Colony life history of the tropical arboreal ant, Cephalotes goniodontus De Andrade, 1999
Status PubMed-not-MEDLINE Language English Country France Media print-electronic
Document type Journal Article
PubMed
39286752
PubMed Central
PMC11401787
DOI
10.1007/s00040-024-00974-3
PII: 974
Knihovny.cz E-resources
- Keywords
- Arboreal ants, Cephalotes, Microsatellites, Relatedness,
- Publication type
- Journal Article MeSH
UNLABELLED: Arboreal ants are ecologically important in tropical forests, but there are few studies using DNA markers to examine their population and colony structure. Colonies of the arboreal turtle ant Cephalotes goniodontus create trail networks through the canopy of the tropical forest, in dense vegetation where it is difficult to determine how long a nest is used and how neighboring colonies partition space. We monitored 53 nest sites for up to six years and, using seven microsatellite markers, genotyped samples of workers collected at or near 41 nests over 1-4 years. We calculated average relatedness within samples collected at a given location, and between samples collected at the same location in successive years, and performed pedigree analysis to predict the number of queens that produced each sample of workers. Fifteen samples were highly related (r ≥ 0.6) from single colonies, of which 11 were monogynous and the remaining four had two queens; 19 were of intermediate relatedness (0.1 ≤ r < 0.6) with 1-6 queens, and 7 were groups of unrelated workers (r < 0.1) from at least 4 queens. Colonies persisted at the same nest site for 2-6 years. The smallest distance we found separating nests of different colonies was 16.2 m. It appears that different colonies may share foraging trails. Our study demonstrates the feasibility of using a cost-efficient genotyping method to provide information on colony structure and life history of ant species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00040-024-00974-3.
Department of Biology Stanford University Stanford CA 94305 USA
Department of Zoology Faculty of Science Palacky University Olomouc Olomouc Czech Republic
Estudiantes Conservando La Naturaleza AC 85760 Alamos Sonora Mexico
Instituto de Biología Universidad Nacional Autónoma de México 04510 Mexico City Mexico
See more in PubMed
Adams ES (1990) Interaction between the ants Zacryptocerus maculatus and Azteca trigona: interspecific parasitization of information. Biotropica. 10.2307/238841310.2307/2388413 DOI
Baroni Urbani C, De Andrade M (1997) Pollen eating, storing, and spitting by ants. Naturwissenschaften 84(6):256–25810.1007/s001140050392 DOI
Blüthgen N, Feldhaar H (2010) Food and shelter: how resources influence ant ecology. Ant Ecology. Oxford University Press, Oxford, pp 115–136
Bourke AF, Franks NR (1995) Social evolution in ants. Princeton University Press
Boyle JH, Martins DJ, Pelaez J, Musili PM, Kibet S, Ndung’u SK, Kenfack D, Pierce NE, (2018) Polygyny does not explain the superior competitive ability of dominant ant associates in the African ant-plant, Acacia (Vachellia) drepanolobium. Ecol Evol 8(3):1441–1450. 10.1002/ece3.3752 10.1002/ece3.3752 PubMed DOI PMC
Bullock S (1986) Climate of Chamela, Jalisco, and trends in the south coastal region of Mexico. Arch Meteorol Geophys Bioclimatol Ser B Theor Appl Climatol 36(3–4):297–316. 10.1007/BF0226313510.1007/BF02263135 DOI
Butler IA, Siletti K, Oxley PR, Kronauer DJ (2014) Conserved microsatellites in ants enable population genetic and colony pedigree studies across a wide range of species. PLoS One 9(9):e107334. 10.1371/journal.pone.0107334 10.1371/journal.pone.0107334 PubMed DOI PMC
Byk J, Del-Claro K (2010) Nectar-and pollen-gathering Cephalotes ants provide no protection against herbivory: a new manipulative experiment to test ant protective capabilities. Acta Ethologica 13:33–38. 10.1007/s10211-010-0071-810.1007/s10211-010-0071-8 DOI
Camarota F, Powell S, Melo AS, Priest G, Marquis RJ, Vasconcelos HL (2016) Co-occurrence patterns in a diverse arboreal ant community are explained more by competition than habitat requirements. Ecol Evol 6(24):8907–8918. 10.1002/ece3.2606 10.1002/ece3.2606 PubMed DOI PMC
Carroll CR (1979) A comparative study of two ant faunas: the stem-nesting ant communities of Liberia, West Africa and Costa Rica. Central America Am Nat 113(4):551–561. 10.1086/28341210.1086/283412 DOI
Chandrasekhar A, Gordon DM, Navlakha S (2018) A distributed algorithm to maintain and repair the trail networks of arboreal ants. Sci Rep 8(1):9297. 10.1038/s41598-018-27160-3 10.1038/s41598-018-27160-3 PubMed DOI PMC
Chandrasekhar A, Marshall JA, Austin C, Navlakha S, Gordon DM (2021) Better tired than lost: turtle ant trail networks favor coherence over short edges. PLoS Comput Biol 17(10):e1009523. 10.1371/journal.pcbi.1009523 10.1371/journal.pcbi.1009523 PubMed DOI PMC
Chang J, Powell S, Robinson EJ, Donaldson-Matasci MC (2021) Nest choice in arboreal ants is an emergent consequence of network creation under spatial constraints. Swarm Intell 15(1–2):7–30. 10.1007/s11721-021-00187-510.1007/s11721-021-00187-5 DOI
Cortés-Flores J, Lopezaraiza-Mikel M, de Santiago-Hernández MH, Martén-Rodríguez S, Cristóbal-Pérez EJ, Aguilar-Aguilar MJ, Balvino-Olvera FJ, Delgado-Carrillo O, Sayago R, Fuchs EJ (2023) Successional and phenological effects on plant-floral visitor interaction networks of a tropical dry forest. J Ecol 111(4):927–942. 10.1111/1365-2745.1407210.1111/1365-2745.14072 DOI
Davidson DW, Patrell-Kim L (1996) Tropical arboreal ants: why so abundant? Neotropical biodiversity and conservation. Mildred E. Mathias Botanical Garden, pp 127–140
Davidson DW, Cook SC, Snelling RR (2004) Liquid-feeding performances of ants (Formicidae): ecological and evolutionary implications. Oecologia 139:255–266. 10.1007/s00442-005-1822-5 10.1007/s00442-005-1822-5 PubMed DOI
De Andrade ML, Urbani CB (1999) Diversity and adaptation in the ant genus Cephalotes, past and present. Staatliches Museum für Naturkunde
Debout G, Provost E, Renucci M, Tirard A, Schatz B, McKey D (2003) Colony structure in a plant-ant: behavioural, chemical and genetic study of polydomy in Cataulacus mckeyi (Myrmicinae). Oecologia 137:195–204. 10.1007/s00442-003-1330-4 10.1007/s00442-003-1330-4 PubMed DOI
Dejean A, Orivel J, Leponce M, Compin A, Delabie JH, Azémar F, Corbara B (2018) Ant–plant relationships in the canopy of an Amazonian rainforest: the presence of an ant mosaic. Biol J Linn Soc 125(2):344–354. 10.1093/biolinnean/bly12510.1093/biolinnean/bly125 DOI
Dejean A, Compin A, Delabie JH, Azemar F, Corbara B, Leponce M (2019) Biotic and abiotic determinants of the formation of ant mosaics in primary neotropical rainforests. Ecol Entomol 44(4):560–570. 10.1111/een.1273510.1111/een.12735 DOI
Eyer P-A, Vargo EL, Peeters C (2021) One tree, many colonies: colony structure, breeding system and colonization events of host trees in tunnelling Melissotarsus ants. Biol J Linn Soc 133(1):237–248. 10.1093/biolinnean/blab02610.1093/biolinnean/blab026 DOI
Floren A, Linsenmair KE (2000) Do ant mosaics exist in pristine lowland rain forests? Oecologia 123:129–137. 10.1007/s004420050998 10.1007/s004420050998 PubMed DOI
Frederickson ME, Gordon DM (2009) The intertwined population biology of two Amazonian myrmecophytes and their symbiotic ants. Ecology 90(6):1595–1607. 10.1890/08-0010.1 10.1890/08-0010.1 PubMed DOI
García-Oliva F, Camou A, Maass JM (2002) El clima de la región central de la costa del Pacífico mexicano. Hist Nat Chamela
Garg S, Shiragur K, Gordon DM, Charikar M (2023) Distributed algorithms from arboreal ants for the shortest path problem. Proc Natl Acad Sci 120(6):e2207959120. 10.1073/pnas.2207959120 10.1073/pnas.2207959120 PubMed DOI PMC
Gordon DM (2012) The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus. PLoS ONE 7(11):e50472. 10.1371/journal.pone.0050472 10.1371/journal.pone.0050472 PubMed DOI PMC
Gordon DM (2017) Local regulation of trail networks of the arboreal turtle ant. Cephalotes goniodontus Am Nat 190(6):E156–E169. 10.1086/693418 10.1086/693418 PubMed DOI
Graber LC, Ramalho MO, Powell S, Moreau CS (2023) Identifying the role of elevation, geography, and species identity in structuring turtle ant (Cephalotes Latreille, 1802) bacterial communities. Microb Ecol 86(2):1240–1253. 10.1007/s00248-022-02128-z 10.1007/s00248-022-02128-z PubMed DOI
Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2(4):618–620. 10.1046/j.1471-8286.2002.00305.x10.1046/j.1471-8286.2002.00305.x DOI
Hayden B, Greene D, Quesada M (2010) A field experiment to determine the effect of dry-season precipitation on annual ring formation and leaf phenology in a seasonally dry tropical forest. J Trop Ecol 26(2):237–242. 10.1017/S026646740999056310.1017/S0266467409990563 DOI
Janicki J, Narula N, Ziegler M, Guénard B, Economo EP (2016) Visualizing and interacting with large-volume biodiversity data using client–server web-mapping applications: the design and implementation of antmaps. org. Ecol Inform 32:185–193. 10.1016/j.ecoinf.2016.02.00610.1016/j.ecoinf.2016.02.006 DOI
Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10(3):551–555. 10.1111/j.1755-0998.2009.02787.x 10.1111/j.1755-0998.2009.02787.x PubMed DOI
Klimes P, McArthur A (2014) Diversity and ecology of arboricolous ant communities of Camponotus (Hymenoptera: Formicidae) in a new guinea rainforest with descriptions of four new species. Myrmecol News. 10.25849/myrmecol.news_020:14110.25849/myrmecol.news_020:141 DOI
Klimes P, Idigel C, Rimandai M, Fayle TM, Janda M, Weiblen GD, Novotny V (2012) Why are there more arboreal ant species in primary than in secondary tropical forests? J Anim Ecol 81(5):1103–1112. 10.1111/j.1365-2656.2012.02002.x 10.1111/j.1365-2656.2012.02002.x PubMed DOI
Klimes P, Fibich P, Idigel C, Rimandai M (2015) Disentangling the diversity of arboreal ant communities in tropical forest trees. PLoS One 10(2):e0117853. 10.1371/journal.pone.0117853 10.1371/journal.pone.0117853 PubMed DOI PMC
Leponce M, Delabie JH, Orivel J, Jacquemin J, Martin MC, Dejean A (2019) Tree-dwelling ant survey (Hymenoptera, Formicidae) in Mitaraka. French Guiana Zoosystema 40(sp1):163–179. 10.5252/zoosystema2019v41a1010.5252/zoosystema2019v41a10 DOI
Leponce M, Corbara B, Delabie JH, Orivel J, Aberlenc H-P, Bail J, Barrios H, Campos RI, Do Nascimento IC, Compin A (2021) Spatial and functional structure of an entire ant assemblage in a lowland Panamanian rainforest. Basic Appl Ecol 56:32–4410.1016/j.baae.2021.06.007 DOI
Leponce M, Dejean A, Mottl O, Klimes P (2021) Rapid assessment of the three-dimensional distribution of dominant arboreal ants in tropical forests. Insect Conserv Divers 14(4):426–438. 10.1111/icad.1248610.1111/icad.12486 DOI
Longino JT, Colwell RK (2020) The arboreal ants of a Neotropical rain forest show high species density and comprise one third of the ant fauna. Biotropica 52(4):675–685. 10.1111/btp.1277210.1111/btp.12772 DOI
Longino, J.T., 2000. Ants of Costa Rica. The Evergreen State College, Olympia WA 98505 USA. https://ants.biology.utah.edu/AntsofCostaRica.html. Accessed 30 Jun 2023
Lott E, Atkinson T (2002) Biodiversidad y fitogeografía de Chamela-Cuixmala, Jalisco. Hist Nat Chamela Inst Biol Univ Nac Autónoma México México DF
Maeyama T, Matsumoto T (2000) Colonial system of Philidris ants (Formicidae; Dolichoderinae) occupying epiphytic myrmecophytes in a tropical mangrove forest. Trop Ecol 41(2):209–216
Malé P-JG, Youngerman E, Pierce NE, Frederickson M (2020) Mating system, population genetics, and phylogeography of the devil’s garden ant, Myrmelachista schumanni, in the Peruvian Amazon. Insectes Soc 67:113–125. 10.1007/s00040-019-00735-710.1007/s00040-019-00735-7 DOI
Mathis KA, Philpott SM, Ramirez SR (2016) Variation in spatial scale of competing polydomous twig-nesting ants in coffee agroecosystems. Insectes Soc 63:447–456. 10.1007/s00040-016-0489-8 10.1007/s00040-016-0489-8 PubMed DOI PMC
Miranda VL, Koch E, Delabie JHC, Bomfim L, Padre J, Mariano C (2021) Nest spatial structure and population organization in the Neotropical ant Azteca chartifex spiriti Forel, 1912 (Hymenoptera: Formicidae: Dolichoderinae). Ann Société Entomol Fr NS 57(6):499–508. 10.1080/00379271.2021.199446610.1080/00379271.2021.1994466 DOI
Mottl O, Plowman NS, Novotny V, Gewa B, Rimandai M, Klimes P (2019) Secondary succession has surprisingly low impact on arboreal ant communities in tropical montane rainforest. Ecosphere 10(8):e02848. 10.1002/ecs2.284810.1002/ecs2.2848 DOI
Novais SM, DaRocha WD, Calderon-Cortes N, Quesada M (2017) Wood-boring beetles promote ant nest cavities: extended effects of a twig-girdler ecosystem engineer. Basic Appl Ecol 24:53–59. 10.1016/j.baae.2017.09.00110.1016/j.baae.2017.09.001 DOI
Orivel J, Leroy C (2011) The diversity and ecology of ant gardens (Hymenoptera: Formicidae; Spermatophyta: Angiospermae). Myrmecol News. 10.25849/myrmecol.news_014:07310.25849/myrmecol.news_014:073 DOI
Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 10.1111/j.1471-8286.2005.01155.x10.1111/j.1471-8286.2005.01155.x PubMed DOI PMC
Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 10.1093/bioinformatics/bts460 10.1093/bioinformatics/bts460 PubMed DOI PMC
Philpott SM, Foster PF (2005) Nest-site limitation in coffee agroecosystems: artificial nests maintain diversity of arboreal ants. Ecol Appl 15(4):1478–1485. 10.1890/04-149610.1890/04-1496 DOI
Philpott SM, Perfecto I, Vandermeer J (2014) Behavioral diversity of predatory arboreal ants in coffee agroecosystems. Environ Entomol 37(1):181–191. 10.1093/ee/37.1.18110.1093/ee/37.1.181 PubMed DOI
Powell S (2008) Ecological specialization and the evolution of a specialized caste in Cephalotes ants. Funct Ecol 22(5):902–911. 10.1111/j.1365-2435.2008.01436.x10.1111/j.1365-2435.2008.01436.x DOI
Powell S, Peretz C (2021) Reexamining how ecology shapes the ontogeny of colony size and caste composition in social insects: insights from turtle ants in the arboreal realm. Insectes Soc 68(2–3):229–243. 10.1007/s00040-021-00821-910.1007/s00040-021-00821-9 DOI
Powell S, Costa AN, Lopes CT, Vasconcelos HL (2011) Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal ants. J Anim Ecol 80(2):352–360 10.1111/j.1365-2656.2010.01779.x PubMed DOI
Powell S, Del-Claro K, Feitosa RM, Brandão CRF (2014) Mimicry and eavesdropping enable a new form of social parasitism in ants. Am Nat 184(4):500–509. 10.1086/677927 10.1086/677927 PubMed DOI
Price SL (2011) Patterns of evolution, diversification, biogeography and genetic variation in the widespread neotropical ant genus Cephalotes. University of California, Los Angeles
Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43(2):258–275. 10.1111/j.1558-5646.1989.tb04226.x 10.1111/j.1558-5646.1989.tb04226.x PubMed DOI
Ramalho MO, Moreau CS (2023) Untangling the complex interactions between turtle ants and their microbial partners. Abstr Animal Microb. 10.1186/s42523-022-00223-710.1186/s42523-022-00223-7 PubMed DOI PMC
Rastogi N (2007) Seasonal pattern in the territorial dynamics of the arboreal ant Oecophylla smaragdina (Hymenoptera: Formicidae). J-Bombay Nat Hist Soc 104(1):30
Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered. 10.1093/oxfordjournals.jhered.a11157310.1093/oxfordjournals.jhered.a111573 DOI
Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8(1):103–106. 10.1111/j.1471-8286.2007.01931.x 10.1111/j.1471-8286.2007.01931.x PubMed DOI
Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci 106(50):21236–21241. 10.1073/pnas.0907926106 10.1073/pnas.0907926106 PubMed DOI PMC
Sanders JG, Powell S, Kronauer DJ, Vasconcelos HL, Frederickson ME, Pierce NE (2014) Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol Ecol 23(6):1268–1283. 10.1111/mec.12611 10.1111/mec.12611 PubMed DOI
Schlüns E, Wegener BJ, Schlüns H, Azuma N, Robson S, Crozier R (2009) Breeding system, colony and population structure in the weaver ant Oecophylla smaragdina. Mol Ecol 18(1):156–167. 10.1111/j.1365-294X.2008.04020.x 10.1111/j.1365-294X.2008.04020.x PubMed DOI
Volp TM, Lach L (2019) An epiphytic ant-plant mutualism structures arboreal ant communities. Environ Entomol 48(5):1056–1062. 10.1093/ee/nvz083 10.1093/ee/nvz083 PubMed DOI
Wiernasz DC, Cole BJ (2010) Patriline shifting leads to apparent genetic caste determination in harvester ants. Proc Natl Acad Sci 107(29):12958–12962. 10.1073/pnas.1003299107 10.1073/pnas.1003299107 PubMed DOI PMC
Yanoviak S, Kaspari M (2000) Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos 89(2):259–266. 10.1034/j.1600-0706.2000.890206.x10.1034/j.1600-0706.2000.890206.x DOI