2017.106 DOI
Brauwers G, Frasincar F. A general survey on attention mechanisms in deep learning. IEEE Trans Knowl Data Eng. 2023;35:3279-3298. doi:10.1109/TKDE.2021.3126456 DOI
Li H, Luo H, Huan W, et al.. Automatic lumbar spinal MRI image segmentation with a multi-scale attention network. Neural Comput Appl. 2021;33:11589-11602. doi:10.1007/s00521-021-05856-4 PubMed DOI PMC
Gao C, Ye H, Cao F, Wen C, Zhang Q, Zhang F. Multiscale fused network with additive channel–spatial attention for image segmentation. Knowledge-Based Syst. 2021;214:106754. doi:10.1016/j.knosys.2021.106754 DOI
Guo MH, Xu TX, Liu JJ, et al.. Attention mechanisms in computer vision: a survey. Comp Visual Media. 2022;8:331-368. doi:10.1007/s41095-022-0271-y DOI
Fan Z, Hu G, Sun X, Wang G, Dong J, Su C. Self-attention neural architecture search for semantic image segmentation. Knowledge-Based Syst. 2022;239:107968. doi:10.1016/j.knosys.2021.107968 DOI
Fan T, Wang G, Li Y, Wang H. MA-Net: a multi-scale attention network for liver and tumor segmentation. IEEE Access. 2020;8:179656-179665. doi:10.1109/ACCESS.2020.3025372 DOI
Li H, Xiong P, An J, Wang L. Pyramid attention network for semantic segmentation. arXiv preprint arXiv:1805.10180, 2018.
Chaurasia A, Culurciello E. LinkNet: exploiting encoder representations for efficient semantic segmentation. Paper presented at: 2017 IEEE Visual Communications and Image Processing (VCIP), 2017. doi:10.1109/VCIP.2017.8305148 DOI
Araújo RL, de Araújo FHD, e Silva RRV. Automatic segmentation of melanoma skin cancer using transfer learning and fine-tuning. Multimedia Syst. 2022;28:1239-1250. doi:10.1007/s00530-021-00840-3 DOI
Chen LC, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.
Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122, 2016.
Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. Paper presented at: Computer Vision – ECCV 2018, 2018. doi:10.1007/978-3-030-01234-2_49 DOI
Segmentation Models Pytorch. https://github.com/qubvel/segmentation_models.pytorch. Accessed February 19, 2024.
Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, inception-ResNet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261, 2016.
Zhang H, Wu C, Zhang Z, et al.. ResNeSt: split-attention networks. Paper presented at: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022. doi:10.1109/CVPRW56347.2022.00309 DOI
Mahajan D, Girshick R, Ramanathan V, et al.. Exploring the limits of weakly supervised pretraining. Paper presented at: Computer Vision – ECCV 2018. doi:10.1007/978-3-030-01216-8_12. DOI
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2015.
Jia Z, Maggioni M, Staiger B, Scarpazza DP. Dissecting the NVIDIA Volta GPU architecture via microbenchmarking. arXiv preprint arXiv:1804.06826, 2018.
Arzt M, Deschamps J, Schmied C, et al.. LABKIT: labeling and segmentation toolkit for big image data. Front Comput Sci. 2022;4:777728.
Hollandi R, Diósdi Á, Hollandi G, Moshkov N, Horváth P. AnnotatorJ: an ImageJ plugin to ease hand annotation of cellular compartments. Mol Biol Cell. 2020;31:2179-2186. doi:10.1091/mbc.E20-02-0156 PubMed DOI PMC
Bankhead P, Loughrey MB, Fernández JA, et al.. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7:16878. doi:10.1038/s41598-017-17204-5 PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, et al.. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676-682. doi:10.1038/nmeth.2019 PubMed DOI PMC
Ershov D, Phan MS, Pylvänäinen JW, et al.. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat Methods. 2022;19:829-832. doi:10.1038/s41592-022-01507-1 PubMed DOI