Effect of nanoparticles on the ex-vitro performance of cryopreservation-derived plant material
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39264924
PubMed Central
PMC11392386
DOI
10.1371/journal.pone.0310424
PII: PONE-D-24-10219
Knihovny.cz E-zdroje
- MeSH
- chlorofyl metabolismus MeSH
- kovové nanočástice * chemie MeSH
- kryoprezervace * metody MeSH
- listy rostlin účinky léků MeSH
- stříbro farmakologie MeSH
- výhonky rostlin účinky léků růst a vývoj MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- stříbro MeSH
- zlato MeSH
The integration of nanoparticles into plant cryopreservation protocols holds great promise for improving the survival rates and recovery potential of explants. This study aimed to verify the effect of nanoparticles on the ex-vitro performance of cryopreservation-derived plants. Lamprocapnos spectabilis (L.) Fukuhara (bleeding heart) 'Gold Heart' and 'Valentine' cultivars were used as the plant material. The encapsulation-vitrification cryopreservation protocol of shoot tips included the preculture, encapsulation, dehydration, storage in liquid nitrogen, rewarming, and recovery steps. Gold (AuNPs), silver (AgNPs), or zinc oxide (ZnONPs) nanoparticles were added at varying concentrations, either into the preculture medium or the protective bead matrix during encapsulation. After the in vitro recovery, the plants were transferred to the glasshouse and subjected to detailed biometrical, biochemical and cytogenetic analyses. Nanoparticles had no evident effect on the acclimatization efficiency (80-100% survival) and leaf number in L. spectabilis 'Gold Heart'. Nonetheless, shoots developed from alginate beads supplemented with 5 ppm AuNPs were twice as long as the control, while the leaves of plants grown on the preculture medium with ZnONPs contained significantly more chlorophyll and had higher Leaf Soil-Plant Analysis Development (SPAD) values. Moreover, several NPs treatments stimulated the development of leaves, including their surface area, length, and perimeter. Higher ZnONPs levels enhanced also the replication process, resulting in higher nuclear DNA content. As for L. spectabilis 'Valentine', alginate augmentation with 5 ppm AgNPs or 5 ppm ZnONPs stimulated the elongation of shoots. There was also a tendency suggesting a positive influence of 5 ppm AgNPs in the alginate bead matrix on foliar growth. The effect of nanoparticles on the content of flavonoids, anthocyanins, and stress markers in the plants varied depending on the treatment and cultivar, but also on the organ studied (leaf or stem). Overall, L. spectabilis 'Gold Heart' was more stress-tolerant and genetically stable than 'Valentine' judging by the activity of Photosystem II (PSII) and flow cytometric analyses, respectively. The complex effects of nanoparticles on survival, biometric parameters, physiological responses, and cytogenetic events underscore the intricate interplay between nanoparticles and plant systems. Nonetheless, our research confirmed the positive effect of nanoparticles on the ex-vitro growth and development of L. spectabilis plants after cryostorage.
Zobrazit více v PubMed
Sanzari I, Leone A, Ambrosone A. Nanotechnology in plant science: To make a long story short. Front Bioeng Biotechnol. 2019;7: 120. doi: 10.3389/fbioe.2019.00120 PubMed DOI PMC
Zhao L, Lu L, Wang A, Zhang H, Huang M, Wu H, et al.. Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem. 2020;68(7): 1935–1947. doi: 10.1021/acs.jafc.9b06615 PubMed DOI
Singh Y, Kumar U, Panigrahi S, Balyan P, Mehla S, Sihag P, et al.. Nanoparticles as novel elicitors in plant tissue culture applications: Current status and future outlook. Plant Physiol Biochem. 2023;203: 108004. doi: 10.1016/j.plaphy.2023.108004 PubMed DOI
Tymoszuk A, Miler N. Silver and gold nanoparticles impact on in vitro adventitious organogenesis in chrysanthemum, gerbera and Cape Primrose. Sci Hortic. 2019;257: 108766. doi: 10.1016/j.scienta.2019.108766 DOI
