Diagnostic performance of an automated robot for MALDI target preparation in microbial identification
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, hodnotící studie
PubMed
39297624
PubMed Central
PMC11481498
DOI
10.1128/jcm.00434-24
Knihovny.cz E-zdroje
- Klíčová slova
- MALDI-TOF, MBT Pathfinder, automation, colony picking, mass spectrometry, sample preparation,
- MeSH
- Bacteria * klasifikace izolace a purifikace MeSH
- laboratorní automatizace * metody MeSH
- lidé MeSH
- odběr biologického vzorku metody MeSH
- reprodukovatelnost výsledků MeSH
- robotika * MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
The MBT Pathfinder is an automated colony-picking robot designed for efficient sample preparation in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. This article presents results from three key experiments evaluating the instrument's performance in conjunction with MALDI Biotyper instrument. The method comparison experiment assessed its clinical performance, demonstrating comparable results with gram-positive, gram-negative, and anaerobic bacteria (scores larger than 2.00) and superior performance over simple direct yeast transfer (score: 1.80) when compared to samples prepared manually. The repeatability experiment confirmed consistent performance over multiple days and labs (average log score: 2.12, std. deviation: 0.59). The challenge panel experiment showcased its consistent and accurate performance across various samples and settings, yielding average scores between 1.76 and 2.19. These findings underline the MBT Pathfinder as a reliable and efficient tool for MALDI-TOF mass spectrometry sample preparation in clinical and research applications.
Division of Medical Microbiology MVZ Dr Eberhard and Partner Dortmund Dortmund Germany
R and D Automation Microbiology and Diagnostics Bruker Daltonics GmbH and Co KG Bremen Germany
Zobrazit více v PubMed
Croxatto A, Prod’hom G, Greub G. 2012. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36:380–407. doi:10.1111/j.1574-6976.2011.00298.x PubMed DOI
Hou T-Y, Chiang-Ni C, Teng S-H. 2019. Current status of MALDI-TOF mass spectrometry in clinical microbiology. J Food Drug Anal 27:404–414. doi:10.1016/j.jfda.2019.01.001 PubMed DOI PMC
Popović NT, Kazazić SP, Bojanić K, Strunjak-Perović I, Čož-Rakovac R. 2021. Sample preparation and culture condition effects on MALDI-TOF MS identification of bacteria: a review. Mass Spectrom Rev 42:1589–1603. doi:10.1002/mas.21739 PubMed DOI
Jamal W, Albert MJ, Rotimi VO. 2014. Real-time comparative evaluation of bioMerieux VITEK MS versus bruker microflex MS, two matrix-assisted laser desorption-ionization time-of-flight mass spectrometry systems, for identification of clinically significant bacteria. BMC Microbiol 14:289. doi:10.1186/s12866-014-0289-0 PubMed DOI PMC
Lévesque S, Dufresne PJ, Soualhine H, Domingo M-C, Bekal S, Lefebvre B, Tremblay C. 2015. A side by side comparison of bruker biotyper and VITEK MS: utility of MALDI-TOF MS technology for microorganism identification in a public health reference laboratory. PLOS ONE 10:e0144878. doi:10.1371/journal.pone.0144878 PubMed DOI PMC
Brown-Elliott BA, Fritsche TR, Olson BJ, Vasireddy S, Vasireddy R, Iakhiaeva E, Alame D, Wallace RJ, Branda JA. 2019. Comparison of two commercial matrix-assisted laser desorption/Ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for identification of nontuberculous mycobacteria. Am J Clin Pathol 152:527–536. doi:10.1093/ajcp/aqz073 PubMed DOI PMC
Wang J, Wang H, Cai K, Yu P, Liu Y, Zhao G, Chen R, Xu R, Yu M. 2021. Evaluation of three sample preparation methods for the identification of clinical strains by using two MALDI-TOF MS systems. J Mass Spectrom 56:e4696. doi:10.1002/jms.4696 PubMed DOI PMC
Lippi G, Da Rin G. 2019. Advantages and limitations of total laboratory automation: a personal overview. Clin Chem Lab Med (CCLM) 57:802–811. doi:10.1515/cclm-2018-1323 PubMed DOI
Salvagno GL, Danese E, Lippi G. 2020. Mass spectrometry and total laboratory automation: opportunities and drawbacks. Clin Chem Lab Med (CCLM) 58:994–1001. doi:10.1515/cclm-2019-0723 PubMed DOI
Eyler E. 2013. Pouring agar plates and streaking or spreading to isolate individual colonies. Methods Enzymol 533:3–14. doi:10.1016/B978-0-12-420067-8.00001-5 PubMed DOI
Vlek A, Kolecka A, Khayhan K, Theelen B, Groenewald M, Boel E, Boekhout T, Multicenter Study Group . 2014. Interlaboratory comparison of sample preparation methods, database expansions, and cutoff values for identification of yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry using a yeast test panel. J Clin Microbiol 52:3023–3029. doi:10.1128/JCM.00563-14 PubMed DOI PMC
Jaskolla TW, Lehmann W-D, Karas M. 2008. 4-chloro-α-cyanocinnamic acid is an advanced, rationally designed MALDI matrix. Proc Natl Acad Sci USA 105:12200–12205. doi:10.1073/pnas.0803056105 PubMed DOI PMC
Cherkaoui A, Riat A, Renzi G, Fischer A, Schrenzel J. 2023. Diagnostic test accuracy of an automated device for the MALDI target preparation for microbial identification. Eur J Clin Microbiol Infect Dis 42:153–159. doi:10.1007/s10096-022-04531-3 PubMed DOI PMC
Heestermans R, Herroelen P, Emmerechts K, Vandoorslaer K, De Geyter D, Demuyser T, Wybo I, Piérard D, Muyldermans A. 2022. Validation of the colibrí Instrument for automated preparation of MALDI-TOF MS targets for yeast identification. J Clin Microbiol 60:e0023722. doi:10.1128/jcm.00237-22 PubMed DOI PMC
Madhusoodanan J. 2020. What can you do to make your lab greener? Nature New Biol 581:228–229. doi:10.1038/d41586-020-01368-8 PubMed DOI
Jain N. 2022. Integrating sustainability into scientific research. Nat Rev Methods Primers 2. doi:10.1038/s43586-022-00126-6 DOI