Assessing disease progression and treatment response in progressive multiple sclerosis
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39251843
DOI
10.1038/s41582-024-01006-1
PII: 10.1038/s41582-024-01006-1
Knihovny.cz E-zdroje
- MeSH
- biologické markery krev MeSH
- chronicko-progresivní roztroušená skleróza * terapie diagnostické zobrazování MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- progrese nemoci * MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
Progressive multiple sclerosis poses a considerable challenge in the evaluation of disease progression and treatment response owing to its multifaceted pathophysiology. Traditional clinical measures such as the Expanded Disability Status Scale are limited in capturing the full scope of disease and treatment effects. Advanced imaging techniques, including MRI and PET scans, have emerged as valuable tools for the assessment of neurodegenerative processes, including the respective role of adaptive and innate immunity, detailed insights into brain and spinal cord atrophy, lesion dynamics and grey matter damage. The potential of cerebrospinal fluid and blood biomarkers is increasingly recognized, with neurofilament light chain levels being a notable indicator of neuro-axonal damage. Moreover, patient-reported outcomes are crucial for reflecting the subjective experience of disease progression and treatment efficacy, covering aspects such as fatigue, cognitive function and overall quality of life. The future incorporation of digital technologies and wearable devices in research and clinical practice promises to enhance our understanding of functional impairments and disease progression. This Review offers a comprehensive examination of these diverse evaluation tools, highlighting their combined use in accurately assessing disease progression and treatment efficacy in progressive multiple sclerosis, thereby guiding more effective therapeutic strategies.
Brain and Mind Center University of Sydney Sydney Australia
Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Germany
Department of Neurology Palacky University Olomouc Olomouc Czech Republic
Department of Neurorehabilitation Sciences Casa di Cura Igea Milan Italy
Zobrazit více v PubMed
Lublin, F. D. et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83, 278–286 (2014). PubMed DOI PMC
Kappos, L. et al. Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol. 77, 1132–1140 (2020). PubMed DOI
Lublin, F. D. et al. How patients with multiple sclerosis acquire disability. Brain 145, 3147–3161 (2022). PubMed DOI PMC
Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 8, a028936 (2018). PubMed DOI PMC
Kuhlmann, T. et al. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. 22, 78–88 (2023). PubMed DOI
Ocrevus (ocrelizumab) product information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761053s012lbl.pdf (Genentech, Inc., Roche Group, 2018).
European Medicines Agency (EMA). Assessment Report: Ocrevus. https://www.ema.europa.eu/en/documents/variation-report/ocrevus-h-c-004043-x-0039-epar-assessment-report-variation_en.pdf (2017).
Mayzent (siponimod) product information. https://www.novartis.com/us-en/sites/novartis_us/files/mayzent.pdf (Novartis Pharmaceuticals Corporation, 2023).
Novartis Pharma GmbH. Mayzent summary of product characteristics. ema.europa.eu/en/documents/product-information/mayzent-epar-product-information_en.pdf (2023).
Montalban, X. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376, 209–220 (2017). PubMed DOI
Kappos, L. et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391, 1263–1273 (2018). PubMed DOI
Dalla Costa, G. et al. A wearable device perspective on the standard definitions of disability progression in multiple sclerosis. Mult. Scler. 30, 103–112 (2024). PubMed DOI
Hechenberger, S. et al. Information processing speed as a prognostic marker of physical impairment and progression in patients with multiple sclerosis. Mult. Scler. Relat. Disord. 57, 103353 (2022). PubMed DOI
Koch, M. W. et al. Reliability of outcome measures in clinical trials in secondary progressive multiple sclerosis. Neurology 96, e111–e120 (2021). PubMed DOI
Lublin, F. et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 387, 1075–1084 (2016). PubMed DOI
LaRocca, N. G. et al. The MSOAC approach to developing performance outcomes to measure and monitor multiple sclerosis disability. Mult. Scler. 24, 1469–1484 (2018). PubMed DOI
Zhang, T. et al. CIHR Team in the Epidemiology and Impact of Comorbidity on Multiple Sclerosis. Effects of physical comorbidities on disability progression in multiple sclerosis. Neurology 90, e419–e427 (2018). PubMed DOI PMC
Salter, A., Lancia, S., Kowalec, K., Fitzgerald, K. C. & Marrie, R. A. Investigating the prevalence of comorbidity in multiple sclerosis clinical trial populations. Neurology 102, e209135 (2024). PubMed DOI PMC
Marrie, R. A. et al. Etiology, effects and management of comorbidities in multiple sclerosis: recent advances. Front. Immunol. 14, 1197195 (2023). PubMed DOI PMC
Chard, D. & Trip, S. A. Resolving the clinico-radiological paradox in multiple sclerosis. F1000Res 6, 1828 (2017). PubMed DOI PMC
Jacobsen, C. et al. Brain atrophy and disability progression in multiple sclerosis patients: a 10-year follow-up study. J. Neurol. Neurosurg. Psychiatry 85, 1109–1115 (2014). PubMed DOI
Ghione, E. et al. Brain atrophy is associated with disability progression in patients with MS followed in a clinical routine. Am. J. Neuroradiol. 39, 2237–2242 (2018). PubMed DOI PMC
Zivadinov, R. et al. Clinical relevance of brain atrophy assessment in multiple sclerosis. Implications for its use in a clinical routine. Expert Rev. Neurother. 16, 777–793 (2016). PubMed DOI
Rocca, M. A. et al. Brain MRI atrophy quantification in MS: from methods to clinical application. Neurology 88, 403–413 (2017). PubMed DOI PMC
Kim, Y., Varosanec, M., Kosa, P. & Bielekova, B. Confounder-adjusted MRI-based predictors of multiple sclerosis disability. Front. Radiol. 2, 971157 (2022). PubMed DOI PMC
Ingle, G. T. et al. Primary progressive multiple sclerosis: a 5-year clinical and MR study. Brain 126, 2528–2536 (2003). PubMed DOI
University of California SFMSETet al. Silent progression in disease activity-free relapsing multiple sclerosis. Ann. Neurol. 85, 653–666 (2019). DOI
Sprenger, T. et al. Association of brain volume loss and long-term disability outcomes in patients with multiple sclerosis treated with teriflunomide. Mult. Scler. 26, 1207–1216 (2020). PubMed DOI
Tsivgoulis, G. et al. The effect of disease modifying therapies on disease progression in patients with relapsing–remitting multiple sclerosis: a systematic review and meta-analysis. PLoS ONE 10, e0144538 (2015). PubMed DOI PMC
Sormani, M. P., Arnold, D. L. & De Stefano, N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann. Neurol. 75, 43–49 (2014). PubMed DOI
Guevara, C. et al. Prospective assessment of no evidence of disease activity-4 status in early disease stages of multiple sclerosis in routine clinical practice. Front. Neurol. 10, 788 (2019). PubMed DOI PMC
Rovira, À. et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat. Rev. Neurol. 11, 471–482 (2015). PubMed DOI
Hanninen, K. et al. Thalamic atrophy without whole brain atrophy is associated with absence of 2-year NEDA in multiple sclerosis. Front. Neurol. 10, 459 (2019). PubMed DOI PMC
van de Pavert, S. H. P. et al. DIR-visible grey matter lesions and atrophy in multiple sclerosis: partners in crime? J. Neurol. Neurosurg. Psychiatry 87, 461–467 (2016). PubMed DOI
Calabrese, M. et al. Cortical lesions and atrophy associated with cognitive impairment in relapsing–remitting multiple sclerosis. Arch. Neurol. 66, 1144–1150 (2009). PubMed DOI
Popescu, B. F. G. et al. What drives MRI-measured cortical atrophy in multiple sclerosis. Mult. Scler. 21, 1280–1290 (2015). PubMed DOI
De Stefano, N. et al. Evidence of early cortical atrophy in MS. Relevance to white matter changes and disability. Neurology 60, 1157–1162 (2013). DOI
Steenwijk, M. D. et al. What explains gray matter atrophy in long-standing multiple sclerosis? Radiology https://doi.org/10.1148/radiol.14132708 (2014). PubMed DOI
Calabrese, M. et al. Exploring the origins of grey matter damage in multiple sclerosis. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn3900 (2015). PubMed DOI
Sepulcre, J. et al. Contribution of white matter lesions to gray matter atrophy in multiple sclerosis: evidence from voxel-based analysis of T1 lesions in the visual pathway. Arch. Neurol. 66, 173–179 (2009). PubMed DOI
Mühlau, M. et al. White-matter lesions drive deep gray-matter atrophy in early multiple sclerosis: support from structural MRI. Mult. Scler. 19, 1485–1492 (2013). PubMed DOI
Geurts, J. J. G. et al. Measurement and clinical effect of grey matter pathology in multiple sclerosis. Lancet Neurol. 11, 1082–1092 (2012). PubMed DOI
Zivadinov, R. et al. A serial 10-year follow-up study of atrophied brain lesion volume and disability progression in patients with relapsing–remitting MS. Am. J. Neuroradiol. 40, 446–452 (2019). PubMed PMC
Genovese, A. V. et al. Atrophied brain T2 lesion volume at MRI is associated with disability progression and conversion to secondary progressive multiple sclerosis. Radiology 293, 424–433 (2019). PubMed DOI
Dal-Bianco, A. et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol. 133, 25–42 (2017). PubMed DOI
Zhang, Y. et al. Quantitative susceptibility mapping and R2* measured changes during white matter lesion development in multiple sclerosis: myelin breakdown, myelin debris degradation and removal, and iron accumulation. Am. J. Neuroradiol. 37, 1629–1635 (2016). PubMed DOI PMC
Dal-Bianco, A. et al. Long-term evolution of multiple sclerosis iron rim lesions in 7 T MRI. Brain 144, 833–847 (2021). PubMed DOI
Ng Kee Kwong, K. C. et al. The prevalence of paramagnetic rim lesions in multiple sclerosis: a systematic review and meta-analysis. PLoS ONE 16, e0256845 (2021). PubMed DOI PMC
Absinta, M. et al. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol. 76, 1474–1483 (2019). PubMed DOI PMC
Hemond, C. C. et al. Paramagnetic rim lesions are associated with pathogenic CSF profiles and worse clinical status in multiple sclerosis: a retrospective cross-sectional study. Mult. Scler. 28, 2046–2056 (2022). PubMed DOI PMC
Altokhis, A. I. et al. Longitudinal clinical study of patients with iron rim lesions in multiple sclerosis. Mult. Scler. 28, 2202–2211 (2022). PubMed DOI PMC
Absinta, M. et al. Identification of chronic active multiple sclerosis lesions on 3 T MRI. Am. J. Neuroradiol. 39, 1233–1238 (2018). PubMed DOI PMC
Renner, B. et al. S1.5: Diagnostic potential of paramagnetic rim lesions for MS in a multicenter setting. In Proc. ACTRIMS Forum 2022 - Invited Program. Mult. Scler. J. 28 (suppl), 3–19 (2022).
Elliott, C. et al. Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain 142, 2787–2799 (2019). PubMed DOI PMC
Harrison, D. M. et al. Lesion heterogeneity on high-field susceptibility MRI is associated with multiple sclerosis severity. Am. J. Neuroradiol. 37, 1447–1453 (2016). PubMed DOI PMC
Elliott, C. et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult. Scler. 25, 1915–1925 (2019). PubMed DOI
Beynon, V. et al. Chronic lesion activity and disability progression in secondary progressive multiple sclerosis. BMJ Neurol. Open 4, e000240 (2022). PubMed DOI PMC
Elliott, C. et al. MRI characteristics of chronic MS lesions by phase rim detection and/or slowly expanding properties (4101). Neurology 96, 4101 (2021). DOI
Calvi, A. et al. Relationship between paramagnetic rim lesions and slowly expanding lesions in multiple sclerosis. Mult. Scler. 29, 352–362 (2023). PubMed DOI
Elliott, C. et al. Lesion-level correspondence and longitudinal properties of paramagnetic rim and slowly expanding lesions in multiple sclerosis. Mult. Scler. 29, 680–690 (2023).
Harrison, D. M. et al. Leptomeningeal enhancement at 7 T in multiple sclerosis: frequency, morphology, and relationship to cortical volume. J. Neuroimaging 27, 461–468 (2017). PubMed DOI PMC
Zivadinov, R. et al. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: a retrospective, pilot, observational longitudinal study. Mult. Scler. 23, 1336–1345 (2017). PubMed DOI
Ighani, M. et al. No association between cortical lesions and leptomeningeal enhancement on 7-tesla MRI in multiple sclerosis. Mult. Scler. 26, 165–176 (2020). PubMed DOI
Bevan, R. J. et al. Meningeal inflammation and cortical demyelination in acute multiple sclerosis. Ann. Neurol. 84, 829–842 (2018). PubMed DOI
Bergsland, N. et al. Leptomeningeal contrast enhancement is related to focal cortical thinning in relapsing–remitting multiple sclerosis: a cross-sectional MRI study. Am. J. Neuroradiol. 40, 620–625 (2019). PubMed PMC
Makshakov, G. et al. Leptomeningeal contrast enhancement is associated with disability progression and grey matter atrophy in multiple sclerosis. Neurol. Res. Int. 2017, 8652463 (2017). PubMed DOI PMC
Müller, J. Choroid plexus volume in multiple sclerosis vs neuromyelitis optica spectrum disorder: a retrospective, cross-sectional analysis. Neurol. Neuroimmunol. Neuroinflamm. 9, e1147 (2022).
Klistorner, S. et al. Choroid plexus volume in multiple sclerosis predicts expansion of chronic lesions and brain atrophy. Ann. Clin. Transl. Neurol. 9, 1528–1537 (2022). PubMed DOI PMC
Eden, D. et al. Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. Brain 142, 633–646 (2019). PubMed DOI PMC
Casserly, C. et al. Spinal cord atrophy in multiple sclerosis: a systematic review and meta-analysis. J. Neuroimaging 28, 556–586 (2018). PubMed DOI
Singhal, T. et al. The effect of glatiramer acetate on spinal cord volume in relapsing–remitting multiple sclerosis. J. Neuroimaging 27, 33–36 (2017). PubMed DOI
Dupuy, S. L. et al. The effect of intramuscular interferon beta-1a on spinal cord volume in relapsing–remitting multiple sclerosis. BMC Med. Imaging 16, 56 (2016). PubMed DOI PMC
Cawley, N. et al. Spinal cord atrophy as a primary outcome measure in phase II trials of progressive multiple sclerosis. Mult. Scler. 24, 932–941 (2018). PubMed DOI
Allen, I., McQuaid, S., Mirakhur, M. & Nevin, G. Pathological abnormalities in the normal-appearing white matter in multiple sclerosis. J. Neurol. Sci. 22, 141–144 (2001). PubMed DOI
Zeis, T., Graumann, U., Reynolds, R. & Schaeren-Wiemers, N. Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain 131, 288–303 (2007). PubMed DOI
Dutta, D. J. et al. Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proc. Natl Acad. Sci. USA 115, 11832–11837 (2018). PubMed DOI PMC
Mesaros, S. et al. Thalamic damage predicts the evolution of primary-progressive multiple sclerosis at 5 years. Am. J. Neuroradiol. 32, 1016–1020 (2011). PubMed DOI PMC
Kolasa, M. et al. Diffusion tensor imaging and disability progression in multiple sclerosis: a 4-year follow-up study. Brain Behav. 9, e01194 (2019). PubMed DOI
Bodini, B. et al. Corpus callosum damage predicts disability progression and cognitive dysfunction in primary-progressive MS after five years. Hum. Brain Mapp. 34, 1163–1172 (2013). PubMed DOI
Franklin, R. J. M. & Simons, M. CNS remyelination and inflammation: from basic mechanisms to therapeutic opportunities. Neuron 110, 3549–3565 (2022). PubMed DOI
Patrikios, P. et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129, 3165–3172 (2006). PubMed DOI
Lubetzki, C. et al. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 19, 678–688 (2020). PubMed DOI
Schultz, V. et al. Acutely damaged axons are remyelinated in multiple sclerosis and experimental models of demyelination. Glia 65, 1350–1360 (2017). PubMed DOI PMC
Irvine, K. A. & Blakemore, W. F. Remyelination protects axons from demyelination-associated axon degeneration. Brain 131, 1464–1477 (2008). PubMed DOI
Kornek, B. et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol. 157, 267–276 (2000). PubMed DOI PMC
Ricigliano, V. A. G. et al. Spontaneous remyelination in lesions protects the integrity of surrounding tissues over time in multiple sclerosis. Eur. J. Neurol. 29, 1719–1729 (2022). PubMed DOI
Stephan Bramow, J. M. et al. Demyelination versus remyelination in progressive multiple sclerosis. Brain 133, 2983–2998 (2010). PubMed DOI
Van der Weijden, C. W. J. et al. Myelin quantification with MRI: a systematic review of accuracy and reproducibility. NeuroImage 226, 117561 (2021). PubMed DOI
Moccia, M. et al. Pathologic correlates of the magnetization transfer ratio in multiple sclerosis. Neurology 95, e2965–e2976 (2020). PubMed DOI
Mancini, M. et al. An interactive meta-analysis of MRI biomarkers of myelin. eLife 9, e61523 (2020).
Petiet, A. et al. Ultrahigh field imaging of myelin disease models: toward specific markers of myelin integrity? J. Comp. Neurol. 527, 2179–2189 (2019). PubMed DOI
Hertanu, A. et al. Inhomogeneous magnetization transfer (ihMT) imaging in the acute cuprizone mouse model of demyelination/remyelination. NeuroImage 265, 11978 (2023). DOI
Alsop, D. C. et al. Inhomogeneous magnetization transfer imaging: concepts and directions for further development. NMR Biomed. 36, e4543 (2023). DOI
Chen, J. T. et al. Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann. Neurol. 63, 254–262 (2008). PubMed DOI
Lazzarotto, A. et al. Clinically relevant profiles of myelin content changes in patients with multiple sclerosis: a multimodal and multicompartment imaging study. Mult. Scler. 28, 1881–1890 (2022). PubMed DOI
Chen, J. T. et al. Clinically feasible MTR is sensitive to cortical demyelination in MS. Neurology 80, 246–252 (2013). PubMed DOI PMC
Kolb, H. et al. 7 T MRI differentiates remyelinated from demyelinated multiple sclerosis lesions. Ann. Neurol. 90, 612–626 (2021). PubMed DOI PMC
Rahmanzadeh, R. et al. A new advanced MRI biomarker for remyelinated lesions in multiple sclerosis. Ann. Neurol. 92, 486–502 (2022). PubMed DOI PMC
Eshaghi, A. et al. Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat. Commun. 12, 2078 (2021). PubMed DOI PMC
Ananthavarathan, P., Sahi, N. & Chard, D. T. An update on the role of magnetic resonance imaging in predicting and monitoring multiple sclerosis progression. Expert Rev. Neurother. 24, 201–216 (2024). PubMed DOI
Stankoff, B. et al. Imaging of CNS myelin by positron-emission tomography. Proc. Natl Acad. Sci. USA 103, 9304–9309 (2006). PubMed DOI PMC
Stankoff, B. et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11C]-2-(4′-methylaminophenyl)-6-hydroxybenzothiazole. Ann. Neurol. 69, 673–680 (2011). PubMed DOI
Wu, C. et al. Longitudinal positron emission tomography imaging for monitoring myelin repair in the spinal cord. Ann. Neurol. 74, 688–698 (2013). PubMed DOI
Auvity, S. et al. Repurposing radiotracers for myelin imaging: a study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol, 11C-MeDAS, and 11C-PiB. Eur. J. Nucl. Med. Mol. Imaging 47, 490–501 (2020). PubMed DOI
Bodini, B. et al. Positron emission tomography in multiple sclerosis — straight to the target. Nat. Rev. Neurol. 17, 663–675 (2021). PubMed DOI
Bodini, B. et al. Dynamic imaging of individual remyelination profiles in multiple sclerosis. Ann. Neurol. 79, 726–738 (2016). PubMed DOI PMC
Pytel, V. et al. Amyloid PET findings in multiple sclerosis are associated with cognitive decline at 18 months. Mult. Scler. Relat. Disord. 39, 101926 (2020). PubMed DOI
Carotenuto, A. et al. [ PubMed DOI
Zhang, M. et al. 18F-florbetapir PET/MRI for quantitatively monitoring myelin loss and recovery in patients with multiple sclerosis: a longitudinal study. eClinicalMedicine 37, 100982 (2021). PubMed DOI PMC
Van der Weijden, C. W. J. et al. Quantitative assessment of myelin density using [11C]MeDAS PET in patients with multiple sclerosis: a first-in-human study. Eur. J. Nucl. Med. Mol. Imaging 49, 3492–3507 (2022). PubMed DOI PMC
Ricigliano, V. A. G. & Stankoff, B. Choroid plexuses at the interface of peripheral immunity and tissue repair in multiple sclerosis. Curr. Opin. Neurol. 36, 214–221 (2023). PubMed DOI
Wei, W. et al. Predicting PET-derived demyelination from multimodal MRI using sketcher-refiner adversarial training for multiple sclerosis. Med. Image Anal. 58, 101546 (2019). PubMed DOI
Wei, W. et al. Predicting PET-derived myelin content from multisequence MRI for individual longitudinal analysis in multiple sclerosis. NeuroImage 223, 117308 (2020). PubMed DOI
Lazzarotto, A. et al. Time is myelin: early cortical myelin repair prevents atrophy and clinical progression in multiple sclerosis. Brain 147, 1331–1343 (2024). PubMed DOI PMC
El Behi, M. et al. Adaptive human immunity drives remyelination in a mouse model of demyelination. Brain 140, 967–980 (2017). PubMed DOI PMC
Heß, K. et al. Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol. 140, 359–375 (2020). PubMed DOI PMC
Yong, H. Y. F. & Yong, V. W. Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat. Rev. Neurol. 18, 40–55 (2022). PubMed DOI
Nutma, E. et al. A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis. Brain 142, 3440–3455 (2019). PubMed DOI PMC
Hamzaoui, M. et al. Positron emission tomography with [ PubMed DOI
Rissanen, E. et al. In vivo detection of diffuse inflammation in secondary progressive multiple sclerosis using PET imaging and the radioligand ¹¹C-PK11195. J. Nucl. Med. 55, 939–944 (2014). PubMed DOI
Sucksdorff, M. et al. Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis. Brain 143, 3318–3330 (2020). PubMed DOI PMC
Herranz, E. et al. Neuroinflammatory component of gray matter pathology in multiple sclerosis. Ann. Neurol. 80, 776–790 (2016). PubMed DOI PMC
Bodini, B. et al. Individual mapping of innate immune cell activation is a candidate marker of patient-specific trajectories of worsening disability in multiple sclerosis. J. Nucl. Med. 61, 1043–1049 (2020). PubMed DOI PMC
Nylund, M. et al. Phenotyping of multiple sclerosis lesions according to innate immune cell activation using 18 kDa translocator protein-PET. Brain Commun. 4, fcab301 (2021). PubMed DOI PMC
Poirion, E. et al. Structural and clinical correlates of a periventricular gradient of neuroinflammation in multiple sclerosis. Neurology 96, e1865–e1875 (2021). PubMed DOI PMC
Sucksdorff, M. et al. Natalizumab treatment reduces microglial activation in the white matter of the MS brain. Neurol. Neuroimmunol. Neuroinflamm. 6, e574 (2019). PubMed DOI PMC
Sucksdorff, M. et al. Evaluation of the effect of fingolimod treatment on microglial activation using serial PET imaging in multiple sclerosis. J. Nucl. Med. 58, 1646–1651 (2017). PubMed DOI
Petzold, A. et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 16, 797–812 (2017). PubMed DOI
Saidha, S. et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: a four-year study. Ann. Neurol. 78, 801–813 (2015). PubMed DOI PMC
Guerrieri, S., Comi, G. & Leocani, L. Optical coherence tomography and visual evoked potentials as prognostic and monitoring tools in progressive multiple sclerosis. Front. Neurosci. 15, 692599 (2021). PubMed DOI PMC
Pulicken, M. et al. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology 69, 2085–2092 (2007). PubMed DOI
Henderson, A. P. et al. An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 131, 277–287 (2008). PubMed
Gelfand, J. M. et al. Retinal axonal loss begins early in the course of multiple sclerosis and is similar between progressive phenotypes. PLoS ONE 7, e36847 (2012). PubMed DOI PMC
Albrecht, P. et al. Degeneration of retinal layers in multiple sclerosis subtypes quantified by optical coherence tomography. Mult. Scler. J. 18, 1422–1429 (2012). PubMed DOI
Balk, L. J. et al. Disease course heterogeneity and OCT in multiple sclerosis. Mult. Scler. 20, 1198–1206 (2014). PubMed DOI
Cellerino, M. et al. Relationship between retinal inner nuclear layer, age, and disease activity in progressive MS. Neurol. Neuroimmunol. Neuroinflamm. 6, e596 (2019). PubMed DOI PMC
Martinez-Lapiscina, E. H. et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol. 15, 574–584 (2016). PubMed DOI
Bsteh, G. et al. Peripapillary retinal nerve fibre layer thinning rate as a biomarker discriminating stable and progressing relapsing–remitting multiple sclerosis. Eur. J. Neurol. 26, 865–871 (2019). PubMed DOI
Bsteh, G. et al. Macular ganglion cell-inner plexiform layer thinning as a biomarker of disability progression in relapsing multiple sclerosis. Mult. Scler. 27, 684–694 (2020). PubMed DOI
Sotirchos, E. S. et al. Progressive multiple sclerosis is associated with faster and specific retinal layer atrophy. Ann. Neurol. 87, 885–896 (2020). PubMed DOI PMC
Ratchford, J. N. et al. Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology 80, 47–54 (2013). PubMed DOI PMC
El Ayoubi, N. K. et al. Rate of retinal layer thinning as a biomarker for conversion to progressive disease in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 9, e200030 (2022). PubMed DOI PMC
Brown, J. A. et al. Patient-tailored, connectivity-based forecasts of spreading brain atrophy. Neuron 104, 856–868.e5 (2019). PubMed DOI PMC
Lie, I. A. et al. Relationship between white matter lesions and gray matter atrophy in multiple sclerosis: a systematic review. Neurology 98, e1562–e1573 (2022). PubMed DOI PMC
Comi, G. et al. Measuring evoked responses in multiple sclerosis. Mult. Scler. 5, 263–267 (1999). PubMed DOI
Leocani, L., Guerrieri, S. & Comi, G. Visual evoked potentials as a biomarker in multiple sclerosis and associated optic neuritis. J. Neuroophthalmol. 38, 350–357 (2018). PubMed DOI
Leocani, L. et al. Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study. J. Neurol. Neurosurg. Psychiatry 77, 1030–1035 (2006). PubMed DOI PMC
Kira, J., Tobimatsu, S., Goto, I. & Hasuo, K. Primary progressive versus relapsing remitting multiple sclerosis in Japanese patients: a combined clinical, magnetic resonance imaging and multimodality evoked potential study. J. Neurol. Sci. 117, 179–185 (1993). PubMed DOI
Stevenson, V. L. et al. Primary and transitional progressive MS: a clinical and MRI cross-sectional study. Neurology 52, 839–845 (1999). PubMed DOI
Sater, R. A., Rostami, A. M., Galetta, S., Farber, R. E. & Bird, S. J. Serial evoked potential studies and MRI imaging in chronic progressive multiple sclerosis. J. Neurol. Sci. 171, 79–83 (1999). PubMed DOI
Schlaeger, R. et al. Electrophysiological markers and predictors of the disease course in primary progressive multiple sclerosis. Mult. Scler. 20, 51–56 (2014). PubMed DOI
Backner, Y. et al. Vision and vision-related measures in progressive multiple sclerosis. Front. Neurol. 10, 455 (2019). PubMed DOI PMC
Abalo-Lojo, J. M. et al. Retinal nerve fiber layer thickness, brain atrophy, and disability in multiple sclerosis patients. J. Neuroophthalmol. 34, 23–28 (2014). PubMed DOI
Kuhle, J. et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin. Chem. Lab. Med. 54, 1655–1661 (2016). PubMed DOI
Barro, C. et al. Serum GFAP and NfL levels differentiate subsequent progression and disease activity in patients with progressive multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 10, e200052 (2022). PubMed DOI PMC
Teunissen, C. E. et al. Body fluid biomarkers for multiple sclerosis — the long road to clinical application. Nat. Rev. Neurol. 11, 585–596 (2015). PubMed DOI
Romme Christensen, J. et al. CSF inflammation and axonal damage are increased and correlate in progressive multiple sclerosis. Mult. Scler. 19, 877–884 (2013). PubMed DOI
Sellebjerg, F. et al. Defining active progressive multiple sclerosis. Mult. Scler. 23, 1727–1735 (2017). PubMed DOI
Segal, B. M. Stage-specific immune dysregulation in multiple sclerosis. J. Interferon Cytokine Res. 34, 633–640 (2014). PubMed DOI PMC
Komori, M. et al. Cerebrospinal fluid markers reveal intrathecal inflammation in progressive multiple sclerosis. Ann. Neurol. 78, 3–20 (2015). PubMed DOI PMC
Lycke, J. & Zetterberg, H. The role of blood and CSF biomarkers in the evaluation of new treatments against multiple sclerosis. Expert Rev. Clin. Immunol. 13, 1143–1153 (2017). PubMed DOI
Romme Christensen, J. et al. CSF inflammatory biomarkers responsive to treatment in progressive multiple sclerosis capture residual inflammation associated with axonal damage. Mult. Scler. 25, 937–946 (2019). PubMed DOI
Gil-Perotin, S. et al. Combined cerebrospinal fluid neurofilament light chain protein and chitinase-3 like-1 levels in defining disease course and prognosis in multiple sclerosis. Front. Neurol. 10, 1008 (2019).
Martin, S. J., McGlasson, S., Hunt, D. & Overell, J. Cerebrospinal fluid neurofilament light chain in multiple sclerosis and its subtypes: a meta-analysis of case–control studies. J. Neurol. Neurosurg. Psychiatry 90, 1059–1067 (2019). PubMed DOI
Petzold, A. et al. Elevated CSF neurofilament proteins predict brain atrophy: a 15-year follow-up study. Mult. Scler. 22, 1154–1162 (2016). PubMed DOI
Romme, C. J. et al. Natalizumab in progressive MS: results of an open-label, phase 2A, proof-of-concept trial. Neurology 82, 1499–1507 (2014). DOI
Axelsson, M. et al. Immunosuppressive therapy reduces axonal damage in progressive multiple sclerosis. Mult. Scler. 20, 43–50 (2014). PubMed DOI
Disanto, C. et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 81, 857–870 (2017). PubMed DOI PMC
Barro, C. et al. Serum neurofilament light as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain 141, 2382–2391 (2018). PubMed DOI
Kapoor, R. et al. Serum neurofilament light as a biomarker in progressive multiple sclerosis. Neurology 95, 436–444 (2020). PubMed DOI PMC
Bar-Or, A. et al. Blood neurofilament light levels predict non-relapsing progression following anti-CD20 therapy in relapsing and primary progressive multiple sclerosis: findings from the ocrelizumab randomised, double-blind phase 3 clinical trials. eBioMedicine 93, 104662 (2023).
Meier, S. et al. Serum glial fibrillary acidic protein compared with neurofilament light chain as a biomarker for disease progression in multiple sclerosis. JAMA Neurol. 80, 287–297 (2023). PubMed DOI PMC
Jiang, X. et al. Glial fibrillary acidic protein and multiple sclerosis progression independent of acute inflammation. Mult. Scler. 29, 1070–1079 (2023). PubMed DOI PMC
Huss, A. et al. A score based on NfL and glial markers may differentiate between relapsing–remitting and progressive MS course. Front. Neurol. 11, 608 (2020). PubMed DOI PMC
Abdelhak, A. et al. Serum glial fibrillary acidic protein and disability progression in progressive multiple sclerosis. Ann. Clin. Transl. Neurol. https://doi.org/10.1002/acn3.51969 (2024).
Shi, T. et al. Metabolomic profiles in relapsing–remitting and progressive multiple sclerosis compared to healthy controls: a five-year follow-up study. Metabolomics 19, 44 (2023). PubMed DOI
Lim, C. K. et al. Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci. Rep. 7, 41473 (2017). PubMed DOI PMC
Stilund, M. et al. Soluble CD163 as a marker of macrophage activity in newly diagnosed patients with multiple sclerosis. PLoS ONE 9, e98588 (2014). PubMed DOI PMC
Festa, E. D. et al. Serum levels of CXCL13 are elevated in active multiple sclerosis. Mult. Scler. 15, 1271–1279 (2009). PubMed DOI
Fissolo, N. et al. Serum levels of CXCL13 are associated with teriflunomide response in patients with multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 10, e200050 (2022). PubMed DOI PMC
Sievers, C. et al. Altered microRNA expression in B lymphocytes in multiple sclerosis: towards a better understanding of treatment effects. Clin. Immunol. 144, 70–79 (2012). PubMed DOI
Campbell, J. A. et al. SF-6D health state utilities for lifestyle, socio-demographic and clinical characteristics of a large international cohort of people with multiple sclerosis. Qual. Life Res. 29, 2509–2527 (2020). PubMed DOI
Castelnovo, G. et al. Safety, patient-reported well-being, and physician-reported assessment of walking ability in patients with multiple sclerosis for prolonged-release fampridine treatment in routine clinical practice: results of the LIBERATE study. CNS Drugs 35, 1009–1022 (2021). PubMed DOI PMC
Solaro, C. et al. Italian validation of the 12-item multiple sclerosis walking scale. Mult. Scler. Int. 2015, 540828 (2015). PubMed PMC
He, A. et al. Association between early treatment of multiple sclerosis and patient-reported outcomes: a nationwide observational cohort study. J. Neurol. Neurosurg. Psychiatry 94, 284–289 (2023). PubMed DOI
Block, V. J. et al. Continuous daily assessment of multiple sclerosis disability using remote step count monitoring. J. Neurol. 264, 316–326 (2017). PubMed DOI
Hobart, J. et al. Do clinical trials prepare to fail by failing to prepare? An examination of MS trials and recommendations for patient-reported outcome measure selection. Mult. Scler. Relat. Disord. 76, 104788 (2023). PubMed DOI
Abdelhak, A. et al. Patient-reported outcome parameters and disability worsening in progressive multiple sclerosis. Mult. Scler. Relat. Disord. 81, 105139 (2023). PubMed DOI
Strijbis, E. et al. The MSIS-29 and SF-36 as outcomes in secondary progressive MS trials. Mult. Scler. J. 28, 1606–1619 (2022). DOI
Oh, J. et al. Use of smartphone-based remote assessments of multiple sclerosis in Floodlight Open, a global, prospective, open-access study. Sci. Rep. 14, 122 (2024). PubMed DOI PMC
Maillart, E. et al. MSCopilot, a new multiple sclerosis self-assessment digital solution: results of a comparative study versus standard tests. Eur. J. Neurol. 27, 429–436 (2020). PubMed DOI
Green, R., Kalina, J., Ford, R., Pandey, K. & Kister, I. SymptoMScreen: a tool for rapid assessment of symptom severity in MS across multiple domains. Appl. Neuropsychol. Adult 24, 183–189 (2017). PubMed DOI
Zaratin, P. et al. The agenda of the global patient reported outcomes for multiple sclerosis (PROMS) initiative: progresses and open questions. Mult. Scler. Relat. Disord. 61, 103757 (2022). PubMed DOI
Conway, D. S. et al. Patient reported outcomes and performance metrics at diagnosis of secondary progressive multiple sclerosis. Mult. Scler. 27, 742–754 (2020). PubMed DOI