Convergence of gut phage communities but not bacterial communities following wild mouse bacteriophage transplantation into captive house mice
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
19-19307S
Czech Science Foundation
e-INFRA CZ LM2018140
Ministry of Education, Youth, and Sports of the Czech Republic
PubMed
39276368
PubMed Central
PMC11440513
DOI
10.1093/ismejo/wrae178
PII: 7758143
Knihovny.cz E-zdroje
- Klíčová slova
- bacteriome, bacteriophages, captivity, gut microbiome, house mouse, phageome, phageome transplantation, specific-pathogen-free, wild,
- MeSH
- Bacteria klasifikace virologie genetika izolace a purifikace MeSH
- bakteriofágy * izolace a purifikace genetika fyziologie MeSH
- divoká zvířata mikrobiologie MeSH
- feces mikrobiologie virologie MeSH
- myši MeSH
- organismy bez specifických patogenů MeSH
- střevní mikroflóra * MeSH
- virom MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Bacteriophages are abundant components of vertebrate gut microbial communities, impacting bacteriome dynamics, evolution, and directly interacting with the superhost. However, knowledge about gut phageomes and their interaction with bacteriomes in vertebrates under natural conditions is limited to humans and non-human primates. Widely used specific-pathogen-free (SPF) mouse models of host-microbiota interactions have altered gut bacteriomes compared to wild mice, and data on phageomes from wild or other non-SPF mice are lacking. We demonstrate divergent gut phageomes and bacteriomes in wild and captive non-SPF mice, with wild mice phageomes exhibiting higher alpha-diversity and interindividual variability. In both groups, phageome and bacteriome structuring mirrored each other, correlating at the individual level. Re-analysis of previous data from phageomes of SPF mice revealed their enrichment in Suoliviridae crAss-like phages compared to our non-SPF mice. Disrupted bacteriomes in mouse models can be treated by transplanting healthy phageomes, but the effects of phageome transplants on healthy adult gut microbiota are still unknown. We show that experimental transplantation of phageomes from wild to captive mice did not cause major shifts in recipient phageomes. However, the convergence of recipient-to-donor phageomes confirmed that wild phages can integrate into recipient communities. The differences in the subset of integrated phages between the two recipient mouse strains illustrate the context-dependent effects of phage transplantation. The transplantation did not impact recipient gut bacteriomes. This resilience of healthy adult gut microbiomes to the intervention has implications for phage allotransplantation safety.
Department of Zoology Faculty of Science Charles University Viničná 7 128 44 Prague Czech Republic
Institute of Vertebrate Biology of the Czech Academy of Sciences Květná 8 603 00 Brno Czech Republic
Zobrazit více v PubMed
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012;489:242–9. 10.1038/nature11552 PubMed DOI
Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol 2016;16:341–52. 10.1038/nri.2016.42 PubMed DOI PMC
Lyte M. Microbial endocrinology. Gut Microbes 2014;5:381–9. 10.4161/gmic.28682 PubMed DOI PMC
Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 2016;22:1079–89. 10.1038/nm.4185 PubMed DOI
Sharpton TJ. Role of the gut microbiome in vertebrate evolution. mSystems 2018;3:e00174–17. 10.1128/mSystems.00174-17 PubMed DOI PMC
Zhu L, Wang J, Bahrndorff S. Editorial: the wildlife gut microbiome and its implication for conservation biology. Front Microbiol 2021;12:697499. 10.3389/fmicb.2021.697499 PubMed DOI PMC
Rojo D, Méndez-García C, Raczkowska BA et al. Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol Rev 2017;41:453–78. 10.1093/femsre/fuw046 PubMed DOI PMC
Buckling A, Rainey PB. Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc Lond B Biol Sci 2002;269:931–6. 10.1098/rspb.2001.1945 PubMed DOI PMC
Pal C, Maciá M, Oliver A et al. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 2007;450:1079–81. 10.1038/nature06350 PubMed DOI