Wu K, Xu C, Li T, Ma H, Gong J, Li X, et al.. Application of nanotechnology in plant genetic engineering. Int J Mol Sci. 2023;24(19): 14836. doi: 10.3390/ijms241914836 PubMed DOI PMC
Joshi S, Dar AI, Acharya A, Joshi R. Charged gold nanoparticles promote in vitro proliferation in Nardostachys jatamansi by differentially regulating chlorophyll content, hormone concentration, and antioxidant activity. Antioxidants. 2022;11:1962. doi: 10.3390/antiox11101962 PubMed DOI PMC
Polivanova OB, Bedarev VA. Hyperhydricity in plant tissue culture. Plants. 2022;11(23): 3313. doi: 10.3390/plants11233313 PubMed DOI PMC
Tymoszuk A, Wenda-Piesik A, Szałaj U, Wojnarowicz J. Analysis of architecture of chrysanthemum plantlets in response to zinc oxide, silver and auxin treatment in shoot-tip culture. Acta Societatis Botanicorum Poloniae. 2024;93:1–25. doi: 10.5586/asbp/183092 DOI
Tymoszuk A, Sławkowska N, Szałaj U, Kulus D, Antkowiak M, Wojnarowicz J. Synthesis, characteristics, and effect of zinc oxide and silver nanoparticles on the in vitro regeneration and biochemical profile of chrysanthemum adventitious shoots. Materials 2022;15:8192. doi: 10.3390/ma15228192 PubMed DOI PMC
Tymoszuk A, Kulus D. Effect of silver nanoparticles on the in vitro regeneration, biochemical, genetic, and phenotype variation in adventitious shoots produced from leaf explants in chrysanthemum. Int J Mol Sci. 2022. Jul 3;23(13): 7406. doi: 10.3390/ijms23137406 PubMed DOI PMC
El Merzougui S, Benelli C, El Boullani R, Serghini MA. The cryopreservation of medicinal and ornamental geophytes: Application and challenges. Plants. 2023;12(11): 2143. doi: 10.3390/plants12112143 PubMed DOI PMC
Benelli C. Plant cryopreservation: A look at the present and the future. Plants. 2021;10(12): 2744. doi: 10.3390/plants10122744 PubMed DOI PMC
Stewart S, Arminan A, He X. Nanoparticle-mediated delivery of cryoprotectants for cryopreservation. Cryo Letters. 2020;41(6): 308–316. doi: 10.1038/npre.2009.3722.1 PubMed DOI PMC
Saadeldin IM, Khalil WA, Alharbi MG, Lee SH. The current trends in using nanoparticles, liposomes, and exosomes for semen cryopreservation. Animals. 2020;10: 2281. doi: 10.3390/ani10122281 PubMed DOI PMC
Hozyen HF, El Shamy AA, Abd El Fattah EM, Sakr AM. Facile fabrication of zinc oxide nanoparticles for enhanced buffalo sperm parameters during cryopreservation. JTEMIN. 2023;4: 100058. doi: 10.1016/j.jtemin.2023.100058 DOI
Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci Adv. 2020;6: eaaz0495. doi: 10.1126/sciadv.aaz0495 PubMed DOI PMC
Hosseinmardi M, Siadat F, Sharafi M, Roodbari NH, Hezavehei M. Protective effect of cerium oxide nanoparticles on human sperm function during cryopreservation. Biopreserv Biobank. 2022;20(1): 24–30. doi: 10.1089/bio.2021.0020 PubMed DOI
Asadi Z, Safari-Faramani R, Aghaz F. Effects of adding antioxidant nanoparticles on sperm parameters of non-human species after the freezing and thawing process: A systematic review and meta-analysis. Animal Reproduction Science. 2023;257: 107323. doi: 10.1016/j.anireprosci.2023.107323 PubMed DOI
Choi HW, Jang H. Application of nanoparticles and melatonin for cryopreservation of gametes and embryos. Curr Issues Mol Biol. 2022;44(9): 4028–4044. doi: 10.3390/cimb44090276 PubMed DOI PMC
Kulus D, Tymoszuk A. Gold nanoparticles affect the cryopreservation efficiency of in vitro‑derived shoot tips of bleeding heart. PCTOC. 2021;146: 297–311. doi: 10.1007/s11240-021-02069-4 DOI
Kulus D, Tymoszuk A, Kulpińska A, Wojnarowicz J, Szałaj U. Nanoparticle-mediated enhancement of plant cryopreservation: Cultivar-specific insights into morphogenesis and biochemical responses in Lamprocapnos spectabilis (L.) Fukuhara ‘Gold Heart’ and ‘Valentine’. PLoS ONE. 2024;19(5): e0304586. doi: 10.1371/journal.pone.0304586 PubMed DOI PMC
Wang MR, Bi W, Shukla MR, Ren L, Hamborg Z, Blystad DR, et al.. Epigenetic and genetic integrity, metabolic stability, and field performance of cryopreserved plants. Plants. 2021;10(9): 1889. doi: 10.3390/plants10091889 PubMed DOI PMC
