Landiolol for heart rate control in patients with septic shock and persistent tachycardia. A multicenter randomized clinical trial (Landi-SEP)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie, multicentrická studie
PubMed
39297945
PubMed Central
PMC11447033
DOI
10.1007/s00134-024-07587-1
PII: 10.1007/s00134-024-07587-1
Knihovny.cz E-zdroje
- Klíčová slova
- Heart rate control, Landiolol, Persistent tachycardia, Sepsis, Septic shock, Ultra-short-acting beta-blocker,
- MeSH
- lidé středního věku MeSH
- lidé MeSH
- močovina * analogy a deriváty terapeutické užití farmakologie MeSH
- morfoliny * terapeutické užití farmakologie MeSH
- senioři MeSH
- septický šok * farmakoterapie komplikace patofyziologie MeSH
- srdeční frekvence * účinky léků MeSH
- tachykardie * farmakoterapie patofyziologie komplikace MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- randomizované kontrolované studie MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- landiolol MeSH Prohlížeč
- močovina * MeSH
- morfoliny * MeSH
PURPOSE: Excessive tachycardia in resuscitated septic shock patients can impair hemodynamics and worsen patient outcome. We investigated whether heart rate (HR) control can be achieved without increased vasopressor requirements using the titratable highly selective, ultra-short-acting β1-blocker landiolol. METHODS: This randomized, open-label, controlled trial was conducted at 20 sites in 7 European countries from 2018 to 2022 and investigated the efficacy and safety of landiolol in adult patients with septic shock and persistent tachycardia. Patients were randomly assigned to receive either landiolol along with standard treatment (n = 99) or standard treatment alone (n = 101). The combined primary endpoint was HR response (i.e., HR within the range of 80-94 beats per minute) and its maintenance without increasing vasopressor requirements during the first 24 h after treatment start. Key secondary endpoints were 28-day mortality and adverse events. RESULTS: Out of 196 included septic shock patients, 98 received standard treatment combined with landiolol and 98 standard treatment alone. A significantly larger proportion of patients met the combined primary endpoint in the landiolol group than in the control group (39.8% [39/98] vs. 23.5% [23/98]), with a between-group difference of 16.5% (95% confidence interval [CI]: 3.4-28.8%; p = 0.013). There were no statistically significant differences between study groups in tested secondary outcomes and adverse events. CONCLUSION: The ultra-short-acting beta-blocker landiolol was effective in reducing and maintaining HR without increasing vasopressor requirements after 24 h in patients with septic shock and persistent tachycardia. There were no differences in adverse events and clinical outcomes such as 28-day mortality vs. standard of care. The results of this study, in the context of previous trials, do not support a treatment strategy of stringent HR reduction (< 95 bpm) in an unselected septic shock population with persistent tachycardia. Further investigations are needed to identify septic shock patient phenotypes that benefit clinically from HR control.
AOP Health International Management AG Ruggell Liechtenstein
AOP Orphan Pharmaceuticals GmbH Vienna Austria
Department of Anaesthesiology LMU University Hospital LMU Munich Munich Germany
Internal Intensive Care Department General Hospital Celje Celje Slovenia
Zobrazit více v PubMed
Bhagat K, Hingorani AD, Palacios M, Charles IG, Vallance P (1999) Cytokine-induced venodilatation in humans in vivo: eNOS masquerading as iNOS. Cardiovasc Res 41:754–764 PubMed
Marx G, Vangerow B, Burczyk C, Gratz KF, Maassen N, Cobas Meyer M, Leuwer M, Kuse E, Rueckholdt H (2000) Evaluation of noninvasive determinants for capillary leakage syndrome in septic shock patients. Intensive Care Med 26:1252–1258 PubMed
Parrillo JE (1993) Pathogenetic mechanisms of septic shock. N Engl J Med 328:1471–1477 PubMed
Lescroart M, Pequignot B, Kimmoun A, Klein T, Levy B (2022) Beta-blockers in septic shock: what is new? J Intensive Med 2:150–155 PubMed PMC
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, McIntyre L, Ostermann M, Prescott HC, Schorr C, Simpson S, Wiersinga WJ, Alshamsi F, Angus DC, Arabi Y, Azevedo L, Beale R, Beilman G, Belley-Cote E, Burry L, Cecconi M, Centofanti J, Coz Yataco A, De Waele J, Dellinger RP, Doi K, Du B, Estenssoro E, Ferrer R, Gomersall C, Hodgson C, Moller MH, Iwashyna T, Jacob S, Kleinpell R, Klompas M, Koh Y, Kumar A, Kwizera A, Lobo S, Masur H, McGloughlin S, Mehta S, Mehta Y, Mer M, Nunnally M, Oczkowski S, Osborn T, Papathanassoglou E, Perner A, Puskarich M, Roberts J, Schweickert W, Seckel M, Sevransky J, Sprung CL, Welte T, Zimmerman J, Levy M (2021) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 47:1181–1247 PubMed PMC
Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 45:486–552 PubMed
Dunser MW, Hasibeder WR (2009) Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med 24:293–316 PubMed
Leibovici L, Gafter-Gvili A, Paul M, Almanasreh N, Tacconelli E, Andreassen S, Nielsen AD, Frank U, Cauda R, Group TS (2007) Relative tachycardia in patients with sepsis: an independent risk factor for mortality. QJM. 100:629–634 PubMed
Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, Orecchioni A, D’Egidio A, D’Ippoliti F, Raffone C, Venditti M, Guarracino F, Girardis M, Tritapepe L, Pietropaoli P, Mebazaa A, Singer M (2013) Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 310:1683–1691 PubMed
Rudiger A, Singer M (2013) The heart in sepsis: from basic mechanisms to clinical management. Curr Vasc Pharmacol 11:187–195 PubMed
Sander O, Welters ID, Foex P, Sear JW (2005) Impact of prolonged elevated heart rate on incidence of major cardiac events in critically ill patients with a high risk of cardiac complications. Crit Care Med. 33:81–88 PubMed
Schmidt H, Muller-Werdan U, Hoffmann T, Francis DP, Piepoli MF, Rauchhaus M, Prondzinsky R, Loppnow H, Buerke M, Hoyer D, Werdan K (2005) Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med 33:1994–2002 PubMed
Schmittinger CA, Torgersen C, Luckner G, Schroder DC, Lorenz I, Dunser MW (2012) Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med 38:950–958 PubMed
Werdan K, Schmidt H, Ebelt H, Zorn-Pauly K, Koidl B, Hoke RS, Heinroth K, Muller-Werdan U (2009) Impaired regulation of cardiac function in sepsis, SIRS, and MODS. Can J Physiol Pharmacol 87:266–274 PubMed
Copie X, Hnatkova K, Staunton A, Fei L, Camm AJ, Malik M (1996) Predictive power of increased heart rate versus depressed left ventricular ejection fraction and heart rate variability for risk stratification after myocardial infarction. Results of a two-year follow-up study. J Am Coll Cardiol 27:270–276 PubMed
Diaz A, Bourassa MG, Guertin MC, Tardif JC (2005) Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur Heart J 26:967–974 PubMed
Disegni E, Goldbourt U, Reicher-Reiss H, Kaplinsky E, Zion M, Boyko V, Behar S (1995) The predictive value of admission heart rate on mortality in patients with acute myocardial infarction. SPRINT study group. Secondary prevention reinfarction Israeli Nifedipine trial. J Clin Epidemiol 48:1197–1205 PubMed
Dyer AR, Persky V, Stamler J, Paul O, Shekelle RB, Berkson DM, Lepper M, Schoenberger JA, Lindberg HA (1980) Heart rate as a prognostic factor for coronary heart disease and mortality: findings in three Chicago epidemiologic studies. Am J Epidemiol 112:736–749 PubMed
Kumar A, Schupp E, Bunnell E, Ali A, Milcarek B, Parrillo JE (2008) Cardiovascular response to dobutamine stress predicts outcome in severe sepsis and septic shock. Crit Care 12:R35 PubMed PMC
Morelli A, Donati A, Ertmer C, Rehberg S, Kampmeier T, Orecchioni A, D’Egidio A, Cecchini V, Landoni G, Pietropaoli P, Westphal M, Venditti M, Mebazaa A, Singer M (2013) Microvascular effects of heart rate control with esmolol in patients with septic shock: a pilot study. Crit Care Med 41:2162–2168 PubMed
Shang X, Wang K, Xu J, Gong S, Ye Y, Chen K, Lian F, Chen W, Yu R (2016) The effect of esmolol on tissue perfusion and clinical prognosis of patients with severe sepsis: a prospective cohort study. Biomed Res Int 2016:1038034 PubMed PMC
Tao Y, Jingyi W, Xiaogan J, Weihua L, Xiaoju J (2015) Effect of esmolol on fluid responsiveness and hemodynamic parameters in patients with septic shock. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 27:885–889 PubMed
Wang S, Li M, Duan J, Yi L, Huang X, Chen D, Li G (2017) Effect of esmolol on hemodynamics and clinical outcomes in patients with septic shock. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 29:390–395 PubMed
Aboab J, Sebille V, Jourdain M, Mangalaboyi J, Gharbi M, Mansart A, Annane D (2011) Effects of esmolol on systemic and pulmonary hemodynamics and on oxygenation in pigs with hypodynamic endotoxin shock. Intensive Care Med 37:1344–1351 PubMed
Balik M, Rulisek J, Leden P, Zakharchenko M, Otahal M, Bartakova H, Korinek J (2012) Concomitant use of beta-1 adrenoreceptor blocker and norepinephrine in patients with septic shock. Wien Klin Wochenschr 124:552–556 PubMed
Chen JX, Sun J, Liu YY, Jia BH (2013) Effects of adrenergic beta-1 antagonists on hemodynamics of severe septic patients. Zhonghua Yi Xue Za Zhi 93:1243–1246 PubMed
Kimmoun A, Louis H, Al Kattani N, Delemazure J, Dessales N, Wei C, Marie PY, Issa K, Levy B (2015) beta1-adrenergic inhibition improves cardiac and vascular function in experimental septic shock. Crit Care Med 43:e332-340 PubMed
Suzuki T, Morisaki H, Serita R, Yamamoto M, Kotake Y, Ishizaka A, Takeda J (2005) Infusion of the beta-adrenergic blocker esmolol attenuates myocardial dysfunction in septic rats. Crit Care Med 33:2294–2301 PubMed
Wang Z, Wu Q, Nie X, Guo J, Yang C (2015) Combination therapy with milrinone and esmolol for heart protection in patients with severe sepsis: a prospective, randomized trial. Clin Drug Investig 35:707–716 PubMed
Wei C, Louis H, Schmitt M, Albuisson E, Orlowski S, Levy B, Kimmoun A (2016) Effects of low doses of esmolol on cardiac and vascular function in experimental septic shock. Crit Care 20:407 PubMed PMC
Xinqiang L, Weiping H, Miaoyun W, Wenxin Z, Wenqiang J, Shenglong C, Juhao Z, Hongki Z (2015) Esmolol improves clinical outcome and tissue oxygen metabolism in patients with septic shock through controlling heart rate. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 27:759–763 PubMed
Yang S, Liu Z, Yang W, Zhang G, Hou B, Liu J, Shi Q (2014) Effects of the beta-blockers on cardiac protection and hemodynamics in patients with septic shock: a prospective study. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 26:714–717 PubMed
Nuding S, Schroder J, Presek P, Wienke A, Muller-Werdan U, Ebelt H, Werdan K (2018) Reducing elevated heart rates in patients with multiple organ dysfunction syndrome with the if (funny channel current) inhibitor ivabradine. Shock 49:402–411 PubMed
Khataminia M, Najmeddin F, Najafi A, Sharifnia H, Ahmadi A, Sahebnasagh A, Mojtahedzadeh M (2021) Effect of heart rate control with amiodarone infusion on hemodynamic and clinical outcomes in septic shock patients with tachycardia: a prospective, single-arm clinical study. J Pharm Health Care Sci 7:37 PubMed PMC
Walkey AJ, Evans SR, Winter MR, Benjamin EJ (2016) Practice patterns and outcomes of treatments for atrial fibrillation during sepsis: a propensity-matched cohort study. Chest 149:74–83 PubMed PMC
Kuo MJ, Chou RH, Lu YW, Guo JY, Tsai YL, Wu CH, Huang PH, Lin SJ (2021) Premorbid beta1-selective (but not non-selective) beta-blocker exposure reduces intensive care unit mortality among septic patients. J Intensive Care 9:40 PubMed PMC
Summary of Product Characteristics (2022) Rapibloc 300 mg powder for solution for infusion. AOP Orphan Ltd. Available at https://www.medicines.org.uk/emc/. Last updated on 23 Jun 2022
Summary of Product Characteristics (2010) Esmolol hydrochloride 2500 Mg powder for concentrate for solution for infusion. AOP Orphan Ltd. Available at https://www.medicines.org.uk/emc/. Last updated on 30 Sep 2019
Ikeshita K, Nishikawa K, Toriyama S, Yamashita T, Tani Y, Yamada T, Asada A (2008) Landiolol has a less potent negative inotropic effect than esmolol in isolated rabbit hearts. J Anesth 22:361–366 PubMed
Muraki K, Nakagawa H, Nagano N, Henmi S, Kawasumi H, Nakanishi T, Imaizumi K, Tokuno T, Atsuki K, Imaizumi Y, Watanabe M (1996) Effects of ONO-1101, a novel beta-antagonist, on action potential and membrane currents in cardiac muscle. J Pharmacol Exp Ther 278:555–563 PubMed
Sugiyama A, Takahara A, Hashimoto K (1999) Electrophysiologic, cardiohemodynamic and beta-blocking actions of a new ultra-short-acting beta-blocker, ONO-1101, assessed by the in vivo canine model in comparison with esmolol. J Cardiovasc Pharmacol 34:70–77 PubMed
Plosker GL (2013) Landiolol: a review of its use in intraoperative and postoperative tachyarrhythmias. Drugs 73:959–977 PubMed
Kakihana Y, Nishida O, Taniguchi T, Okajima M, Morimatsu H, Ogura H, Yamada Y, Nagano T, Morishima E, Matsuda N, Group JLSS (2020) Efficacy and safety of landiolol, an ultra-short-acting beta1-selective antagonist, for treatment of sepsis-related tachyarrhythmia (J-Land 3S): a multicentre, open-label, randomised controlled trial. Lancet Respir Med. 8:863–872 PubMed
Whitehouse T, Hossain A, Perkins GD, Gordon AC, Bion J, Young D, McAuley D, Singer M, Lord J, Gates S, Veenith T, MacCallum NS, Yeung J, Innes R, Welters I, Boota N, Skilton E, Ghuman B, Hill M, Regan SE, Mistry D, Lall R, Collaborators S-L (2023) Landiolol and organ failure in patients with septic shock: the STRESS-L randomized clinical trial. JAMA 330:1641–1652 PubMed PMC
Unger M, Morelli A, Singer M, Radermacher P, Rehberg S, Trimmel H, Joannidis M, Heinz G, Cerny V, Dostal P, Siebers C, Guarracino F, Pratesi F, Biancofiore G, Girardis M, Kadlecova P, Bouvet O, Zorer M, Grohmann-Izay B, Krejcy K, Klade C, Krumpl G (2018) Landiolol in patients with septic shock resident in an intensive care unit (LANDI-SEP): study protocol for a randomized-controlled trial. Trials 19:637 PubMed PMC
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315:801–810 PubMed PMC
Rudiger A, Singer M (2016) Decatecholaminisation during sepsis. Crit Care 20:309 PubMed PMC
Goradia S, Sardaneh AA, Narayan SW, Penm J, Patanwala AE (2021) Vasopressor dose equivalence: a scoping review and suggested formula. J Crit Care 61:233–240 PubMed
Mantzarlis K, Vazgiourakis V, Makris D (2024) Use of landiolol for patients with septic shock and organ failure. JAMA 331:705 PubMed
Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD, Singer M, Sepsis Definitions Task F (2016) Developing a new definition and assessing new clinical criteria for septic shock: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315:775–787 PubMed PMC
Bauer M, Gerlach H, Vogelmann T, Preissing F, Stiefel J, Adam D (2020) Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019- results from a systematic review and meta-analysis. Crit Care 24:239 PubMed PMC
Matsuda N, Nishida O, Taniguchi T, Okajima M, Morimatsu H, Ogura H, Yamada Y, Nagano T, Ichikawa A, Kakihana Y, Group JLSS (2020) Impact of patient characteristics on the efficacy and safety of landiolol in patients with sepsis-related tachyarrhythmia: Subanalysis of the J-Land 3S randomised controlled study. EClinicalMedicine 28:100571 PubMed PMC
Fuchs C, Wauschkuhn S, Scheer C, Vollmer M, Meissner K, Kuhn SO, Hahnenkamp K, Morelli A, Grundling M, Rehberg S (2017) Continuing chronic beta-blockade in the acute phase of severe sepsis and septic shock is associated with decreased mortality rates up to 90 days. Br J Anaesth 119:616–625 PubMed
Morelli A, Romano SM, Sanfilippo F, Santonocito C, Frati G, Chiostri M, Agro FE, Ertmer C, Rehberg SW, Vieillard-Baron A (2020) Systolic-dicrotic notch pressure difference can identify tachycardic patients with septic shock at risk of cardiovascular decompensation following pharmacological heart rate reduction. Br J Anaesth 125:1018–1024 PubMed
Personalizing beta-blockade in septic shock: finding the right rhythm and rate for the right patient
Heart rate control in septic shock-echocardiographic evaluation and monitoring should be standard
Beta-blockers as antiarrhythmics in septic shock: a light at the end of the tunnel?
Heart rate control in septic shock-"every journey begins with a first step" (Confucius)