Convergence of gut phage communities but not bacterial communities following wild mouse bacteriophage transplantation into captive house mice

. 2024 Jan 08 ; 18 (1) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39276368

Grantová podpora
19-19307S Czech Science Foundation
e-INFRA CZ LM2018140 Ministry of Education, Youth, and Sports of the Czech Republic

Bacteriophages are abundant components of vertebrate gut microbial communities, impacting bacteriome dynamics, evolution, and directly interacting with the superhost. However, knowledge about gut phageomes and their interaction with bacteriomes in vertebrates under natural conditions is limited to humans and non-human primates. Widely used specific-pathogen-free (SPF) mouse models of host-microbiota interactions have altered gut bacteriomes compared to wild mice, and data on phageomes from wild or other non-SPF mice are lacking. We demonstrate divergent gut phageomes and bacteriomes in wild and captive non-SPF mice, with wild mice phageomes exhibiting higher alpha-diversity and interindividual variability. In both groups, phageome and bacteriome structuring mirrored each other, correlating at the individual level. Re-analysis of previous data from phageomes of SPF mice revealed their enrichment in Suoliviridae crAss-like phages compared to our non-SPF mice. Disrupted bacteriomes in mouse models can be treated by transplanting healthy phageomes, but the effects of phageome transplants on healthy adult gut microbiota are still unknown. We show that experimental transplantation of phageomes from wild to captive mice did not cause major shifts in recipient phageomes. However, the convergence of recipient-to-donor phageomes confirmed that wild phages can integrate into recipient communities. The differences in the subset of integrated phages between the two recipient mouse strains illustrate the context-dependent effects of phage transplantation. The transplantation did not impact recipient gut bacteriomes. This resilience of healthy adult gut microbiomes to the intervention has implications for phage allotransplantation safety.

Zobrazit více v PubMed

Tremaroli  V, Bäckhed  F. Functional interactions between the gut microbiota and host metabolism. Nature  2012;489:242–9. 10.1038/nature11552 PubMed DOI

Rooks  MG, Garrett  WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol  2016;16:341–52. 10.1038/nri.2016.42 PubMed DOI PMC

Lyte  M. Microbial endocrinology. Gut Microbes  2014;5:381–9. 10.4161/gmic.28682 PubMed DOI PMC

Schroeder  BO, Bäckhed  F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med  2016;22:1079–89. 10.1038/nm.4185 PubMed DOI

Sharpton  TJ. Role of the gut microbiome in vertebrate evolution. mSystems  2018;3:e00174–17. 10.1128/mSystems.00174-17 PubMed DOI PMC

Zhu  L, Wang  J, Bahrndorff  S. Editorial: the wildlife gut microbiome and its implication for conservation biology. Front Microbiol  2021;12:697499. 10.3389/fmicb.2021.697499 PubMed DOI PMC

Rojo  D, Méndez-García  C, Raczkowska  BA  et al.  Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol Rev  2017;41:453–78. 10.1093/femsre/fuw046 PubMed DOI PMC

Buckling  A, Rainey  PB. Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc Lond B Biol Sci  2002;269:931–6. 10.1098/rspb.2001.1945 PubMed DOI PMC

Pal  C, Maciá  M, Oliver  A  et al.  Coevolution with viruses drives the evolution of bacterial mutation rates. Nature  2007;450:1079–81. 10.1038/nature06350 PubMed DOI

Fillol-Salom  A, Alsaadi  A, Sousa  JAM  et al.  Bacteriophages benefit from generalized transduction. PLoS Pathog  2019;15:e1007888. 10.1371/journal.ppat.1007888 PubMed DOI PMC

Obeng  N, Pratama  AA, Elsas  JDV. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol  2016;24:440–9. 10.1016/j.tim.2015.12.009 PubMed DOI

Hampton  HG, Watson  BNJ, Fineran  PC. The arms race between bacteria and their phage foes. Nature  2020;577:327–36. 10.1038/s41586-019-1894-8 PubMed DOI

Nanda  AM, Thormann  K, Frunzke  J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol  2015;197:410–9. 10.1128/JB.02230-14 PubMed DOI PMC

