To identify patterns in big medical datasets and use Deep Learning and Machine Learning (ML) to reliably diagnose Cardio Vascular Disease (CVD), researchers are currently delving deeply into these fields. Training on large datasets and producing highly accurate validation results is exceedingly difficult. Furthermore, early and precise diagnosis is necessary due to the increased global prevalence of cardiovascular disease (CVD). However, the increasing complexity of healthcare datasets makes it challenging to detect feature connections and produce precise predictions. To address these issues, the Intelligent Cardiovascular Disease Diagnosis based on Ant Colony Optimisation with Enhanced Deep Learning (ICVD-ACOEDL) model was developed. This model employs feature selection (FS) and hyperparameter optimization to diagnose CVD. Applying a min-max scaler, medical data is first consistently prepared. The key feature that sets ICVD-ACOEDL apart is the use of Ant Colony Optimisation (ACO) to select an optimal feature subset, which in turn helps to upgrade the performance of the ensuring deep learning enhanced neural network (DLENN) classifier. The model reforms the hyperparameters of DLENN for CVD classification using Bayesian optimization. Comprehensive evaluations on benchmark medical datasets show that ICVD-ACOEDL exceeds existing techniques, indicating that it could have a significant impact on CVD diagnosis. The model furnishes a workable way to increase CVD classification efficiency and accuracy in real-world medical situations by incorporating ACO for feature selection, min-max scaling for data pre-processing, and Bayesian optimization for hyperparameter tweaking.
- MeSH
- Bayes Theorem MeSH
- Deep Learning * MeSH
- Diagnosis, Computer-Assisted methods MeSH
- Ants MeSH
- Cardiovascular Diseases * diagnosis MeSH
- Humans MeSH
- Neural Networks, Computer * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Sleep disorders are diagnosed in sleep laboratories by polysomnography, a multi-parameter examination that monitors biological signals during sleep. The subsequent evaluation of the obtained records is very time-consuming. The goal of this study was to create an automatic system for evaluation of the airflow and SpO2 channels of polysomnography records, through the use of machine learning techniques and a large database, for apnea and desaturation detection (which is unusual in other studies). To that end, a convolutional neural network (CNN) was designed using hyperparameter optimization. It was then trained and tested for apnea and desaturation. The proposed CNN was compared with the commonly used k-nearest neighbors (k-NN) method. The classifiers were designed based on nasal airflow and blood oxygen saturation signals. The final neural network accuracy for apnea detection reached 84%, and that for desaturation detection was 74%, while the k-NN classifier reached accuracies of 83% and 64% for apnea detection and desaturation detection, respectively.
- Publication type
- Journal Article MeSH
INTRODUCTION: Recent advances in machine learning provide new possibilities to process and analyse observational patient data to predict patient outcomes. In this paper, we introduce a data processing pipeline for cardiogenic shock (CS) prediction from the MIMIC III database of intensive cardiac care unit patients with acute coronary syndrome. The ability to identify high-risk patients could possibly allow taking pre-emptive measures and thus prevent the development of CS. METHODS: We mainly focus on techniques for the imputation of missing data by generating a pipeline for imputation and comparing the performance of various multivariate imputation algorithms, including k-nearest neighbours, two singular value decomposition (SVD)-based methods, and Multiple Imputation by Chained Equations. After imputation, we select the final subjects and variables from the imputed dataset and showcase the performance of the gradient-boosted framework that uses a tree-based classifier for cardiogenic shock prediction. RESULTS: We achieved good classification performance thanks to data cleaning and imputation (cross-validated mean area under the curve 0.805) without hyperparameter optimization. CONCLUSION: We believe our pre-processing pipeline would prove helpful also for other classification and regression experiments.
- Publication type
- Journal Article MeSH
PURPOSE: Chronic obstructive pulmonary disease (COPD) is a prevalent and preventable condition that typically worsens over time. Acute exacerbations of COPD significantly impact disease progression, underscoring the importance of prevention efforts. This observational study aimed to achieve two main objectives: (1) identify patients at risk of exacerbations using an ensemble of clustering algorithms, and (2) classify patients into distinct clusters based on disease severity. METHODS: Data from portable medical devices were analyzed post-hoc using hyperparameter optimization with Self-Organizing Maps (SOM), Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Isolation Forest, and Support Vector Machine (SVM) algorithms, to detect flare-ups. Principal Component Analysis (PCA) followed by KMeans clustering was applied to categorize patients by severity. RESULTS: 25 patients were included within the study population, data from 17 patients had the required reliability. Five patients were identified in the highest deterioration group, with one clinically confirmed exacerbation accurately detected by our ensemble algorithm. Then, PCA and KMeans clustering grouped patients into three clusters based on severity: Cluster 0 started with the least severe characteristics but experienced decline, Cluster 1 consistently showed the most severe characteristics, and Cluster 2 showed slight improvement. CONCLUSION: Our approach effectively identified patients at risk of exacerbations and classified them by disease severity. Although promising, the approach would need to be verified on a larger sample with a larger number of recorded clinically verified exacerbations.
- Publication type
- Journal Article MeSH
Intertrochanteric (IT) femur fractures are the most common fractures in elderly people, and they lead to significant morbidity, mortality, and reduced quality of life. The different types of fractures require a careful definition to ensure accurate surgical planning and reduce the operation time, healing time, and number of surgical failures. In this study, a deep learning-based automatic multi-class IT fracture detection model was developed using computed tomography (CT) images and based on the AO/OTA classification method. The original CT image was resized and rearranged according to the fracture location and an unsharp masking filter was applied. A multi-class classification of nine different types of IT fractures and no fracture was performed using the faster regional-convolutional neural network (R-CNN). Bayesian optimization was also implemented to determine the optimal hyperparameter values for the faster R-CNN algorithm. In our proposed model, IT fractures classified into two classes showed an average accuracy of 0.97 ± 0.02, which was 0.90 ± 0.02 when classified into ten classes. Additionally, the detected region of interest from our proposed model showed minimum root mean square error and intersection over union values of 16.34 ± 47.01 pixels and 0.87 ± 0.12, respectively. In the future, our proposed automatic multi-class IT femur fracture detection model could allow clinicians to identify the fracture region and diagnose different types of femur fractures faster and more accurately. This will increase the probability of correct surgical treatment and minimize postoperative complications.
- MeSH
- Deep Learning MeSH
- Hip Fractures * diagnostic imaging classification MeSH
- Humans MeSH
- Neural Networks, Computer MeSH
- Tomography, X-Ray Computed * methods MeSH
- Statistics as Topic MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Clinical Study MeSH
- Research Support, Non-U.S. Gov't MeSH
Breast augmentation is one of the most frequently performed cosmetic procedures worldwide, but it carries certain risks including breast implant rupture. Timely and accurate diagnostics of ruptures are crucial, as undiagnosed ruptures can lead to serious health complications. Imaging methods, such as magnetic resonance imaging (MRI), are recommended for the diagnosis of breast implants due to their high accuracy. However, current diagnostics rely heavily on the subjective interpretation and experience of the physician. This study investigates the potential of neural networks (NN) to address this limitation and improve the accuracy of rupture detection in silicone breast implants. We applied a deep learning-based neural network system trained on MRI images of breast implants to detect ruptures. The dataset included annotated MRI scans of symptomatic and asymptomatic patients with confirmed implant integrity or rupture. Several models were trained using ResNet-18, ResNet-50, and Xception networks, with various hyperparameter settings and augmentation techniques applied to enhance model performance and generalizability. The performance of the NN model was evaluated using confusion matrices and standard metrics such as true positive rate (TPR) and true negative rate (TNR). A semi-automated algorithm for the detection of intracapsular ruptures of breast implants on MRI was successfully developed. The algorithm correctly detected ruptures in 95.4% of cases and accurately identified cases without rupture in 86.7% of instances. Our findings highlight the potential of neural networks as a supportive tool in diagnosing breast implant ruptures. By semi-automating rupture detection, NNs can reduce diagnostic errors, expedite image evaluation, and optimize resource use in medical practice. The study underscores the importance of combining artificial intelligence with expert evaluation to enhance patient care and reduce costs in medical diagnostics.
Improper municipal solid waste (MSW) management contributes to greenhouse gas emissions, necessitating emissions reduction strategies such as waste reduction, recycling, and composting to move towards a more sustainable, low-carbon future. Machine learning models are applied for MSW-related trend prediction to provide insights on future waste generation or carbon emissions trends and assist the formulation of effective low-carbon policies. Yet, the existing machine learning models are diverse and scattered. This inconsistency poses challenges for researchers in the MSW domain who seek to identify and optimize the machine learning techniques and configurations for their applications. This systematic review focuses on MSW-related trend prediction using the most frequently applied machine learning model, artificial neural network (ANN), while addressing potential methodological improvements for reducing prediction uncertainty. Thirty-two papers published from 2013 to 2023 are included in this review, all applying ANN for MSW-related trend prediction. Observing a decrease in the size of data samples used in studies from daily to annual timescales, the summarized statistics suggest that well-performing ANN models can still be developed with approximately 33 annual data samples. This indicates promising opportunities for modeling macroscale greenhouse gas emissions in future works. Existing literature commonly used the grid search (manual) technique for hyperparameter (e.g., learning rate, number of neurons) optimization and should explore more time-efficient automated optimization techniques. Since there are no one-size-fits-all performance indicators, it is crucial to report the model's predictive performance based on more than one performance indicator and examine its uncertainty. The predictive performance of newly-developed integrated models should also be benchmarked to show performance improvement clearly and promote similar applications in future works. The review analyzed the shortcomings, best practices, and prospects of ANNs for MSW-related trend predictions, supporting the realization of practical applications of ANNs to enhance waste management practices and reduce carbon emissions.
- MeSH
- Waste Management * MeSH
- Neural Networks, Computer MeSH
- Greenhouse Gases * MeSH
- Solid Waste MeSH
- Carbon MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Systematic Review MeSH
... postupy pro reálný svět 453 -- 13.1 Využití vašich modelů na maximum 454 -- 13.1.1 Optimalizace hyperparametrů ... ... cíle optimalizace 457 -- Umění vytvořit správný vyhledávací prostor 460 -- Budoucnost ladění hyperparametrů ...
1. elektronické vydání 1 online zdroj (528 stran)
Strojové učení zaznamenalo v posledních letech pozoruhodný pokrok od téměř nepoužitelného rozpoznávání řeči a obrazu k nadlidské přesnosti. Od programů, které nedokázaly porazit jen trochu zkušenějšího hráče go, jsme dospěli k přemožiteli mistra světa. Za pokrokem ve vývoji učících se programů stojí tzv. hluboké učení - deep learning.; Strojové učení zaznamenalo v posledních letech pozoruhodný pokrok od téměř nepoužitelného rozpoznávání řeči a obrazu k nadlidské přesnosti. Od programů, které nedokázaly porazit jen trochu zkušenějšího hráče go, jsme dospěli k přemožiteli mistra světa. Za pokrokem ve vývoji učících se programů stojí tzv. hluboké učení – deep learning.
Radiologists utilize pictures from X-rays, magnetic resonance imaging, or computed tomography scans to diagnose bone cancer. Manual methods are labor-intensive and may need specialized knowledge. As a result, creating an automated process for distinguishing between malignant and healthy bone is essential. Bones that have cancer have a different texture than bones in unaffected areas. Diagnosing hematological illnesses relies on correct labeling and categorizing nucleated cells in the bone marrow. However, timely diagnosis and treatment are hampered by pathologists' need to identify specimens, which can be sensitive and time-consuming manually. Humanity's ability to evaluate and identify these more complicated illnesses has significantly been bolstered by the development of artificial intelligence, particularly machine, and deep learning. Conversely, much research and development is needed to enhance cancer cell identification-and lower false alarm rates. We built a deep learning model for morphological analysis to solve this problem. This paper introduces a novel deep convolutional neural network architecture in which hybrid multi-objective and category-based optimization algorithms are used to optimize the hyperparameters adaptively. Using the processed cell pictures as input, the proposed model is then trained with an optimized attention-based multi-scale convolutional neural network to identify the kind of cancer cells in the bone marrow. Extensive experiments are run on publicly available datasets, with the results being measured and evaluated using a wide range of performance indicators. In contrast to deep learning models that have already been trained, the total accuracy of 99.7% was determined to be superior.
- MeSH
- Algorithms MeSH
- Deep Learning * MeSH
- Bone Marrow diagnostic imaging pathology MeSH
- Humans MeSH
- Bone Neoplasms pathology diagnostic imaging diagnosis MeSH
- Neural Networks, Computer * MeSH
- Image Processing, Computer-Assisted methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
AIMS: Atrial fibrillation (AF) recurrence during the first year after catheter ablation remains common. Patient-specific prediction of arrhythmic recurrence would improve patient selection, and, potentially, avoid futile interventions. Available prediction algorithms, however, achieve unsatisfactory performance. Aim of the present study was to derive from ESC-EHRA Atrial Fibrillation Ablation Long-Term Registry (AFA-LT) a machine-learning scoring system based on pre-procedural, easily accessible clinical variables to predict the probability of 1-year arrhythmic recurrence after catheter ablation. METHODS AND RESULTS: Patients were randomly split into a training (80%) and a testing cohort (20%). Four different supervised machine-learning models (decision tree, random forest, AdaBoost, and k-nearest neighbour) were developed on the training cohort and hyperparameters were tuned using 10-fold cross validation. The model with the best discriminative performance on the testing cohort (area under the curve-AUC) was selected and underwent further optimization, including re-calibration. A total of 3128 patients were included. The random forest model showed the best performance on the testing cohort; a 19-variable version achieved good discriminative performance [AUC 0.721, 95% confidence interval (CI) 0.680-0.764], outperforming existing scores (e.g. APPLE score: AUC 0.557, 95% CI 0.506-0.607). Platt scaling was used to calibrate the model. The final calibrated model was implemented in a web calculator, freely available at http://afarec.hpc4ai.unito.it/. CONCLUSION: AFA-Recur, a machine-learning-based probability score predicting 1-year risk of recurrent atrial arrhythmia after AF ablation, achieved good predictive performance, significantly better than currently available tools. The calculator, freely available online, allows patient-specific predictions, favouring tailored therapeutic approaches for the individual patient.
- MeSH
- Atrial Fibrillation * diagnosis surgery MeSH
- Catheter Ablation * adverse effects methods MeSH
- Humans MeSH
- Recurrence MeSH
- Registries MeSH
- Risk Factors MeSH
- Machine Learning MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH