Intelligent cardiovascular disease diagnosis using deep learning enhanced neural network with ant colony optimization
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39294203
PubMed Central
PMC11411078
DOI
10.1038/s41598-024-71932-z
PII: 10.1038/s41598-024-71932-z
Knihovny.cz E-zdroje
- Klíčová slova
- Ant Colony Optimisation, Bayesian optimisation, Cardiovascular disease, Hyperparameter, Min–max scaler,
- MeSH
- Bayesova věta MeSH
- deep learning * MeSH
- diagnóza počítačová metody MeSH
- Formicidae MeSH
- kardiovaskulární nemoci * diagnóza MeSH
- lidé MeSH
- neuronové sítě * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
To identify patterns in big medical datasets and use Deep Learning and Machine Learning (ML) to reliably diagnose Cardio Vascular Disease (CVD), researchers are currently delving deeply into these fields. Training on large datasets and producing highly accurate validation results is exceedingly difficult. Furthermore, early and precise diagnosis is necessary due to the increased global prevalence of cardiovascular disease (CVD). However, the increasing complexity of healthcare datasets makes it challenging to detect feature connections and produce precise predictions. To address these issues, the Intelligent Cardiovascular Disease Diagnosis based on Ant Colony Optimisation with Enhanced Deep Learning (ICVD-ACOEDL) model was developed. This model employs feature selection (FS) and hyperparameter optimization to diagnose CVD. Applying a min-max scaler, medical data is first consistently prepared. The key feature that sets ICVD-ACOEDL apart is the use of Ant Colony Optimisation (ACO) to select an optimal feature subset, which in turn helps to upgrade the performance of the ensuring deep learning enhanced neural network (DLENN) classifier. The model reforms the hyperparameters of DLENN for CVD classification using Bayesian optimization. Comprehensive evaluations on benchmark medical datasets show that ICVD-ACOEDL exceeds existing techniques, indicating that it could have a significant impact on CVD diagnosis. The model furnishes a workable way to increase CVD classification efficiency and accuracy in real-world medical situations by incorporating ACO for feature selection, min-max scaling for data pre-processing, and Bayesian optimization for hyperparameter tweaking.
Faculty of Engineering and Natural Sciences Istanbul Okan University Istanbul Turkey
ICRIOS University Bocconi Via Röntgen no 1 20136 Milan Italy
Zobrazit více v PubMed
Weberling, L. D., Lossnitzer, D., Frey, N. & André, F. Coronary computed tomography vs. cardiac magnetic resonance imaging in the evaluation of coronary artery disease. PubMed PMC
P.Wang, Z. Lin, X.Yan, Z. Chen, M. Ding,Y. Song, and L. Meng, ‘‘Awearable ECG monitor for deep learning based real-time cardiovascular diseasedetection,’’ 2022, arXiv:2201.10083.
Swathy, M. & Saruladha, K. ‘A comparative study of classification and prediction of cardio-vascular diseases (CVD) using machine learning and deep learning techniques’.
Gao, X., Cai, X., Yang, Y., Zhou, Y. & Zhu, W. Diagnostic accuracy of the HAS-BLED bleeding score in VKA- or DOAC-treated patients with atrial fibrillation: A systematic review and meta-analysis. PubMed PMC
Bing, P., Liu, Y., Liu, W., Zhou, J. & Zhu, L. Electrocardiogram classification using TSST-based spectrogram and ConViT. PubMed PMC
Liu, D., Liu, X., Chen, Z., Zuo, Z., Tang, X., Huang, Q., Arai, T, Magnetically driven soft continuum microrobot for intravascular operations in microscale. PubMed PMC
Kim, G. PubMed
Dai, Z. PubMed
Malnajjar, M. Khaleel, Abu-Naser, and S. Samy. (2022).
Shrivastava, P. K., Sharma, M., Sharma, P. & Kumar, A. HCBiLSTM: A hybrid model for predicting heart disease using CNN and BiLSTM algorithms.
Zhou, Y. PubMed
Mathur, P., Srivastava, S., Xu, X. & Mehta, J. L. Artificial intelligence, machine learning, and cardiovascular disease. PubMed PMC
Hong, S., Zhou, Y., Shang, J., Xiao, C. & Sun, J. Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. PubMed
Suganyadevi, S., Seethalakshmi, V. & Balasamy, K. ‘A review on deep learning in medical image analysis’. PubMed PMC
Hassan, M. U., Alaliyat, S. & Hameed, I. A. Image generation models from scene graphs and layouts: A comparative analysis.
Yang, C., Sheng, D., Yang, B., Zheng, W., & Liu, C, A dual-domain diffusion model for sparse-view CT reconstruction. IEEE Signal Processing Letters, 2024.
Lu, S.
Chen, M., Hao, Y., Hwang, K., Wang, L. & Wang, L. ‘Disease prediction by machine learning over big data from healthcare communities’.
Siontis, K. C., Noseworthy, P. A., Attia, Z. I. & Friedman, P. A. ‘Artificial intelligence-enhanced electrocardiography in cardiovascular disease management’. PubMed PMC
W. A. W. A. Bakar, N. L. N. B. Josdi, M. B. Man, and M. A. B. Zuhairi, A review: Heart disease prediction in machine learning & deep learning. in
I. S. Brites, L. M. Silva, J. L. Barbosa, S. J. Rigo, S. D. Correia, andV. R. Leithardt, ‘‘Machine learning and IoT applied to cardiovasculardiseases identification through heart sounds: A literature review,’’ in
Nagavelli, U., Samanta, D. & Chakraborty, P. ‘Machine learningtechnology-based heart disease detection models’. PubMed PMC
Arpaia, P.
Selvi, R. T. & Muthulakshmi, I. ‘An optimal artificial neural networkbased big data application for heart disease diagnosis and classificationmodel’.
Ali, M. M. PubMed
M. Ganesan and N. Sivakumar, ‘‘IoT based heart disease prediction anddiagnosis model for healthcare using machine learning models,’’ In
Li, J. P.
R. Atallah and A. Al-Mousa, ‘‘Heart disease detection using machinelearning majority voting ensemble method,’’ In
M. Noale, F. Limongi, and S. Maggi, Epidemiology of cardiovascular diseases in the elderly, PubMed
M. Athanasiou, K. Sfrintzeri, K. Zarkogianni, A. C. Thanopoulou, and K. S. Nikita, An explainable XGBoost-based approach towards assessingthe risk of cardiovascular disease in patients with type 2 diabetes mellitus. In
Chieng, D. & Kistler, P. M. ‘Coffee and tea on cardiovascular disease (CVD) prevention’. PubMed
Tao, L.-C., Xu, J.-N., Wang, T.-T., Hua, F. & Li, J.-J. Triglyceride-glucose index as a marker in cardiovascular diseases: Landscape and limitations. PubMed PMC
Battineni, G., Sagaro, G. G., Chintalapudi, N. & Amenta, F. ‘The benefits of telemedicine in personalized prevention of cardiovascular diseases(CVD): A systematic review’. PubMed PMC
Dickson, V. V., Jun, J. & Melkus, G. D. ‘A mixed methods studydescribing the self-care practices in an older working population withcardiovascular disease (CVD): Balancing work, life and health’. PubMed
Ellis, G. K., Robinson, J. A. & Crawford, G. B. ‘When symptoms ofdisease overlap with symptoms of depression’. PubMed
Alhadeethy, N. F. A., Zeki, A. M. & Shah, A. ‘Deep learning model forpredicting and detecting overlapping symptoms of cardiovascular diseasesin hospitals of UAE’.
Hsu, C.-S. PubMed
Chaddha, A., Robinson, E. A., Kline-Rogers, E., Alexandris-Souphis, T. & Rubenfire, M. ‘Mental health and cardiovascular disease’. PubMed
Goodwin, G. M. ‘‘Depression and associated physical diseases and symptoms. PubMed PMC
Daoulah, A. PubMed
Muthu, B.
Atteia, G., Alhussan, A. & Samee, N. ‘BO-ALLCNN: Bayesianbased optimized CNN for acute lymphoblastic leukemia detection in microscopic blood smear images’. PubMed PMC
M. Siddhartha. Heart Disease Dataset (Comprehensive) Statlog + Cleveland + Hungary Dataset. Accessed: May 22, 2023. [Online]. Available: https://www.kaggle.com/datasets/sid321axn/heart-statlog-clevelandhungary-final
Kumar Dubey, A., Choudhary, K. & Sharma, R. ‘Predicting heart disease based on influential features with machine learning’.
Mary, N.