Eriksson  F, Tsagozis  P, Lundberg  K  et al.  Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. J Immunol Baltim Md  1950;182:3105–11. 10.4049/jimmunol.0800224 PubMed DOI

Barr  JJ, Auro  R, Furlan  M  et al.  Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A  2013;110:10771–6. 10.1073/pnas.1305923110 PubMed DOI PMC

Diard  M, Bakkeren  E, Cornuault  JK  et al.  Inflammation boosts bacteriophage transfer between Salmonella spp. Science  2017;355:1211–5. 10.1126/science.aaf8451 PubMed DOI

Goerke  C, Köller  J, Wolz  C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob Agents Chemother  2006;50:171–7. 10.1128/AAC.50.1.171-177.2006 PubMed DOI PMC

Howard-Varona  C, Hargreaves  KR, Abedon  ST  et al.  Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J  2017;11:1511–20. 10.1038/ismej.2017.16 PubMed DOI PMC

Oh  JH, Alexander  LM, Pan  M  et al.  Dietary fructose and microbiota-derived short-chain fatty acids promote bacteriophage production in the gut symbiont Lactobacillus reuteri. Cell Host Microbe  2019;25:273–284.e6. 10.1016/j.chom.2018.11.016 PubMed DOI

Lim  ES, Zhou  Y, Zhao  G  et al.  Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med  2015;21:1228–34. 10.1038/nm.3950 PubMed DOI PMC

Moreno-Gallego  JL, Chou  S-P, Di Rienzi  SC  et al.  Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins. Cell Host Microbe  2019;25:261–272.e5. 10.1016/j.chom.2019.01.019 PubMed DOI PMC

Shkoporov  AN, Clooney  AG, Sutton  TDS  et al.  The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe  2019;26:527–541.e5. 10.1016/j.chom.2019.09.009 PubMed DOI

Minot  S, Sinha  R, Chen  J  et al.  The human gut virome: inter-individual variation and dynamic response to diet. Genome Res  2011;21:1616–25. 10.1101/gr.122705.111 PubMed DOI PMC

Norman  JM, Handley  SA, Baldridge  MT  et al.  Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell  2015;160:447–60. 10.1016/j.cell.2015.01.002 PubMed DOI PMC

Howe  A, Ringus  DL, Williams  RJ  et al.  Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. ISME J  2016;10:1217–27. 10.1038/ismej.2015.183 PubMed DOI PMC

Hannigan  GD, Duhaime  MB, Koutra  D  et al.  Biogeography and environmental conditions shape bacteriophage-bacteria networks across the human microbiome. PLoS Comput Biol  2018;14:e1006099. 10.1371/journal.pcbi.1006099 PubMed DOI PMC

Clooney  AG, Sutton  TDS, Shkoporov  AN  et al.  Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe  2019;26:764–778.e5. 10.1016/j.chom.2019.10.009 PubMed DOI

Bikel  S, López-Leal  G, Cornejo-Granados  F  et al.  Gut dsDNA virome shows diversity and richness alterations associated with childhood obesity and metabolic syndrome. iScience  2021;24:102900. 10.1016/j.isci.2021.102900 PubMed DOI PMC

Edwards  RA, Vega  AA, Norman  HM  et al.  Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat Microbiol  2019;4:1727–36. 10.1038/s41564-019-0494-6 PubMed DOI PMC

Gogarten  JF, Rühlemann  M, Archie  E  et al.  Primate phageomes are structured by superhost phylogeny and environment. Proc Natl Acad Sci U S A  2021;118:e2013535118. 10.1073/pnas.2013535118 PubMed DOI PMC

Rosshart  SP, Vassallo  BG, Angeletti  D  et al.  Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell  2017;171:1015–1028.e13. 10.1016/j.cell.2017.09.016 PubMed DOI PMC

Kim  M-S, Bae  J-W. Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J  2018;12:1127–41. 10.1038/s41396-018-0061-9 PubMed DOI PMC

Waller  KMJ, Leong  RW, Paramsothy  S. An update on fecal microbiota transplantation for the treatment of gastrointestinal diseases. J Gastroenterol Hepatol  2022;37:246–55. 10.1111/jgh.15731 PubMed DOI

Chehoud  C, Dryga  A, Hwang  Y  et al.  Transfer of viral communities between human individuals during fecal microbiota transplantation. mBio  2016;7:e00322–16. 10.1128/mBio.00322-16 PubMed DOI PMC

Ott  SJ, Waetzig  GH, Rehman  A  et al.  Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology  2017;152:799–811.e7. 10.1053/j.gastro.2016.11.010 PubMed DOI

Zhang  F, Zuo  T, Yeoh  YK  et al.  Longitudinal dynamics of gut bacteriome, mycobiome and virome after fecal microbiota transplantation in graft-versus-host disease. Nat Commun  2021;12:65. 10.1038/s41467-020-20240-x PubMed DOI PMC

Lin  DM, Koskella  B, Ritz  NL  et al.  Transplanting fecal virus-like particles reduces high-fat diet-induced small intestinal bacterial overgrowth in mice. Front Cell Infect Microbiol  2019;9:348. 10.3389/fcimb.2019.00348 PubMed DOI PMC

Draper  LA, Ryan  FJ, Dalmasso  M  et al.  Autochthonous faecal viral transfer (FVT) impacts the murine microbiome after antibiotic perturbation. BMC Biol  2020;18:173. 10.1186/s12915-020-00906-0 PubMed DOI PMC

Rasmussen  TS, Mentzel  CMJ, Kot  W  et al.  Faecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model. Gut  2020;69:2122–30. 10.1136/gutjnl-2019-320005 PubMed DOI

Brunse  A, Deng  L, Pan  X  et al.  Fecal filtrate transplantation protects against necrotizing enterocolitis. ISME J  2022;16:686–94. 10.1038/s41396-021-01107-5 PubMed DOI PMC

El Haddad  L, Mendoza  JF, Jobin  C. Bacteriophage-mediated manipulations of microbiota in gastrointestinal diseases. Front Microbiol  2022;13:1055427. 10.3389/fmicb.2022.1055427 PubMed DOI PMC

Piálek  J, Vyskočilová  M, Bímová  B  et al.  Development of unique house mouse resources suitable for evolutionary studies of speciation. J Hered  2008;99:34–44. 10.1093/jhered/esm083 PubMed DOI

Piálek  J, Ďureje  Ľ, Hiadlovská  Z  et al.  Phenogenomic resources immortalized in a panel of wild-derived strains of five species of house mice. bioRxiv  2023; 2023.11.05.565684.

Glenn  TC, Nilsen  RA, Kieran  TJ  et al.  Adapterama I: universal stubs and primers for 384 unique dual-indexed or 147,456 combinatorially-indexed Illumina libraries (iTru & iNext). PeerJ  2019;7:e7755. 10.7717/peerj.7755 PubMed DOI PMC

Čížková  D, Ďureje  Ľ, Piálek  J  et al.  Experimental validation of small mammal gut microbiota sampling from faeces and from the caecum after death. Heredity  2021;127:141–50. 10.1038/s41437-021-00445-6 PubMed DOI PMC

Callahan  BJ, McMurdie  PJ, Rosen  MJ  et al.  DADA2: high resolution sample inference from Illumina amplicon data. Nat Methods  2016;13:581–3. 10.1038/nmeth.3869 PubMed DOI PMC

Nurk  S, Meleshko  D, Korobeynikov  A  et al.  metaSPAdes: a new versatile metagenomic assembler. Genome Res  2017;27:824–34. 10.1101/gr.213959.116 PubMed DOI PMC

Amgarten  D, Braga  LPP, da Silva  AM  et al.  MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front Genet  2018;9:304. 10.3389/fgene.2018.00304 PubMed DOI PMC

Tisza  MJ, Belford  AK, Domínguez-Huerta  G  et al.  Cenote-taker 2 democratizes virus discovery and sequence annotation. Virus Evol  2021;7:veaa100. 10.1093/ve/veaa100 PubMed DOI PMC

Laetsch  DR, Blaxter  ML. BlobTools: interrogation of genome assemblies. F1000Research  2017;6:1287. 10.12688/f1000research.12232.1 DOI

Buchfink  B, Xie  C, Huson  DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods  2015;12:59–60. 10.1038/nmeth.3176 PubMed DOI

Nayfach  S, Camargo  AP, Schulz  F  et al.  CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol  2021;39:578–85. 10.1038/s41587-020-00774-7 PubMed DOI PMC

Shang  J, Tang  X, Sun  Y. PhaTYP: predicting the lifestyle for bacteriophages using BERT. Brief Bioinform  2023;24:bbac487. 10.1093/bib/bbac487 PubMed DOI PMC

Roux  S, Camargo  AP, Coutinho  FH  et al.  iPHoP: an integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol  2023;21:e3002083. 10.1371/journal.pbio.3002083 PubMed DOI PMC

Baker  DN, Langmead  B. Dashing: fast and accurate genomic distances with HyperLogLog. Genome Biol  2019;20:265. 10.1186/s13059-019-1875-0 PubMed DOI PMC

Oksanen  J, Simpson  GL, Blanchet  FG  et al.  vegan: Community Ecology Package. In: The Comprehensive R Archive Network. 2022. https://cran.r-project.org/web/packages/vegan/index.html (23 September 2023, date last accessed).

Wang  Y, Naumann  U, Wright  ST  et al.  mvabund– an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol  2012;3:471–4. 10.1111/j.2041-210X.2012.00190.x DOI

Kofler  R, Pandey  RV, Schlötterer  C. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics  2011;27:3435–6. 10.1093/bioinformatics/btr589 PubMed DOI PMC

Rohart  F, Gautier  B, Singh  A  et al.  mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol  2017;13:e1005752. 10.1371/journal.pcbi.1005752 PubMed DOI PMC

Rosshart  SP, Herz  J, Vassallo  BG  et al.  Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science  2019;365:eaaw4361. 10.1126/science.aaw4361 PubMed DOI PMC

Shah  SA, Deng  L, Thorsen  J  et al.  Expanding known viral diversity in the healthy infant gut. Nat Microbiol  2023;8:986–98. 10.1038/s41564-023-01345-7 PubMed DOI PMC

Yutin  N, Benler  S, Shmakov  SA  et al.  Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features. Nat Commun  2021;12:1044. 10.1038/s41467-021-21350-w PubMed DOI PMC

Shkoporov  AN, Khokhlova  EV, Fitzgerald  CB  et al.  ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat Commun  2018;9:4781. 10.1038/s41467-018-07225-7 PubMed DOI PMC

Meijer  WJJ, Horcajadas  JA, Salas  M. φ29 family of phages. Microbiol Mol Biol Rev  2001;65:261–87. 10.1128/MMBR.65.2.261-287.2001 PubMed DOI PMC

Shkoporov  AN, Khokhlova  EV, Stephens  N  et al.  Long-term persistence of crAss-like phage crAss001 is associated with phase variation in Bacteroides intestinalis. BMC Biol  2021;19:163. 10.1186/s12915-021-01084-3 PubMed DOI PMC

Smith  L, Goldobina  E, Govi  B  et al.  Bacteriophages of the order Crassvirales: what do we currently know about this keystone component of the human gut virome?  Biomol Ther  2023;13:584. 10.3390/biom13040584 PubMed DOI PMC

Maqsood  R, Rodgers  R, Rodriguez  C  et al.  Discordant transmission of bacteria and viruses from mothers to babies at birth. Microbiome  2019;7:156. 10.1186/s40168-019-0766-7 PubMed DOI PMC

Sinha  A, Li  Y, Mirzaei  MK  et al.  Transplantation of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates the severity of DSS colitis. Microbiome  2022;10:105. 10.1186/s40168-022-01275-2 PubMed DOI PMC

Wortelboer  K, de Jonge  PA, Scheithauer  TPM  et al.  Phage-microbe dynamics after sterile faecal filtrate transplantation in individuals with metabolic syndrome: a double-blind, randomised, placebo-controlled clinical trial assessing efficacy and safety. Nat Commun  2023;14:5600. 10.1038/s41467-023-41329-z PubMed DOI PMC

Draper  LA, Ryan  FJ, Smith  MK  et al.  Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. Microbiome  2018;6:220. 10.1186/s40168-018-0598-x PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace