• This record comes from PubMed

Analyzing Wav2Vec 1.0 Embeddings for Cross-Database Parkinson's Disease Detection and Speech Features Extraction

. 2024 Aug 26 ; 24 (17) : . [epub] 20240826

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
LX22NPO5107 (Programme EXCELES, ID Project No. LX22NPO5107) - funded by the European Union - Next Generation EU.

Advancements in deep learning speech representations have facilitated the effective use of extensive unlabeled speech datasets for Parkinson's disease (PD) modeling with minimal annotated data. This study employs the non-fine-tuned wav2vec 1.0 architecture to develop machine learning models for PD speech diagnosis tasks, such as cross-database classification and regression to predict demographic and articulation characteristics. The primary aim is to analyze overlapping components within the embeddings on both classification and regression tasks, investigating whether latent speech representations in PD are shared across models, particularly for related tasks. Firstly, evaluation using three multi-language PD datasets showed that wav2vec accurately detected PD based on speech, outperforming feature extraction using mel-frequency cepstral coefficients in the proposed cross-database classification scenarios. In cross-database scenarios using Italian and English-read texts, wav2vec demonstrated performance comparable to intra-dataset evaluations. We also compared our cross-database findings against those of other related studies. Secondly, wav2vec proved effective in regression, modeling various quantitative speech characteristics related to articulation and aging. Ultimately, subsequent analysis of important features examined the presence of significant overlaps between classification and regression models. The feature importance experiments discovered shared features across trained models, with increased sharing for related tasks, further suggesting that wav2vec contributes to improved generalizability. The study proposes wav2vec embeddings as a next promising step toward a speech-based universal model to assist in the evaluation of PD.

See more in PubMed

Topol E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019;25:44–56. doi: 10.1038/s41591-018-0300-7. PubMed DOI

Ching T., Himmelstein D.S., Beaulieu-Jones B.K., Kalinin A.A., Do B.T., Way G.P., Ferrero E., Agapow P.-M., Zietz M., Hoffman M.M., et al. Opportunities and Obstacles for Deep Learning in Biology and Medicine. J. R. Soc. Interface. 2018;15:20170387. doi: 10.1098/rsif.2017.0387. PubMed DOI PMC

Shehab M., Abualigah L., Shambour Q., Abu-Hashem M.A., Shambour M.K.Y., Alsalibi A.I., Gandomi A.H. Machine Learning in Medical Applications: A Review of State-of-the-Art Methods. Comput. Biol. Med. 2022;145:105458. doi: 10.1016/j.compbiomed.2022.105458. PubMed DOI

Sigcha L., Borzì L., Amato F., Rechichi I., Ramos-Romero C., Cárdenas A., Gascó L., Olmo G. Deep Learning and Wearable Sensors for the Diagnosis and Monitoring of Parkinson’s Disease: A Systematic Review. Expert Syst. Appl. 2023;229:120541. doi: 10.1016/j.eswa.2023.120541. DOI

Shaban M. Deep Learning for Parkinson’s Disease Diagnosis: A Short Survey. Computers. 2023;12:58. doi: 10.3390/computers12030058. DOI

Dixit S., Bohre K., Singh Y., Himeur Y., Mansoor W., Atalla S., Srinivasan K. A Comprehensive Review on AI-Enabled Models for Parkinson’s Disease Diagnosis. Electronics. 2023;12:783. doi: 10.3390/electronics12040783. DOI

Klempíř O., Krupička R. Machine Learning Using Speech Utterances for Parkinson Disease Detection. Clin. Technol. 2018;48:66–71.

Schneider S., Baevski A., Collobert R., Auli M. Wav2vec: Unsupervised Pre-Training for Speech Recognition; Proceedings of the Interspeech 2019; Graz, Austria. 15 September 2019; Singapore: ISCA; 2019. pp. 3465–3469.

Baevski A., Zhou H., Mohamed A., Auli M. Wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations. arXiv. 20202006.11477

Baevski A., Mohamed A. Effectiveness of Self-Supervised Pre-Training for ASR; Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Barcelona, Spain. 4–8 May 2020; Piscataway, NJ, USA: IEEE; 2020. pp. 7694–7698.

Pepino L., Riera P., Ferrer L. Emotion Recognition from Speech Using Wav2vec 2.0 Embeddings; Proceedings of the Interspeech 2021; Brno, Czech Republic. 30 August 2021; Singapore: ISCA; 2021. pp. 3400–3404.

Javanmardi F., Tirronen S., Kodali M., Kadiri S.R., Alku P. Wav2vec-Based Detection and Severity Level Classification of Dysarthria From Speech; Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Rhodes Island, Greece. 4 June 2023; Piscataway, NJ, USA: IEEE; 2023. pp. 1–5.

Défossez A., Caucheteux C., Rapin J., Kabeli O., King J.-R. Decoding Speech Perception from Non-Invasive Brain Recordings. Nat. Mach. Intell. 2023;5:1097–1107. doi: 10.1038/s42256-023-00714-5. DOI

Conneau A., Baevski A., Collobert R., Mohamed A., Auli M. Unsupervised Cross-Lingual Representation Learning for Speech Recognition; Proceedings of the Interspeech 2021; Brno, Czech Republic. 30 August 2021; Singapore: ISCA; 2021. pp. 2426–2430.

Morris M.E. Movement Disorders in People With Parkinson Disease: A Model for Physical Therapy. Phys. Ther. 2000;80:578–597. doi: 10.1093/ptj/80.6.578. PubMed DOI

Riboldi G.M., Frattini E., Monfrini E., Frucht S.J., Di Fonzo A. A Practical Approach to Early-Onset Parkinsonism. JPD. 2022;12:1–26. doi: 10.3233/JPD-212815. PubMed DOI PMC

Poewe W., Seppi K., Tanner C.M., Halliday G.M., Brundin P., Volkmann J., Schrag A.-E., Lang A.E. Parkinson Disease. Nat. Rev. Dis. Primers. 2017;3:17013. doi: 10.1038/nrdp.2017.13. PubMed DOI

Skodda S., Grönheit W., Mancinelli N., Schlegel U. Progression of Voice and Speech Impairment in the Course of Parkinson’s Disease: A Longitudinal Study. Parkinson’s Dis. 2013;2013:389195. doi: 10.1155/2013/389195. PubMed DOI PMC

Postuma R.B., Lang A.E., Gagnon J.F., Pelletier A., Montplaisir J.Y. How Does Parkinsonism Start? Prodromal Parkinsonism Motor Changes in Idiopathic REM Sleep Behaviour Disorder. Brain. 2012;135:1860–1870. doi: 10.1093/brain/aws093. PubMed DOI

Rusz J., Tykalová T., Novotný M., Zogala D., Růžička E., Dušek P. Automated Speech Analysis in Early Untreated Parkinson’s Disease: Relation to Gender and Dopaminergic Transporter Imaging. Eur. J. Neurol. 2022;29:81–90. doi: 10.1111/ene.15099. PubMed DOI

Neto O.P. Harnessing Voice Analysis and Machine Learning for Early Diagnosis of Parkinson’s Disease: A Comparative Study Across Three Datasets. J. Voice. 2024:S0892199724001395. doi: 10.1016/j.jvoice.2024.04.020. PubMed DOI

Klempíř O., Příhoda D., Krupička R. Evaluating the Performance of Wav2vec Embedding for Parkinson’s Disease Detection. Meas. Sci. Rev. 2023;23:260–267. doi: 10.2478/msr-2023-0033. DOI

Rahman W., Lee S., Islam M.S., Antony V.N., Ratnu H., Ali M.R., Mamun A.A., Wagner E., Jensen-Roberts S., Waddell E., et al. Detecting Parkinson Disease Using a Web-Based Speech Task: Observational Study. J. Med. Internet Res. 2021;23:e26305. doi: 10.2196/26305. PubMed DOI PMC

Cumplido-Mayoral I., García-Prat M., Operto G., Falcon C., Shekari M., Cacciaglia R., Milà-Alomà M., Lorenzini L., Ingala S., Meije Wink A., et al. Biological Brain Age Prediction Using Machine Learning on Structural Neuroimaging Data: Multi-Cohort Validation against Biomarkers of Alzheimer’s Disease and Neurodegeneration Stratified by Sex. eLife. 2023;12:e81067. doi: 10.7554/eLife.81067. PubMed DOI PMC

Cole J.H. Multimodality Neuroimaging Brain-Age in UK Biobank: Relationship to Biomedical, Lifestyle, and Cognitive Factors. Neurobiol. Aging. 2020;92:34–42. doi: 10.1016/j.neurobiolaging.2020.03.014. PubMed DOI PMC

Smith S.M., Vidaurre D., Alfaro-Almagro F., Nichols T.E., Miller K.L. Estimation of Brain Age Delta from Brain Imaging. NeuroImage. 2019;200:528–539. doi: 10.1016/j.neuroimage.2019.06.017. PubMed DOI PMC

Eickhoff C.R., Hoffstaedter F., Caspers J., Reetz K., Mathys C., Dogan I., Amunts K., Schnitzler A., Eickhoff S.B. Advanced Brain Ageing in Parkinson’s Disease Is Related to Disease Duration and Individual Impairment. Brain Commun. 2021;3:fcab191. doi: 10.1093/braincomms/fcab191. PubMed DOI PMC

Ravishankar S., Kumar M.K.P., Patage V.V., Tiwari S., Goyal S. Prediction of Age from Speech Features Using a Multi-Layer Perceptron Model; Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT); Kharagpur, India. 1–3 July 2020; Piscataway, NJ, USA: IEEE; 2020. pp. 1–6.

Sánchez-Hevia H.A., Gil-Pita R., Utrilla-Manso M., Rosa-Zurera M. Age Group Classification and Gender Recognition from Speech with Temporal Convolutional Neural Networks. Multimed. Tools Appl. 2022;81:3535–3552. doi: 10.1007/s11042-021-11614-4. DOI

Islam R., Abdel-Raheem E., Tarique M. Voice Pathology Detection Using Convolutional Neural Networks with Electroglottographic (EGG) and Speech Signals. Comput. Methods Programs Biomed. Update. 2022;2:100074. doi: 10.1016/j.cmpbup.2022.100074. PubMed DOI PMC

Peng X., Xu H., Liu J., Wang J., He C. Voice Disorder Classification Using Convolutional Neural Network Based on Deep Transfer Learning. Sci. Rep. 2023;13:7264. doi: 10.1038/s41598-023-34461-9. PubMed DOI PMC

Hireš M., Gazda M., Drotár P., Pah N.D., Motin M.A., Kumar D.K. Convolutional Neural Network Ensemble for Parkinson’s Disease Detection from Voice Recordings. Comput. Biol. Med. 2022;141:105021. doi: 10.1016/j.compbiomed.2021.105021. PubMed DOI

Vásquez-Correa J.C., Orozco-Arroyave J.R., Nöth E. Convolutional Neural Network to Model Articulation Impairments in Patients with Parkinson’s Disease; Proceedings of the Interspeech 2017; Stockholm, Sweden. 20 August 2017; Singapore: ISCA; 2017. pp. 314–318.

Vásquez-Correa J.C., Rios-Urrego C.D., Arias-Vergara T., Schuster M., Rusz J., Nöth E., Orozco-Arroyave J.R. Transfer Learning Helps to Improve the Accuracy to Classify Patients with Different Speech Disorders in Different Languages. Pattern Recognit. Lett. 2021;150:272–279. doi: 10.1016/j.patrec.2021.04.011. DOI

Liu X., Wang H., He T., Liao Y., Jian C. Recent Advances in Representation Learning for Electronic Health Records: A Systematic Review. J. Phys. Conf. Ser. 2022;2188:012007. doi: 10.1088/1742-6596/2188/1/012007. DOI

Wang L., Wang Q., Bai H., Liu C., Liu W., Zhang Y., Jiang L., Xu H., Wang K., Zhou Y. EHR2Vec: Representation Learning of Medical Concepts From Temporal Patterns of Clinical Notes Based on Self-Attention Mechanism. Front. Genet. 2020;11:630. doi: 10.3389/fgene.2020.00630. PubMed DOI PMC

Jiang Z., Yang M., Tsirlin M., Tang R., Dai Y., Lin J. “Low-Resource” Text Classification: A Parameter-Free Classification Method with Compressors; Proceedings of the Findings of the Association for Computational Linguistics: ACL 2023; Toronto, ON, Canada. 9–14 July 2023; Stroudsburg, PA, USA: Association for Computational Linguistics; 2023. pp. 6810–6828.