Fillol-Salom A, Alsaadi A, Sousa JAM et al. Bacteriophages benefit from generalized transduction. PLoS Pathog 2019;15:e1007888. 10.1371/journal.ppat.1007888 PubMed DOI PMC
Obeng N, Pratama AA, Elsas JDV. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol 2016;24:440–9. 10.1016/j.tim.2015.12.009 PubMed DOI
Hampton HG, Watson BNJ, Fineran PC. The arms race between bacteria and their phage foes. Nature 2020;577:327–36. 10.1038/s41586-019-1894-8 PubMed DOI
Nanda AM, Thormann K, Frunzke J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol 2015;197:410–9. 10.1128/JB.02230-14 PubMed DOI PMC
Eriksson F, Tsagozis P, Lundberg K et al. Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. J Immunol Baltim Md 1950;182:3105–11. 10.4049/jimmunol.0800224 PubMed DOI
Barr JJ, Auro R, Furlan M et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 2013;110:10771–6. 10.1073/pnas.1305923110 PubMed DOI PMC
Diard M, Bakkeren E, Cornuault JK et al. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 2017;355:1211–5. 10.1126/science.aaf8451 PubMed DOI
Goerke C, Köller J, Wolz C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob Agents Chemother 2006;50:171–7. 10.1128/AAC.50.1.171-177.2006 PubMed DOI PMC
Howard-Varona C, Hargreaves KR, Abedon ST et al. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 2017;11:1511–20. 10.1038/ismej.2017.16 PubMed DOI PMC
Oh JH, Alexander LM, Pan M et al. Dietary fructose and microbiota-derived short-chain fatty acids promote bacteriophage production in the gut symbiont Lactobacillus reuteri. Cell Host Microbe 2019;25:273–284.e6. 10.1016/j.chom.2018.11.016 PubMed DOI
Lim ES, Zhou Y, Zhao G et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med 2015;21:1228–34. 10.1038/nm.3950 PubMed DOI PMC
Moreno-Gallego JL, Chou S-P, Di Rienzi SC et al. Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins. Cell Host Microbe 2019;25:261–272.e5. 10.1016/j.chom.2019.01.019 PubMed DOI PMC
Shkoporov AN, Clooney AG, Sutton TDS et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 2019;26:527–541.e5. 10.1016/j.chom.2019.09.009 PubMed DOI
Minot S, Sinha R, Chen J et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 2011;21:1616–25. 10.1101/gr.122705.111 PubMed DOI PMC
Norman JM, Handley SA, Baldridge MT et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 2015;160:447–60. 10.1016/j.cell.2015.01.002 PubMed DOI PMC
Howe A, Ringus DL, Williams RJ et al. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. ISME J 2016;10:1217–27. 10.1038/ismej.2015.183 PubMed DOI PMC
Hannigan GD, Duhaime MB, Koutra D et al. Biogeography and environmental conditions shape bacteriophage-bacteria networks across the human microbiome. PLoS Comput Biol 2018;14:e1006099. 10.1371/journal.pcbi.1006099 PubMed DOI PMC
Clooney AG, Sutton TDS, Shkoporov AN et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 2019;26:764–778.e5. 10.1016/j.chom.2019.10.009 PubMed DOI
Bikel S, López-Leal G, Cornejo-Granados F et al. Gut dsDNA virome shows diversity and richness alterations associated with childhood obesity and metabolic syndrome. iScience 2021;24:102900. 10.1016/j.isci.2021.102900 PubMed DOI PMC
Edwards RA, Vega AA, Norman HM et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat Microbiol 2019;4:1727–36. 10.1038/s41564-019-0494-6 PubMed DOI PMC
Gogarten JF, Rühlemann M, Archie E et al. Primate phageomes are structured by superhost phylogeny and environment. Proc Natl Acad Sci U S A 2021;118:e2013535118. 10.1073/pnas.2013535118 PubMed DOI PMC
Rosshart SP, Vassallo BG, Angeletti D et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 2017;171:1015–1028.e13. 10.1016/j.cell.2017.09.016 PubMed DOI PMC
Kim M-S, Bae J-W. Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J 2018;12:1127–41. 10.1038/s41396-018-0061-9 PubMed DOI PMC
Waller KMJ, Leong RW, Paramsothy S. An update on fecal microbiota transplantation for the treatment of gastrointestinal diseases. J Gastroenterol Hepatol 2022;37:246–55. 10.1111/jgh.15731 PubMed DOI
Chehoud C, Dryga A, Hwang Y et al. Transfer of viral communities between human individuals during fecal microbiota transplantation. mBio 2016;7:e00322–16. 10.1128/mBio.00322-16 PubMed DOI PMC
Ott SJ, Waetzig GH, Rehman A et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 2017;152:799–811.e7. 10.1053/j.gastro.2016.11.010 PubMed DOI
Zhang F, Zuo T, Yeoh YK et al. Longitudinal dynamics of gut bacteriome, mycobiome and virome after fecal microbiota transplantation in graft-versus-host disease. Nat Commun 2021;12:65. 10.1038/s41467-020-20240-x PubMed DOI PMC
Lin DM, Koskella B, Ritz NL et al. Transplanting fecal virus-like particles reduces high-fat diet-induced small intestinal bacterial overgrowth in mice. Front Cell Infect Microbiol 2019;9:348. 10.3389/fcimb.2019.00348 PubMed DOI PMC
Draper LA, Ryan FJ, Dalmasso M et al. Autochthonous faecal viral transfer (FVT) impacts the murine microbiome after antibiotic perturbation. BMC Biol 2020;18:173. 10.1186/s12915-020-00906-0 PubMed DOI PMC
Rasmussen TS, Mentzel CMJ, Kot W et al. Faecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model. Gut 2020;69:2122–30. 10.1136/gutjnl-2019-320005 PubMed DOI
Brunse A, Deng L, Pan X et al. Fecal filtrate transplantation protects against necrotizing enterocolitis. ISME J 2022;16:686–94. 10.1038/s41396-021-01107-5 PubMed DOI PMC
El Haddad L, Mendoza JF, Jobin C. Bacteriophage-mediated manipulations of microbiota in gastrointestinal diseases. Front Microbiol 2022;13:1055427. 10.3389/fmicb.2022.1055427 PubMed DOI PMC
Piálek J, Vyskočilová M, Bímová B et al. Development of unique house mouse resources suitable for evolutionary studies of speciation. J Hered 2008;99:34–44. 10.1093/jhered/esm083 PubMed DOI
Piálek J, Ďureje Ľ, Hiadlovská Z et al. Phenogenomic resources immortalized in a panel of wild-derived strains of five species of house mice. bioRxiv 2023; 2023.11.05.565684.
Glenn TC, Nilsen RA, Kieran TJ et al. Adapterama I: universal stubs and primers for 384 unique dual-indexed or 147,456 combinatorially-indexed Illumina libraries (iTru & iNext). PeerJ 2019;7:e7755. 10.7717/peerj.7755 PubMed DOI PMC
Čížková D, Ďureje Ľ, Piálek J et al. Experimental validation of small mammal gut microbiota sampling from faeces and from the caecum after death. Heredity 2021;127:141–50. 10.1038/s41437-021-00445-6 PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ et al. DADA2: high resolution sample inference from Illumina amplicon data. Nat Methods 2016;13:581–3. 10.1038/nmeth.3869 PubMed DOI PMC
Nurk S, Meleshko D, Korobeynikov A et al. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017;27:824–34. 10.1101/gr.213959.116 PubMed DOI PMC
Amgarten D, Braga LPP, da Silva AM et al. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front Genet 2018;9:304. 10.3389/fgene.2018.00304 PubMed DOI PMC
Tisza MJ, Belford AK, Domínguez-Huerta G et al. Cenote-taker 2 democratizes virus discovery and sequence annotation. Virus Evol 2021;7:veaa100. 10.1093/ve/veaa100 PubMed DOI PMC
Laetsch DR, Blaxter ML. BlobTools: interrogation of genome assemblies. F1000Research 2017;6:1287. 10.12688/f1000research.12232.1 DOI
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015;12:59–60. 10.1038/nmeth.3176 PubMed DOI
Nayfach S, Camargo AP, Schulz F et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol 2021;39:578–85. 10.1038/s41587-020-00774-7 PubMed DOI PMC
Shang J, Tang X, Sun Y. PhaTYP: predicting the lifestyle for bacteriophages using BERT. Brief Bioinform 2023;24:bbac487. 10.1093/bib/bbac487 PubMed DOI PMC
Roux S, Camargo AP, Coutinho FH et al. iPHoP: an integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol 2023;21:e3002083. 10.1371/journal.pbio.3002083 PubMed DOI PMC
Baker DN, Langmead B. Dashing: fast and accurate genomic distances with HyperLogLog. Genome Biol 2019;20:265. 10.1186/s13059-019-1875-0 PubMed DOI PMC
Oksanen J, Simpson GL, Blanchet FG et al. vegan: Community Ecology Package. In: The Comprehensive R Archive Network. 2022. https://cran.r-project.org/web/packages/vegan/index.html (23 September 2023, date last accessed).
Wang Y, Naumann U, Wright ST et al. mvabund– an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol 2012;3:471–4. 10.1111/j.2041-210X.2012.00190.x DOI
Kofler R, Pandey RV, Schlötterer C. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics 2011;27:3435–6. 10.1093/bioinformatics/btr589 PubMed DOI PMC
Rohart F, Gautier B, Singh A et al. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol 2017;13:e1005752. 10.1371/journal.pcbi.1005752 PubMed DOI PMC
Rosshart SP, Herz J, Vassallo BG et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 2019;365:eaaw4361. 10.1126/science.aaw4361 PubMed DOI PMC
Shah SA, Deng L, Thorsen J et al. Expanding known viral diversity in the healthy infant gut. Nat Microbiol 2023;8:986–98. 10.1038/s41564-023-01345-7 PubMed DOI PMC
Yutin N, Benler S, Shmakov SA et al. Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features. Nat Commun 2021;12:1044. 10.1038/s41467-021-21350-w PubMed DOI PMC
Shkoporov AN, Khokhlova EV, Fitzgerald CB et al. ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat Commun 2018;9:4781. 10.1038/s41467-018-07225-7 PubMed DOI PMC
Meijer WJJ, Horcajadas JA, Salas M. φ29 family of phages. Microbiol Mol Biol Rev 2001;65:261–87. 10.1128/MMBR.65.2.261-287.2001 PubMed DOI PMC
Shkoporov AN, Khokhlova EV, Stephens N et al. Long-term persistence of crAss-like phage crAss001 is associated with phase variation in Bacteroides intestinalis. BMC Biol 2021;19:163. 10.1186/s12915-021-01084-3 PubMed DOI PMC
Smith L, Goldobina E, Govi B et al. Bacteriophages of the order Crassvirales: what do we currently know about this keystone component of the human gut virome? Biomol Ther 2023;13:584. 10.3390/biom13040584 PubMed DOI PMC
Maqsood R, Rodgers R, Rodriguez C et al. Discordant transmission of bacteria and viruses from mothers to babies at birth. Microbiome 2019;7:156. 10.1186/s40168-019-0766-7 PubMed DOI PMC
Sinha A, Li Y, Mirzaei MK et al. Transplantation of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates the severity of DSS colitis. Microbiome 2022;10:105. 10.1186/s40168-022-01275-2 PubMed DOI PMC
Wortelboer K, de Jonge PA, Scheithauer TPM et al. Phage-microbe dynamics after sterile faecal filtrate transplantation in individuals with metabolic syndrome: a double-blind, randomised, placebo-controlled clinical trial assessing efficacy and safety. Nat Commun 2023;14:5600. 10.1038/s41467-023-41329-z PubMed DOI PMC
Draper LA, Ryan FJ, Smith MK et al. Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. Microbiome 2018;6:220. 10.1186/s40168-018-0598-x PubMed DOI PMC