Intelligent cardiovascular disease diagnosis using deep learning enhanced neural network with ant colony optimization
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39294203
PubMed Central
PMC11411078
DOI
10.1038/s41598-024-71932-z
PII: 10.1038/s41598-024-71932-z
Knihovny.cz E-zdroje
- Klíčová slova
- Ant Colony Optimisation, Bayesian optimisation, Cardiovascular disease, Hyperparameter, Min–max scaler,
- MeSH
- Bayesova věta MeSH
- deep learning * MeSH
- diagnóza počítačová metody MeSH
- Formicidae MeSH
- kardiovaskulární nemoci * diagnóza MeSH
- lidé MeSH
- neuronové sítě * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
To identify patterns in big medical datasets and use Deep Learning and Machine Learning (ML) to reliably diagnose Cardio Vascular Disease (CVD), researchers are currently delving deeply into these fields. Training on large datasets and producing highly accurate validation results is exceedingly difficult. Furthermore, early and precise diagnosis is necessary due to the increased global prevalence of cardiovascular disease (CVD). However, the increasing complexity of healthcare datasets makes it challenging to detect feature connections and produce precise predictions. To address these issues, the Intelligent Cardiovascular Disease Diagnosis based on Ant Colony Optimisation with Enhanced Deep Learning (ICVD-ACOEDL) model was developed. This model employs feature selection (FS) and hyperparameter optimization to diagnose CVD. Applying a min-max scaler, medical data is first consistently prepared. The key feature that sets ICVD-ACOEDL apart is the use of Ant Colony Optimisation (ACO) to select an optimal feature subset, which in turn helps to upgrade the performance of the ensuring deep learning enhanced neural network (DLENN) classifier. The model reforms the hyperparameters of DLENN for CVD classification using Bayesian optimization. Comprehensive evaluations on benchmark medical datasets show that ICVD-ACOEDL exceeds existing techniques, indicating that it could have a significant impact on CVD diagnosis. The model furnishes a workable way to increase CVD classification efficiency and accuracy in real-world medical situations by incorporating ACO for feature selection, min-max scaling for data pre-processing, and Bayesian optimization for hyperparameter tweaking.
Faculty of Engineering and Natural Sciences Istanbul Okan University Istanbul Turkey
ICRIOS University Bocconi Via Röntgen no 1 20136 Milan Italy
Zobrazit více v PubMed
Weberling, L. D., Lossnitzer, D., Frey, N. & André, F. Coronary computed tomography vs. cardiac magnetic resonance imaging in the evaluation of coronary artery disease. Diagnostics13(1), 125 (2022). PubMed PMC
P.Wang, Z. Lin, X.Yan, Z. Chen, M. Ding,Y. Song, and L. Meng, ‘‘Awearable ECG monitor for deep learning based real-time cardiovascular diseasedetection,’’ 2022, arXiv:2201.10083.
Gao, X. et al. Direct oral anticoagulants vs. vitamin K antagonists in atrial fibrillation patients at risk of falling: A meta-analysis. Front. Cardiovasc. Med.9, 757087 (2022). PubMed PMC
Swathy, M. & Saruladha, K. ‘A comparative study of classification and prediction of cardio-vascular diseases (CVD) using machine learning and deep learning techniques’. ICT Exp.8(1), 109–116 (2022).
Gao, X., Cai, X., Yang, Y., Zhou, Y. & Zhu, W. Diagnostic accuracy of the HAS-BLED bleeding score in VKA- or DOAC-treated patients with atrial fibrillation: A systematic review and meta-analysis. Front. Cardiovasc. Med.8, 757087 (2021). PubMed PMC
Bing, P., Liu, Y., Liu, W., Zhou, J. & Zhu, L. Electrocardiogram classification using TSST-based spectrogram and ConViT. Front. Cardiovasc. Med.9, 983543 (2022). PubMed PMC
Liu, D., Liu, X., Chen, Z., Zuo, Z., Tang, X., Huang, Q., Arai, T, Magnetically driven soft continuum microrobot for intravascular operations in microscale. Cyborg Bionic Syst., 2022. PubMed PMC
Yu, Y. et al. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat. Commun.13(1), 4241 (2022). PubMed PMC
Fu, Q. et al. Sodium intake and the risk of various types of cardiovascular diseases: A Mendelian randomization study. Front. Nutr.10, 1250509 (2023). PubMed PMC
Kim, S. et al. Bioprinting methods for fabricating in vitro tubular blood vessel models. Cyborg Bionic Syst.4, 0043 (2023). PubMed PMC
Kim, G. et al. A deep learning–based automatic analysisof cardiovascular borders on chest radiographs of valvular heart disease: Development/external validation. Eur. Radiol.32(3), 1558–1569 (2022). PubMed
Dai, Z. et al. Role of autophagy induced by arecoline in angiogenesis of oral submucous fibrosis. Archiv. Oral Biol.102, 7–15 (2019). PubMed
Malnajjar, M. Khaleel, Abu-Naser, and S. Samy. (2022). Heart soundsanalysis and classification for cardiovascular diseases diagnosisusing deep learning. [Online]. Available: http://dspace.alazhar. edu.ps/xmlui/handle/123456789/3534
Shrivastava, P. K., Sharma, M., Sharma, P. & Kumar, A. HCBiLSTM: A hybrid model for predicting heart disease using CNN and BiLSTM algorithms. Meas. Sens.25, 100657 (2023).
Huang, L. et al. Successful robot-assisted laparoscopic resection of pheochromocytoma in a patient with dilated cardiomyopathy: A case report on extremely high-risk anesthesia management. Medicine102(41), e35467 (2023). PubMed PMC
Zhou, Y. et al. Sex-specific differences in the association between steps per day and all-cause mortality among a cohort of adult patients from the United States with congestive heart failure. Heart & Lung62, 175–179 (2023). PubMed
Mathur, P., Srivastava, S., Xu, X. & Mehta, J. L. Artificial intelligence, machine learning, and cardiovascular disease. Clin. Med. Insights Cardiol.14, 117954682092740 (2020). PubMed PMC
Hong, S., Zhou, Y., Shang, J., Xiao, C. & Sun, J. Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Comput. Biol. Med.122, 103801 (2020). PubMed
Suganyadevi, S., Seethalakshmi, V. & Balasamy, K. ‘A review on deep learning in medical image analysis’. Int. J. Multimedia Inf. Retr.11(1), 19–38 (2022). PubMed PMC
Hassan, M. U., Alaliyat, S. & Hameed, I. A. Image generation models from scene graphs and layouts: A comparative analysis. J. King Saud Univ. Comput. Inf. Sci.35(5), 101543 (2023).
Sun, T. et al. In vivo liver function reserve assessments in alcoholic liver disease by scalabl5e photoacoustic imaging. Photoacoustics34, 100569 (2023). PubMed PMC
Yang, C., Sheng, D., Yang, B., Zheng, W., & Liu, C, A dual-domain diffusion model for sparse-view CT reconstruction. IEEE Signal Processing Letters, 2024.
Lu, S. et al.Surgical instrument posture estimation and tracking based on LSTM (ICT Express, 2024).
Chen, M., Hao, Y., Hwang, K., Wang, L. & Wang, L. ‘Disease prediction by machine learning over big data from healthcare communities’. IEEE Access5, 8869–8879 (2017).
Matsushita, K. et al. ‘The relationship of COVID-19 severity with cardiovascular disease and its traditional risk factors: A systematic review and meta-analysis’. Glob. Heart15(1), 64 (2020). PubMed PMC
Siontis, K. C., Noseworthy, P. A., Attia, Z. I. & Friedman, P. A. ‘Artificial intelligence-enhanced electrocardiography in cardiovascular disease management’. Nat. Rev. Cardiol.18(7), 465–478 (2021). PubMed PMC
W. A. W. A. Bakar, N. L. N. B. Josdi, M. B. Man, and M. A. B. Zuhairi, A review: Heart disease prediction in machine learning & deep learning. in Proc. 19th IEEE Int. Colloq. Signal Process. Appl. (CSPA), 2023, pp 150–155.
I. S. Brites, L. M. Silva, J. L. Barbosa, S. J. Rigo, S. D. Correia, andV. R. Leithardt, ‘‘Machine learning and IoT applied to cardiovasculardiseases identification through heart sounds: A literature review,’’ in Proc.Int. Conf. Inf. Technol. Syst. Cham, Switzerland: Springer, 2022, 356–388.
Nagavelli, U., Samanta, D. & Chakraborty, P. ‘Machine learningtechnology-based heart disease detection models’. J. Healthcare Eng.2022, 1–9 (2022). PubMed PMC
Arpaia, P. et al. Conceptual design of a machine learningbasedwearable soft sensor for non-invasive cardiovascular risk assessment. Measurement169, 108551 (2021).
Selvi, R. T. & Muthulakshmi, I. ‘An optimal artificial neural networkbased big data application for heart disease diagnosis and classificationmodel’. J. Ambient Intell. Humaniz. Comput.12(6), 6129–6139 (2021).
Ali, M. M. et al. ‘Heart disease prediction using supervised machine learningalgorithms: Performance analysis and comparison’. Comput. Biol. Med.136, 104672 (2021). PubMed
M. Ganesan and N. Sivakumar, ‘‘IoT based heart disease prediction anddiagnosis model for healthcare using machine learning models,’’ In Proc.IEEE Int. Conf. Syst., Comput.,Autom. Netw. (ICSCAN), 2019, pp 1–5.
Li, J. P. et al. ‘Heart disease identification method using machine learning classificationin e-healthcare’. IEEE Access8, 107562–107582 (2020).
R. Atallah and A. Al-Mousa, ‘‘Heart disease detection using machinelearning majority voting ensemble method,’’ In Proc. 2nd Int. Conf.NewTrendsComput. Sci. (ICTCS), 2019, pp 1–6.
M. Noale, F. Limongi, and S. Maggi, Epidemiology of cardiovascular diseases in the elderly, Frailty and Cardiovascular Diseases: Researchinto an Elderly Population. 2020, pp 29–38. PubMed
M. Athanasiou, K. Sfrintzeri, K. Zarkogianni, A. C. Thanopoulou, and K. S. Nikita, An explainable XGBoost-based approach towards assessingthe risk of cardiovascular disease in patients with type 2 diabetes mellitus. In Proc. IEEE 20th Int. Conf. Bioinf. Bioengineering (BIBE), 2020, pp 859–864.
Charlton, P. H. et al. ‘Wearable photoplethysmography for cardiovascularmonitoring’. Proc. IEEE110(3), 355–381 (2022). PubMed PMC
Chieng, D. & Kistler, P. M. ‘Coffee and tea on cardiovascular disease (CVD) prevention’. Trends Cardiovasc. Med.32(7), 399–405 (2022). PubMed
Tao, L.-C., Xu, J.-N., Wang, T.-T., Hua, F. & Li, J.-J. Triglyceride-glucose index as a marker in cardiovascular diseases: Landscape and limitations. Cardiovasc. Diabetol.21(1), 1–17 (2022). PubMed PMC
Battineni, G., Sagaro, G. G., Chintalapudi, N. & Amenta, F. ‘The benefits of telemedicine in personalized prevention of cardiovascular diseases(CVD): A systematic review’. J. Personal. Med.11(7), 658 (2021). PubMed PMC
Bays, H. E. et al. Ten things to know about ten cardiovascular disease risk factors. Amer. J. Preventive Cardiol.5, 100149 (2021). PubMed PMC
Dickson, V. V., Jun, J. & Melkus, G. D. ‘A mixed methods studydescribing the self-care practices in an older working population withcardiovascular disease (CVD): Balancing work, life and health’. HeartLung50(3), 447–454 (2021). PubMed
Ellis, G. K., Robinson, J. A. & Crawford, G. B. ‘When symptoms ofdisease overlap with symptoms of depression’. Austral. Family Phys.35(8), 647–649 (2006). PubMed
Alhadeethy, N. F. A., Zeki, A. M. & Shah, A. ‘Deep learning model forpredicting and detecting overlapping symptoms of cardiovascular diseasesin hospitals of UAE’. Turkish J. Comput. Math. Educ. (TURCOMAT)12(14), 5212–5224 (2021).
Hsu, C.-S. et al. Overlap of dyspepsia in patients with gastroesophagealreflux disease: Impact of clinical, metabolic, and psychosocial characteristics. Digest. Dis. Sci.62(4), 994–1001 (2017). PubMed
Chaddha, A., Robinson, E. A., Kline-Rogers, E., Alexandris-Souphis, T. & Rubenfire, M. ‘Mental health and cardiovascular disease’. Amer. J. Med.129(11), 1145–1148 (2016). PubMed
Goodwin, G. M. ‘‘Depression and associated physical diseases and symptoms. Dialogues Clin. Neurosci.8(2), 259–265 (2006). PubMed PMC
Daoulah, A. et al. Outcomes of myocardial revascularization in diabetic patients with left main coronary artery disease: A multicenter observational study from three Gulf countries’. Cardiovasc. Revasc. Med.46, 52–61 (2023). PubMed
Muthu, B. et al. ‘‘A framework for extractive text summarization based on deep learning modified neural network classifier’, ACM Trans. Asian Low-Resour. Lang. Inf. Process.20(3), 1–20 (2021).
Atteia, G., Alhussan, A. & Samee, N. ‘BO-ALLCNN: Bayesianbased optimized CNN for acute lymphoblastic leukemia detection in microscopic blood smear images’. Sensors22(15), 5520 (2022). PubMed PMC
M. Siddhartha. Heart Disease Dataset (Comprehensive) Statlog + Cleveland + Hungary Dataset. Accessed: May 22, 2023. [Online]. Available: https://www.kaggle.com/datasets/sid321axn/heart-statlog-clevelandhungary-final
Kumar Dubey, A., Choudhary, K. & Sharma, R. ‘Predicting heart disease based on influential features with machine learning’. Intell. Autom. Soft Comput.30(3), 929–943 (2021).
Mary, N. et al. ‘Investigating of classification algorithms for heart disease risk prediction’. J. Intell. Med. Healthc.1(1), 11–31 (2022).