Mosa KA, Ahmed AE, Hazem Y, Kanawati IS, Abdullah A, Hernandez-Sori L, et al.. Insights into cryopreservation, recovery and genetic stability of medicinal plant tissues. Fitoterapia. 2023;169: 105555. doi: 10.1016/j.fitote.2023.105555 PubMed DOI
Arguedas M, Perez A, Abdelnour A, Hernandez M, Engelmann F, Martínez ME, et al.. Short-term liquid nitrogen storage of maize, common bean and soybean seeds modifies their biochemical composition. Agric Sci. 2016;4(3): 6–12. doi: 10.12735/as.v4n3p06 DOI
Arguedas M, Gómez D, Hernández L, Engelmann F, Garramone R, Cejas I, et al.. Maize seed cryo-storage modifies chlorophyll, carotenoid, protein, aldehyde and phenolics levels during early stages of germination. Acta Physiol Plant. 2018; 40: 118. doi: 10.1007/s11738-018-2695-7 DOI
Cejas I, Rumlow A, Turcios A, Engelmann F, Martínez ME, Yabor L, et al.. Exposure of common bean seeds to liquid nitrogen modifies mineral composition of young plantlet leaves. Am J Plant Sci. 2016;7(12): 1612–1617. doi: 10.4236/ajps.2016.712152 DOI
Zhang Z, Skjeseth G, Elameen A, Haugslien S, Sivertsen A, Wang QC, et al.. Field performance evaluation and genetic integrity assessment in Argyranthemum maderense plants recovered from cryopreserved shoot tips. In Vitro Cell Dev Biol–Plant. 2015;51: 505–513. doi: 10.1007/s11627-015-9707-8 DOI
Kulus D, Rewers M, Serocka M., Mikuła A. Cryopreservation by encapsulation-dehydration affects the vegetative growth of chrysanthemum but does not disturb its chimeric structure. PCTOC. 2019;138(1): 153–166. doi: 10.1007/s11240-019-01614-6 DOI
Gao M, Chang J, Wang Z, Zhang H. Advances in transport and toxicity of nanoparticles in plants. J Nanobiotechnol. 2023;21: 75. doi: 10.1186/s12951-023-01830-5 PubMed DOI PMC
Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L) plants. Plant Physiol Biochem. 2019;135: 160–6. doi: 10.1016/j.plaphy.2018.12.005 PubMed DOI
Yuan J, Chen Y, Li H, Lu J, Zhao H, Liu M, et al.. New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci Rep. 2018;1(8): 3228. doi: 10.1038/s41598-017-18055-w PubMed DOI PMC
Ferrari E, Barbero F, Busquets-Fité M, Franz-Wachtel M, Köhler HR, Puntes V, et al.. Growth-promoting gold nanoparticles decrease stress responses in Arabidopsis seedlings. Nanomaterials. 2021;11(12):3161. doi: 10.3390/nano11123161 PubMed DOI PMC
Poddar K, Sarkar D, Sarkar A. Nanoparticles on photosynthesis of plants: Effects and role. In: Patra J, Fraceto L, Das G, Campos E, editors. Green Nanoparticles. Nanotechnology in the Life Sciences. Springer, Cham; 2020. pp. 272–287.
Al-Khayri JM, Rashmi R, Surya Ulhas R, Sudheer WN, Banadka A, Nagella P, et al.. The Role of nanoparticles in response of plants to abiotic stress at physiological, biochemical, and molecular levels. Plants. 2023;12(2): 292. doi: 10.3390/plants12020292 PubMed DOI PMC
Nair PMG, Chung IM. Regulation of morphological, molecular and nutrient status in Arabidopsis thaliana seedlings in response to ZnO nanoparticles and Zn ion exposure. Sci Total Environ. 2017;575: 187–98. doi: 10.1016/j.scitotenv.2016.10.017 PubMed DOI
Tripathi A, Liu S, Singh PK, Kumar N, Pandey AC, Tripathi DK, et al.. Differential phytotoxic responses of silver nitrate (AgNO3) and silver nanoparticle (Ag NPs) in Cucumis sativus L. Plant Gene. 2017;11: 255–264. doi: 10.1016/j.plgene.2017.07.005 DOI
Misiurek J, Plech T, Kaproń B, Makuch-Kocka A, Szultka-Młyńska M, Buszewski B, et al.. Determination of some isoquinoline alkaloids in extracts obtained from selected plants of the Ranunculaceae, Papaveraceae and Fumarioideae families by liquid chromatography and in vitro and in vivo investigations of their cytotoxic activity. Molecules 2023;28: 3503. doi: 10.3390/molecules28083503 PubMed DOI PMC
Kulus D. Shoot tip cryopreservation of Lamprocapnos spectabilis (L.) Fukuhara using different approaches and evaluation of stability on the molecular, biochemical, and plant architecture levels. Int J Mol Sci. 2020;21(11): 3901. doi: 10.3390/ijms21113901 PubMed DOI PMC
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15: 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x DOI
RHSCC. The Royal Horticultural Society Colour Chart, London. 1966.
Dolezel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007;2: 2233–2244. doi: 10.1038/nprot.2007.310 PubMed DOI
Dolezel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant. 1992;85: 625–631. doi: 10.1111/j.1399-3054.1992.tb04764.x DOI
Feigl G. The impact of copper oxide nanoparticles on plant growth: a comprehensive review. J Plant Interact. 2023;18: 1. doi: 10.1080/17429145.2023.2243098 DOI
Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012;66: 303–310. doi: 10.1007/s10725-011-9649-z DOI
Li Y, Xi K, Liu X, Han S, Han X, Li G, et al.. Silica nanoparticles promote wheat growth by mediating hormones and sugar metabolism. J Nanobiotechnol. 2023;21(1): 2. doi: 10.1186/s12951-022-01753-7 PubMed DOI PMC
Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN, et al.. The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. Front Plant Sci. 2022;13: 976179. doi: 10.3389/fpls.2022.976179 PubMed DOI PMC
Tripathi D, Singh M, Pandey-Rai S. Crosstalk of nanoparticles and phytohormones regulate plant growth and metabolism under abiotic and biotic stress. Plant Stress. 2022;6: 100107. doi: 10.1016/j.stress.2022.100107 DOI
Kokina I, Jahundoviča I, Mickeviča I, Jermaļonoka M, Strautiņš J, Popovs S, et al.. Target transportation of auxin on mesoporous Au/SiO2 nanoparticles as a method for somaclonal variation increasing in flax (L. usitatissimum L.). J Nanomater. 2017;vol. 2017: Article ID 7143269, 9 pages. doi: 10.1155/2017/7143269 DOI
Tarrahi R, Mahjouri S, Khataee A. A review on in vivo and in vitro nanotoxicological studies in plants: A headlight for future targets. Ecotoxicol Environ Saf. 2021;208: 111697. doi: 10.1016/j.ecoenv.2020.111697 PubMed DOI
Leopold LF, Coman C, Clapa D, Oprea I, Toma A, Iancu ȘD, et al.. The effect of 100–200 nm ZnO and TiO2 nanoparticles on the in vitro-grown soybean plants. Colloids Surf B: Biointerfaces. 2022;Volume 216: 112536. doi: 10.1016/j.colsurfb.2022.112536 PubMed DOI
AbdElgawad H, Magdy Korany S, Reyad AM, Zahid I, Akhter N, Alsherif E, et al.. Synergistic impacts of plant-growth-promoting bacteria and selenium nanoparticles on improving the nutritional value and biological activities of three cultivars of Brassica sprouts. ACS Omega. 2023;8(29): 26414–26424. doi: 10.1021/acsomega.3c02957 PubMed DOI PMC
Tymoszuk A. Silver nanoparticles effects on in vitro germination, growth, and biochemical activity of tomato, radish, and kale seedlings. Materials. 2021;14(18): 5340. doi: 10.3390/ma14185340 PubMed DOI PMC
Hashemi S, Asrar Z, Pourseyedi S, Nadernejad N. Investigation of ZnO nanoparticles on proline, anthocyanin contents and photosynthetic pigments and lipid peroxidation in the soybean. IET Nanobiotechnol. 2019;13(1): 66–70. doi: 10.1049/iet-nbt.2018.5212 PubMed DOI PMC
Milewska-Hendel A, Gawecki R, Zubko M, Stróż D, Kurczyńska E. Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants. Acta Agrobot. 2016;69(4): 1694. doi: 10.5586/aa.1694 DOI
Pérez-de-Luque A. Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Front Environ Sci. 2017;5: 12. doi: 10.3389/fenvs.2017.00012 DOI
Hossain Z, Yasmeen F, Komatsu S. Nanoparticles: synthesis, morphophysiological effects, and proteomic responses of crop plants. Int J Mol Sci. 2020;21(9): 3056. doi: 10.3390/ijms21093056 PubMed DOI PMC
Xiong D, Chen J, Yu T, Gao W, Ling X, Li Y, et al.. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci Rep. 2015;5: 13389. doi: 10.1038/srep13389 PubMed DOI PMC
Kaur S, Tiwari V, Kumari A, Chaudhary E, Sharma A, Ali U, et al.. Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture. J Biotech. 2023;361: 12–29. doi: 10.1016/j.jbiotec.2022.11.009 PubMed DOI
Tighe-Neira R, Carmora E, Recio G, Nunes-Nesi A, Reyes-Diaz M, Alberdi M, et al.. Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants. Plant Physiol Biochem. 2018;130: 408–417. doi: 10.1016/j.plaphy.2018.07.024 PubMed DOI
Maxwell K, Johnson GN. Chlorophyll fluorescence–a practical guide. J Exp Bot. 2000; 51(345): 659–668. doi: 10.1093/jxb/51.345.659 PubMed DOI
Mujib A, Fatima S, Malik MQ. Cryo-derived plants through embryogenesis showed same levels of vinblastine and vincristine (anticancer) in Catharanthus roseus and had normal genome size. Sci Rep. 2022;12: 16635. doi: 10.1038/s41598-022-20993-z PubMed DOI PMC
Mikuła A, Olas M, Śliwińska E, Rybczyński JJ. Cryopreservation by encapsulation of Gentiana spp. cell suspension maintains regrowth, embryogenic competence and DNA content. CryoLett. 2008; 29(5): 409–418. PubMed
Shukla RK, Badiye A, Vajpayee K, Kapoor N. Genotoxic potential of nanoparticles: structural and functional modifications in DNA. Front Genet. 2021;12: 728250. doi: 10.3389/fgene.2021.728250 PubMed DOI PMC
Abdelsalam NR, Abdel-Megeed A, Ali HM, Salem MZM, Al-Hayali MFA, Elshikh MS. Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells. Ecotoxicol Environ Saf 2018;155: 76–85. doi: 10.1016/j.ecoenv.2018.02.069 PubMed DOI
Patlolla AK, Berry A, May L, Tchounwou PB. Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public Health. 2012;9: 1649. doi: 10.3390/ijerph9051649 PubMed DOI PMC
Li K, Zhao X, Hammer BK, Du S, Chen Y. Nanoparticles inhibit DNA replication by binding to DNA: Modeling and experimental validation. ACS Nano. 2013;7(11): 9664–9674. doi: 10.1021/nn402472k PubMed DOI
Kulus D, Tymoszuk A, Jędrzejczyk I, Winiecki J. Gold nanoparticles and electromagnetic irradiation in tissue culture systems of bleeding heart: biochemical, physiological, and (cyto)genetic effects. PCTOC. 2022;149: 715–734. doi: 10.1007/s11240-022-02236-1 DOI
Kokina I, Jahundoviča I, Mickeviča I, Sledevskis E, Ogurcovs A, Polyakov B, et al.. The impact of CdS nanoparticles on ploidy and DNA damage of rucola (Eruca sativa Mill.) plants. J Nanomater. 2015;vol. 2015: Article ID 470250, 7 pages. doi: 10.1155/2015/470250 DOI
Prokhorova IM, Kibrik BS, Pavlov AV, Pesnya DS. Estimation of mutagenic effect and modifications of mitosis by silver nanoparticles. Bull Exp Biol Med. 2013;156(2): 255–259. doi: 10.1007/s10517-013-2325-8 PubMed DOI
Mehrian SK, Lima RD. Nanoparticles cyto and genotoxicity in plants: Mechanisms and abnormalities. Environ Nanotechnol Monit Manag. 2016;6: 184–193. doi: 10.1016/j.enmm.2016.08.003 DOI
Castillo-González J, Ojeda-Barrios D, Hernández-Rodríguez A, González-Franco AC, Robles-Hernández L, López-Ochoa GR. Zinc metalloenzymes in plants. Interciencia. 2018;43(4): 242–248.
Ishido M, Suzuki T, Adachi T, Kunimoto M. Zinc stimulates DNA synthesis during its antiapoptotic action independently with increments of an antiapoptotic protein, Bcl-2, in porcine kidney LLC-PK(1) cells. J Pharmacol Exp Ther. 1999;290(2): 923–8. PubMed
Hao YJ, You CX, Deng XX. Analysis of ploidy and the patterns of amplified fragment length polymorphism and methylation sensitive amplified polymorphism in strawberry plants recovered from cryopreservation. CryoLett. 2002;23(1): 37–46. PubMed
Fernandes P, Rodriguez E, Pinto G, Roldán-Ruiz I, De Loose M, Santos C. Cryopreservation of Quercus suber somatic embryos by encapsulation-dehydration and evaluation of genetic stability. Tree Physiol. 2008;28(12): 1841–50. doi: 10.1093/treephys/28.12.1841 PubMed DOI