Ali S., Chourasia P., Tayebi Z., Bello B., Patterson M. ViralVectors: Compact and Scalable Alignment-Free Virome Feature Generation. Med. Biol. Eng. Comput. 2023;61:2607–2626. doi: 10.1007/s11517-023-02837-8. PubMed DOI

Algayres R., Zaiem M.S., Sagot B., Dupoux E. Evaluating the Reliability of Acoustic Speech Embeddings; Proceedings of the Interspeech 2020; Shanghai, China. 25 October 2020; Singapore: ISCA; 2020. pp. 4621–4625.

Zaiem S., Kemiche Y., Parcollet T., Essid S., Ravanelli M. Speech Self-Supervised Representation Benchmarking: Are We Doing It Right?; Proceedings of the Interspeech 2023; Dublin, Ireland. 20 August 2023; Singapore: ISCA; 2023. pp. 2873–2877.

Hugging Face–The AI Community Building the Future. [(accessed on 24 July 2024)]. Available online: https://huggingface.co/

Snyder D., Garcia-Romero D., Sell G., Povey D., Khudanpur S. X-Vectors: Robust DNN Embeddings for Speaker Recognition; Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Calgary, AB, Canada. 15–20 April 2018; Piscataway, NJ, USA: IEEE; 2018. pp. 5329–5333.

Shor J., Venugopalan S. TRILLsson: Distilled Universal Paralinguistic Speech Representations; Proceedings of the Interspeech 2022; Incheon, Republic of Korea. 18 September 2022; Singapore: ISCA; 2022. pp. 356–360.

Hsu W.-N., Bolte B., Tsai Y.-H.H., Lakhotia K., Salakhutdinov R., Mohamed A. HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units. IEEE/ACM Trans. Audio Speech Lang. Process. 2021;29:3451–3460. doi: 10.1109/TASLP.2021.3122291. DOI

Favaro A., Tsai Y.-T., Butala A., Thebaud T., Villalba J., Dehak N., Moro-Velázquez L. Interpretable Speech Features vs. DNN Embeddings: What to Use in the Automatic Assessment of Parkinson’s Disease in Multi-Lingual Scenarios. Comput. Biol. Med. 2023;166:107559. doi: 10.1016/j.compbiomed.2023.107559. PubMed DOI

Moro-Velazquez L., Villalba J., Dehak N. Using X-Vectors to Automatically Detect Parkinson’s Disease from Speech; Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Barcelona, Spain. 4–8 May 2020; Piscataway, NJ, USA: IEEE; 2020. pp. 1155–1159.

Jeancolas L., Petrovska-Delacrétaz D., Mangone G., Benkelfat B.-E., Corvol J.-C., Vidailhet M., Lehéricy S., Benali H. X-Vectors: New Quantitative Biomarkers for Early Parkinson’s Disease Detection From Speech. Front. Neuroinform. 2021;15:578369. doi: 10.3389/fninf.2021.578369. PubMed DOI PMC

Burkhardt F., Wagner J., Wierstorf H., Eyben F., Schuller B. Speech-Based Age and Gender Prediction with Transformers. arXiv. 20232306.16962

Escobar-Grisales D., Ríos-Urrego C.D., Orozco-Arroyave J.R. Deep Learning and Artificial Intelligence Applied to Model Speech and Language in Parkinson’s Disease. Diagnostics. 2023;13:2163. doi: 10.3390/diagnostics13132163. PubMed DOI PMC

Hireš M., Drotár P., Pah N.D., Ngo Q.C., Kumar D.K. On the Inter-Dataset Generalization of Machine Learning Approaches to Parkinson’s Disease Detection from Voice. Int. J. Med. Inform. 2023;179:105237. doi: 10.1016/j.ijmedinf.2023.105237. PubMed DOI

Javanmardi F., Kadiri S.R., Alku P. Exploring the Impact of Fine-Tuning the Wav2vec2 Model in Database-Independent Detection of Dysarthric Speech. IEEE J. Biomed. Health Inform. 2024;28:4951–4962. doi: 10.1109/JBHI.2024.3392829. PubMed DOI

Javanmardi F., Kadiri S.R., Alku P. Pre-Trained Models for Detection and Severity Level Classification of Dysarthria from Speech. Speech Commun. 2024;158:103047. doi: 10.1016/j.specom.2024.103047. DOI

Cabitza F., Campagner A. The Need to Separate the Wheat from the Chaff in Medical Informatics. Int. J. Med. Inform. 2021;153:104510. doi: 10.1016/j.ijmedinf.2021.104510. PubMed DOI

Illner V., Krýže P., Švihlík J., Sousa M., Krack P., Tripoliti E., Jech R., Rusz J. Which Aspects of Motor Speech Disorder Are Captured by Mel Frequency Cepstral Coefficients? Evidence from the Change in STN-DBS Conditions in Parkinson’s Disease; Proceedings of the Interspeech 2023; Dublin, Ireland. 20 August 2023; Singapore: ISCA; 2023. pp. 5027–5031.

Tracey B., Volfson D., Glass J., Haulcy R., Kostrzebski M., Adams J., Kangarloo T., Brodtmann A., Dorsey E.R., Vogel A. Towards Interpretable Speech Biomarkers: Exploring MFCCs. Sci. Rep. 2023;13:22787. doi: 10.1038/s41598-023-49352-2. PubMed DOI PMC

Acosta J.N., Falcone G.J., Rajpurkar P., Topol E.J. Multimodal Biomedical AI. Nat. Med. 2022;28:1773–1784. doi: 10.1038/s41591-022-01981-2. PubMed DOI

Dogan G., Akbulut F.P. Multi-Modal Fusion Learning through Biosignal, Audio, and Visual Content for Detection of Mental Stress. Neural Comput. Appl. 2023;35:24435–24454. doi: 10.1007/s00521-023-09036-4. DOI

Nguyen N.D., Huang J., Wang D. A Deep Manifold-Regularized Learning Model for Improving Phenotype Prediction from Multi-Modal Data. Nat. Comput. Sci. 2022;2:38–46. doi: 10.1038/s43588-021-00185-x. PubMed DOI PMC

Dimauro G., Di Nicola V., Bevilacqua V., Caivano D., Girardi F. Assessment of Speech Intelligibility in Parkinson’s Disease Using a Speech-To-Text System. IEEE Access. 2017;5:22199–22208. doi: 10.1109/ACCESS.2017.2762475. DOI

Jaeger H., Trivedi D., Stadtschnitzer M. Mobile Device Voice Recordings at King’s College London (MDVR-KCL) from Both Early and Advanced Parkinson’s Disease Patients and Healthy Controls 2019. [(accessed on 22 July 2024)]; Available online: https://data.niaid.nih.gov/resources?id=zenodo_2867215.

Hähnel T., Nemitz A., Schimming K., Berger L., Vogel A., Gruber D., Schnalke N., Bräuer S., Falkenburger B.H., Gandor F. Speech Differences between Multiple System Atrophy and Parkinson’s Disease: A Multicenter Study. medRxiv. 2024 doi: 10.1101/2024.02.23.24303241. DOI

McFee B., Raffel C., Liang D., Ellis D., McVicar M., Battenberg E., Nieto O. Librosa: Audio and Music Signal Analysis in Python; Proceedings of the SciPy 2015 14th Python in Science Conference; Austin, TX, USA. 6–12 July 2015; pp. 18–24.

Wav2vec Large. [(accessed on 24 July 2024)]. Available online: https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_large.pt.

Scikit-Learn: Machine Learning in Python—Scikit-Learn 1.5.1 Documentation. [(accessed on 16 August 2024)]. Available online: https://scikit-learn.org/

RandomForestClassifier. [(accessed on 16 August 2024)]. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.

XGBoost Documentation—Xgboost 2.1.1 Documentation. [(accessed on 16 August 2024)]. Available online: https://xgboost.readthedocs.io.

Lasso. [(accessed on 16 August 2024)]. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html.

Spearmanr—SciPy v1.14.0 Manual. [(accessed on 16 August 2024)]. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html.

R2_Score. [(accessed on 16 August 2024)]. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html.

Mean_Absolute_Error. [(accessed on 16 August 2024)]. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html.

LogisticRegression. [(accessed on 16 August 2024)]. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html.

Lundberg S., Lee S.-I. A Unified Approach to Interpreting Model Predictions. arXiv. 20171705.07874

Ibarra E.J., Arias-Londoño J.D., Zañartu M., Godino-Llorente J.I. Towards a Corpus (and Language)-Independent Screening of Parkinson’s Disease from Voice and Speech through Domain Adaptation. Bioengineering. 2023;10:1316. doi: 10.3390/bioengineering10111316. PubMed DOI PMC

Tirronen S., Javanmardi F., Kodali M., Reddy Kadiri S., Alku P. Utilizing Wav2Vec In Database-Independent Voice Disorder Detection; Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Rhodes Island, Greece. 4 June 2023; Piscataway, NJ, USA: IEEE; 2023. pp. 1–5.

Malekroodi H.S., Madusanka N., Lee B., Yi M. Leveraging Deep Learning for Fine-Grained Categorization of Parkinson’s Disease Progression Levels through Analysis of Vocal Acoustic Patterns. Bioengineering. 2024;11:295. doi: 10.3390/bioengineering11030295. PubMed DOI PMC

Di Cesare M.G., Perpetuini D., Cardone D., Merla A. Machine Learning-Assisted Speech Analysis for Early Detection of Parkinson’s Disease: A Study on Speaker Diarization and Classification Techniques. Sensors. 2024;24:1499. doi: 10.3390/s24051499. PubMed DOI PMC

Bisgin H., Bera T., Ding H., Semey H.G., Wu L., Liu Z., Barnes A.E., Langley D.A., Pava-Ripoll M., Vyas H.J., et al. Comparing SVM and ANN Based Machine Learning Methods for Species Identification of Food Contaminating Beetles. Sci. Rep. 2018;8:6532. doi: 10.1038/s41598-018-24926-7. PubMed DOI PMC

Bhadra T., Mallik S., Hasan N., Zhao Z. Comparison of Five Supervised Feature Selection Algorithms Leading to Top Features and Gene Signatures from Multi-Omics Data in Cancer. BMC Bioinform. 2022;23:153. doi: 10.1186/s12859-022-04678-y. PubMed DOI PMC

Joudaki A., Takeda J., Masuda A., Ode R., Fujiwara K., Ohno K. FexSplice: A LightGBM-Based Model for Predicting the Splicing Effect of a Single Nucleotide Variant Affecting the First Nucleotide G of an Exon. Genes. 2023;14:1765. doi: 10.3390/genes14091765. PubMed DOI PMC

Riviere M., Joulin A., Mazare P.-E., Dupoux E. Unsupervised Pretraining Transfers Well Across Languages; Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Barcelona, Spain. 4–8 May 2020; Piscataway, NJ, USA: IEEE; 2020. pp. 7414–7418.

Islam M.S., Rahman W., Abdelkader A., Lee S., Yang P.T., Purks J.L., Adams J.L., Schneider R.B., Dorsey E.R., Hoque E. Using AI to Measure Parkinson’s Disease Severity at Home. NPJ Digit. Med. 2023;6:156. doi: 10.1038/s41746-023-00905-9. PubMed DOI PMC

Tayebi Arasteh S., Ríos-Urrego C.D., Nöth E., Maier A., Yang S.H., Rusz J., Orozco-Arroyave J.R. Federated Learning for Secure Development of AI Models for Parkinson’s Disease Detection Using Speech from Different Languages; Proceedings of the Interspeech 2023; Dublin, Ireland. 20 August 2023; Singapore: ISCA; 2023. pp. 5003–5007.

Xie J., Fonseca P., Van Dijk J., Overeem S., Long X. Assessment of Obstructive Sleep Apnea Severity Using Audio-Based Snoring Features. Biomed. Signal Process. Control. 2023;86:104942. doi: 10.1016/j.bspc.2023.104942. DOI

Chronowski M., Klaczynski M., Dec-Cwiek M., Porebska K. Parkinson’s Disease Diagnostics Using AI and Natural Language Knowledge Transfer. arXiv. 2022 doi: 10.29354/diag/176931.2204.12559 DOI

Javanmardi F., Kadiri S.R., Alku P. A Comparison of Data Augmentation Methods in Voice Pathology Detection. Comput. Speech Lang. 2024;83:101552. doi: 10.1016/j.csl.2023.101552. DOI

Sriram A., Auli M., Baevski A. Wav2Vec-Aug: Improved Self-Supervised Training with Limited Data; Proceedings of the Interspeech 2022; Incheon, Republic of Korea. 18 September 2022; Singapore: ISCA; 2022. pp. 4950–4954.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...