Phosphorus limitation promotes soil carbon storage in a boreal forest exposed to long-term nitrogen fertilization

. 2024 Sep ; 30 (9) : e17516.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39311643

Grantová podpora
101000289 Horizon 2020

Forests play a crucial role in global carbon cycling by absorbing and storing significant amounts of atmospheric carbon dioxide. Although boreal forests contribute to approximately 45% of the total forest carbon sink, tree growth and soil carbon sequestration are constrained by nutrient availability. Here, we examine if long-term nutrient input enhances tree productivity and whether this leads to carbon storage or whether stimulated microbial decomposition of organic matter limits soil carbon accumulation. Over six decades, nitrogen, phosphorus, and calcium were supplied to a Pinus sylvestris-dominated boreal forest. We found that nitrogen fertilization alone or together with calcium and/or phosphorus increased tree biomass production by 50% and soil carbon sequestration by 65% compared to unfertilized plots. However, the nonlinear relationship observed between tree productivity and soil carbon stock across treatments suggests microbial regulation. When phosphorus was co-applied with nitrogen, it acidified the soil, increased fungal biomass, altered microbial community composition, and enhanced biopolymer degradation capabilities. While no evidence of competition between ectomycorrhizal and saprotrophic fungi has been observed, key functional groups with the potential to reduce carbon stocks were identified. In contrast, when nitrogen was added without phosphorus, it increased soil carbon sequestration because microbial activity was likely limited by phosphorus availability. In conclusion, the addition of nitrogen to boreal forests may contribute to global warming mitigation, but this effect is context dependent.

Zobrazit více v PubMed

Ameray, A., Bergeron, Y., Valeria, O., Montoro Girona, M., & Cavard, X. (2021). Forest carbon management: A review of Silvicultural practices and management strategies across boreal, temperate and tropical forests. Current Forestry Reports, 7, 245–266. https://doi.org/10.1007/s40725‐021‐00151‐w

Aronesty, E. (2013). Comparison of sequencing utility programs. Open Bioinformatics Journal, 7, 1–8. https://doi.org/10.2174/1875036201307010001

Baldrian, P. (2009). Microbial enzyme‐catalyzed processes in soils and their analysis. Plant, Soil and Environment, 55, 370–378. https://doi.org/10.17221/134/2009‐PSE

Baldrian, P., Bell‐Dereske, L., Lepinay, C., Větrovský, T., & Kohout, P. (2022). Fungal communities in soils under global change. Studies in Mycology, 103, 1–24. https://doi.org/10.3114/sim.2022.103.01

Baldrian, P., López‐Mondéjar, R., & Kohout, P. (2023). Forest microbiome and global change. Nature Reviews. Microbiology, 21, 487–501. https://doi.org/10.1038/s41579‐023‐00876‐4

Baldrian, P., & Valášková, V. (2008). Degradation of cellulose by basidiomycetous fungi. FEMS Microbiology Reviews, 32, 501–521. https://doi.org/10.1111/j.1574‐6976.2008.00106.x

Baldrian, P., Voříšková, J., Dobiášová, P., Merhautová, V., Lisá, L., & Valášková, V. (2011). Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant and Soil, 338, 111–125. https://doi.org/10.1007/s11104‐010‐0324‐3

Bao, Y., Dolfing, J., Guo, Z., Chen, R., Wu, M., Li, Z., Lin, X., & Feng, Y. (2021). Important ecophysiological roles of non‐dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome, 9, 84. https://doi.org/10.1186/s40168‐021‐01032‐x

Bengtsson‐Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., De Wit, P., Sánchez‐García, M., Ebersberger, I., De Sousa, F., Amend, A., Jumpponen, A., Unterseher, M., Kristiansson, E., Abarenkov, K., Bertrand, Y. J. K., Sanli, K., Eriksson, K. M., Vik, U., … Nilsson, R. H. (2013). Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 4, 914–919. https://doi.org/10.1111/2041‐210X.12073

Bentler, P. M., & Chou, C. P. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16, 78–117.

Bödeker, I. T. M., Clemmensen, K. E., De Boer, W., Martin, F., Olson, Å., & Lindahl, B. D. (2014). Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. The New Phytologist, 203, 245–256. https://doi.org/10.1111/nph.12791

Busk, P. K., Pilgaard, B., Lezyk, M. J., Meyer, A. S., & Lange, L. (2017). Homology to peptide pattern for annotation of carbohydrate‐active enzymes and prediction of function. BMC Bioinformatics, 18, 1–9.

Cao, Y., Dong, Q., Wang, D., Zhang, P., Liu, Y., & Niu, C. (2022). microbiomeMarker: An R/Bioconductor package for microbiome marker identification and visualization. Bioinformatics, btac438, 4027–4029.

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg‐Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences, 108, 4516–4522. https://doi.org/10.1073/pnas.1000080107

Chalot, M., & Brun, A. (1998). Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiology Reviews, 22, 21–44. https://doi.org/10.1111/j.1574‐6976.1998.tb00359.x

Chang, R., Wang, Y., Liu, Y., Wang, Y., Li, S., Zhao, G., Zhang, S., Dai, M., Zheng, X., Bose, T., & Si, H. (2023). Nine new species of black lichenicolous fungi from the genus Cladophialophora (Chaetothyriales) from two different climatic zones of China. Frontiers in Microbiology, 14, 1191818. https://doi.org/10.3389/fmicb.2023.1191818

Chen, D., Li, J., Lan, Z., Hu, S., & Bai, Y. (2016). Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long‐term nitrogen enrichment. Functional Ecology, 30, 658–669. https://doi.org/10.1111/1365‐2435.12525

Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., Stenlid, J., Finlay, R. D., Wardle, D. A., & Lindahl, B. D. (2013). Roots and associated fungi drive long‐term carbon sequestration in boreal Forest. Science, 339, 1615–1618. https://doi.org/10.1126/science.1231923

Clemmensen, K. E., Finlay, R. D., Dahlberg, A., Stenlid, J., Wardle, D. A., & Lindahl, B. D. (2015). Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boreal forests. The New Phytologist, 205, 1525–1536. https://doi.org/10.1111/nph.13208

Cleveland, C. C., & Liptzin, D. (2007). C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235–252. https://doi.org/10.1007/s10533‐007‐9132‐0

Craine, J. M., Morrow, C., & Fierer, N. (2007). Microbial nitrogen limitation increases decomposition. Ecology, 88, 2105–2113. https://doi.org/10.1890/06‐1847.1

De Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhann, D., Van Oijen, M., Evans, C., Gundersen, P., Kros, J., Wamelink, G. W. W., Reinds, G. J., & Sutton, M. A. (2009). The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecology and Management, 258, 1814–1823. https://doi.org/10.1016/j.foreco.2009.02.034

Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., Van Lissa, C. J., Zhao, X., Xia, N., Wu, X., & Jackson, R. B. (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221–226. https://doi.org/10.1038/s41561‐019‐0530‐4

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461

Eichlerová, I., Homolka, L., Žifčáková, L., Lisá, L., Dobiášová, P., & Baldrian, P. (2015). Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. Fungal Ecology, 13, 10–22. https://doi.org/10.1016/j.funeco.2014.08.002

Fernandez, C. W., & Kennedy, P. G. (2018). Melanization of mycorrhizal fungal necromass structures microbial decomposer communities. Journal of Ecology, 106, 468–479. https://doi.org/10.1111/1365‐2745.12920

Fernandez, C. W., Langley, J. A., Chapman, S., McCormack, M. L., & Koide, R. T. (2016). The decomposition of ectomycorrhizal fungal necromass. Soil Biology and Biochemistry, 93, 38–49. https://doi.org/10.1016/j.soilbio.2015.10.017

Gadgil, R., & Gadgil, P. (1971). Mycorrhiza and litter decomposition. Nature, 233, 133.

Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., & Vöosmarty, C. J. (2004). Nitrogen cycles: Past, present, and future. Biogeochemistry, 70, 153–226. https://doi.org/10.1007/s10533‐004‐0370‐0

Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z., & Schepaschenko, D. G. (2015). Boreal forest health and global change. Science, 349, 819–822. https://doi.org/10.1126/science.aaa9092

Geisseler, D., & Scow, K. M. (2014). Long‐term effects of mineral fertilizers on soil microorganisms—A review. Soil Biology and Biochemistry, 75, 54–63. https://doi.org/10.1016/j.soilbio.2014.03.023

Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32, 390–399. https://doi.org/10.1111/sum.12270

Grace, J. B., Schoolmaster, D. R., Guntenspergen, G. R., Little, A. M., Mitchell, B. R., Miller, K. M., & Schweiger, E. W. (2012). Guidelines for a graph‐theoretic implementation of structural equation modeling. Ecosphere, 3, art73. https://doi.org/10.1890/ES12‐00048.1

Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., De Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., Potapov, P. V., Suarez, D. R., Roman‐Cuesta, R. M., Saatchi, S. S., Slay, C. M., Turubanova, S. A., & Tyukavina, A. (2021). Global maps of twenty‐first century forest carbon fluxes. Nature Climate Change, 11, 234–240. https://doi.org/10.1038/s41558‐020‐00976‐6

Hawkins, H.‐J., Cargill, R. I. M., Van Nuland, M. E., Hagen, S. C., Field, K. J., Sheldrake, M., Soudzilovskaia, N. A., & Kiers, E. T. (2023). Mycorrhizal mycelium as a global carbon pool. Current Biology, 33, R560–R573. https://doi.org/10.1016/j.cub.2023.02.027

Heinonen, J. (1994). Koealojen puu‐ ja puustotunnusten laskentaohjelma: KPL; käyttöohje, Metsäntutkimuslaitoksen tiedonantoja. Metsäntutkimuslaitos, Helsinki.

Högberg, P., Näsholm, T., Franklin, O., & Högberg, M. N. (2017). Tamm review: On the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. Forest Ecology and Management, 403, 161–185. https://doi.org/10.1016/j.foreco.2017.04.045

Hood‐Nowotny, R., Umana, N. H.‐N., Inselbacher, E., Oswald‐ Lachouani, P., & Wanek, W. (2010). Alternative methods for measuring inorganic, organic, and Total dissolved nitrogen in soil. Soil Science Society of America Journal, 74, 1018–1027. https://doi.org/10.2136/sssaj2009.0389

Hyvönen, R., Persson, T., Andersson, S., Olsson, B., Ågren, G. I., & Linder, S. (2008). Impact of long‐term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry, 89, 121–137. https://doi.org/10.1007/s10533‐007‐9121‐3

Ihrmark, K., Bödeker, I. T. M., Cruz‐Martinez, K., Friberg, H., Kubartova, A., Schenck, J., Strid, Y., Stenlid, J., Brandström‐Durling, M., Clemmensen, K. E., & Lindahl, B. D. (2012). New primers to amplify the fungal ITS2 region—evaluation by 454‐sequencing of artificial and natural communities. FEMS Microbiology Ecology, 82, 666–677. https://doi.org/10.1111/j.1574‐6941.2012.01437.x

Janssens, I. A., Dieleman, W., Luyssaert, S., Subke, J.‐A., Reichstein, M., Ceulemans, R., Ciais, P., Dolman, A. J., Grace, J., Matteucci, G., Papale, D., Piao, S. L., Schulze, E.‐D., Tang, J., & Law, B. E. (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315–322. https://doi.org/10.1038/ngeo844

Jörgensen, K., Granath, G., Lindahl, B. D., & Strengbom, J. (2021). Forest management to increase carbon sequestration in boreal Pinus sylvestris forests. Plant and Soil, 466, 165–178. https://doi.org/10.1007/s11104‐021‐05038‐0

Jörgensen, K., Granath, G., Strengbom, J., & Lindahl, B. D. (2022). Links between boreal forest management, soil fungal communities and below‐ground carbon sequestration. Functional Ecology, 36, 392–405. https://doi.org/10.1111/1365‐2435.13985

Karhu, K., Auffret, M. D., Dungait, J. A. J., Hopkins, D. W., Prosser, J. I., Singh, B. K., Subke, J.‐A., Wookey, P. A., Ågren, G. I., Sebastià, M.‐T., Gouriveau, F., Bergkvist, G., Meir, P., Nottingham, A. T., Salinas, N., & Hartley, I. P. (2014). Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 513, 81–84. https://doi.org/10.1038/nature13604

Kohler, A., Kuo, A., Nagy, L. G., Morin, E., Barry, K. W., Buscot, F., Canbäck, B., Choi, C., Cichocki, N., Clum, A., Colpaert, J., Copeland, A., Costa, M. D., Doré, J., Floudas, D., Gay, G., Girlanda, M., Henrissat, B., Herrmann, S., … Martin, F. (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 47, 410–415. https://doi.org/10.1038/ng.3223

Korhonen, J. F. J., Pihlatie, M., Pumpanen, J., Aaltonen, H., Hari, P., Levula, J., Kieloaho, A.‐J., Nikinmaa, E., Vesala, T., & Ilvesniemi, H. (2013). Nitrogen balance of a boreal scots pine forest. Biogeosciences, 10, 1083–1095. https://doi.org/10.5194/bg‐10‐1083‐2013

Laasasenaho, J. (1982). Taper curve and volume functions for pine, spruce and birch, Communicationes Instituti Forestalis Fenniae. The Finnish Forest Research Institute <Metsäntutkimuslaitos>, Helsinki.

Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573–579. https://doi.org/10.1111/2041‐210X.12512

Li, Y., Sun, J., Tian, D., Wang, J., Ha, D., Qu, Y., Jing, G., & Niu, S. (2018). Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Science of the Total Environment, 615, 1535–1546. https://doi.org/10.1016/j.scitotenv.2017.09.131

Lindahl, B. D., Kyaschenko, J., Varenius, K., Clemmensen, K. E., Dahlberg, A., Karltun, E., & Stendahl, J. (2021). A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest. Ecology Letters, 24, 1341–1351. https://doi.org/10.1111/ele.13746

Lindahl, B. D., & Tunlid, A. (2015). Ectomycorrhizal fungi—Potential organic matter decomposers, yet not saprotrophs. The New Phytologist, 205, 1443–1447.

Lynch, J. M., & Whipps, J. M. (1991). Substrate flow in the rhizosphere. In The rhizosphere and plant growth (pp. 15–24). Beltsville Symposia in Agricultural Research. Springer.

Maaroufi, N. I., Nordin, A., Hasselquist, N. J., Bach, L. H., Palmqvist, K., & Gundale, M. J. (2015). Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Global Change Biology, 21, 3169–3180. https://doi.org/10.1111/gcb.12904

Malhi, Y., Baldocchi, D. D., & Jarvis, P. G. (1999). The carbon balance of tropical, temperate and boreal forests. Plant, Cell & Environment, 22, 715–740. https://doi.org/10.1046/j.1365‐3040.1999.00453.x

Martinović, T., Odriozola, I., Mašínová, T., Doreen Bahnmann, B., Kohout, P., Sedlák, P., Merunková, K., Větrovský, T., Tomšovský, M., Ovaskainen, O., & Baldrian, P. (2021). Temporal turnover of the soil microbiome composition is guild‐specific. Ecology Letters, 24, 2726–2738. https://doi.org/10.1111/ele.13896

Mayer, M., Rewald, B., Matthews, B., Sandén, H., Rosinger, C., Katzensteiner, K., Gorfer, M., Berger, H., Tallian, C., Berger, T. W., & Godbold, D. L. (2021). Soil fertility relates to fungal‐mediated decomposition and organic matter turnover in a temperate mountain forest. The New Phytologist, 231, 777–790. https://doi.org/10.1111/nph.17421

McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8, e61217.

Miyauchi, S., Kiss, E., Kuo, A., Drula, E., Kohler, A., Sánchez‐García, M., Morin, E., Andreopoulos, B., Barry, K. W., Bonito, G., Buée, M., Carver, A., Chen, C., Cichocki, N., Clum, A., Culley, D., Crous, P. W., Fauchery, L., Girlanda, M., … Martin, F. M. (2020). Large‐scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 11, 5125. https://doi.org/10.1038/s41467‐020‐18795‐w

Morin, E., Kohler, A., Baker, A. R., Foulongne‐Oriol, M., Lombard, V., Nagye, L. G., Ohm, R. A., Patyshakuliyeva, A., Brun, A., Aerts, A. L., Bailey, A. M., Billette, C., Coutinho, P. M., Deakin, G., Doddapaneni, H., Floudas, D., Grimwood, J., Hildén, K., Kües, U., … Martin, F. (2012). Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic‐rich ecological niche. Proceedings of the National Academy of Sciences, 109, 17501–17506. https://doi.org/10.1073/pnas.1206847109

Nilsson, R. H., Larsson, K.‐H., Taylor, A. F. S., Bengtsson‐Palme, J., Jeppesen, T. S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo, L., Saar, I., Kõljalg, U., & Abarenkov, K. (2019). The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47, D259–D264. https://doi.org/10.1093/nar/gky1022

Olsson, P., Linder, S., Giesler, R., & Högberg, P. (2005). Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Global Change Biology, 11, 1745–1753. https://doi.org/10.1111/j.1365‐2486.2005.001033.x

Orwin, K. H., Kirschbaum, M. U. F., St John, M. G., & Dickie, I. A. (2011). Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model‐based assessment: Organic nutrient uptake enhances soil C. Ecology Letters, 14, 493–502. https://doi.org/10.1111/j.1461‐0248.2011.01611.x

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the World's forests. Science, 333, 988–993. https://doi.org/10.1126/science.1201609

Pebesma, E. (2018). Simple features for R: Standardized support for spatial vector data. R Journal, 10, 439. https://doi.org/10.32614/RJ‐2018‐009

Picart, P., Diaz, P., & Pastor, F. I. J. (2007). Cellulases from two Penicillium sp. strains isolated from subtropical forest soil: Production and characterization. Letters in Applied Microbiology, 45, 108–113. https://doi.org/10.1111/j.1472‐765X.2007.02148.x

Pinheiro, J., & Bates, D. (2000). Mixed‐effects models in S and S‐PLUS. Springer.

Põlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B. D., Clemmensen, K. E., Kauserud, H., Nguyen, N., Kjøller, R., Bates, S. T., Baldrian, P., Frøslev, T. G., Adojaan, K., Vizzini, A., Suija, A., Pfister, D., Baral, H.‐O., Järv, H., Madrid, H., Nordén, J., … Tedersoo, L. (2020). FungalTraits: A user‐friendly traits database of fungi and fungus‐like stramenopiles. Fungal Diversity, 105, 1–16. https://doi.org/10.1007/s13225‐020‐00466‐2

Pregitzer, K. S., Burton, A. J., Zak, D. R., & Talhelm, A. F. (2008). Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests. Global Change Biology, 14, 142–153. https://doi.org/10.1111/j.1365‐2486.2007.01465.x

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: Improved data processing and web‐based tools. Nucleic Acids Research, 41, D590–D596. https://doi.org/10.1093/nar/gks1219

R Core Team. (2022). R: A language and environment for statistical computing. R foundation for statistical computing.

Repola, J. (2008). Biomass equations for birch in Finland. Silva Fennica, 42, 605–624. https://doi.org/10.14214/sf.236

Repola, J. (2009). Biomass equations for scots pine and Norway spruce in Finland. Silva Fennica, 43, 625–647. https://doi.org/10.14214/sf.184

Řezáčová, V., Slavíková, R., Konvalinková, T., Zemková, L., Řezáč, M., Gryndler, M., Šmilauer, P., Gryndlerová, H., Hršelová, H., Bukovská, P., & Jansa, J. (2019). Geography and habitat predominate over climate influences on arbuscular mycorrhizal fungal communities of mid‐European meadows. Mycorrhiza, 29, 567–579. https://doi.org/10.1007/s00572‐019‐00921‐2

Richy, E., Cabello‐Yeves, P. J., Hernandes‐Coutinho, F., Rodriguez‐Valera, F., González‐Álvarez, I., Gandois, L., Rigal, F., & Lauga, B. (2024). How microbial communities shape peatland carbon dynamics: New insights and implications. Soil Biology and Biochemistry, 191, 109345. https://doi.org/10.1016/j.soilbio.2024.109345

Saarsalmi, A., Tamminen, P., & Kukkola, M. (2014). Effects of long‐term fertilisation on soil properties in Scots pine and Norway spruce stands. Silva Fennica, 48, 1–19. https://doi.org/10.14214/sf.989

Sagova‐Mareckova, M., Cermak, L., Novotna, J., Plhackova, K., Forstova, J., & Kopecky, J. (2008). Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Applied and Environmental Microbiology, 74, 2902–2907. https://doi.org/10.1128/AEM.02161‐07

Schulte‐Uebbing, L. F., Ros, G. H., & De Vries, W. (2022). Experimental evidence shows minor contribution of nitrogen deposition to global forest carbon sequestration. Global Change Biology, 28, 899–917. https://doi.org/10.1111/gcb.15960

Skonieczna, J., Małek, S., Polowy, K., & Węgiel, A. (2014). Element content of scots pine (Pinus sylvestris L.) stands of different densities. Drew. Pr. Nauk. Doniesienia Komun. Wood Research Papers, Reports, Announcements, 57, 77–87. https://doi.org/10.12841/wood.1644‐3985.S13.05

Šnajdr, J., Valášková, V., Merhautová, V., Herinková, J., Cajthaml, T., & Baldrian, P. (2008). Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biology and Biochemistry, 40, 2068–2075. https://doi.org/10.1016/j.soilbio.2008.01.015

Soudzilovskaia, N. A., Van Bodegom, P. M., Terrer, C., Zelfde, M. V., McCallum, I., Luke McCormack, M., Fisher, J. B., Brundrett, M. C., De Sá, N. C., & Tedersoo, L. (2019). Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nature Communications, 10, 5077. https://doi.org/10.1038/s41467‐019‐13019‐2

Štursová, M., & Baldrian, P. (2011). Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil‐bound and free activity. Plant and Soil, 338, 99–110. https://doi.org/10.1007/s11104‐010‐0296‐3

Tao, F., Huang, Y., Hungate, B. A., Manzoni, S., Frey, S. D., Schmidt, M. W. I., Reichstein, M., Carvalhais, N., Ciais, P., Jiang, L., Lehmann, J., Wang, Y.‐P., Houlton, B. Z., Ahrens, B., Mishra, U., Hugelius, G., Hocking, T. D., Lu, X., Shi, Z., … Luo, Y. (2023). Microbial carbon use efficiency promotes global soil carbon storage. Nature, 618, 981–985. https://doi.org/10.1038/s41586‐023‐06042‐3

Tian, D., & Niu, S. (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 24019. https://doi.org/10.1088/1748‐9326/10/2/024019

Tipping, E., Davies, J. A. C., Henrys, P. A., Kirk, G. J. D., Lilly, A., Dragosits, U., Carnell, E. J., Dore, A. J., Sutton, M. A., & Tomlinson, S. J. (2017). Long‐term increases in soil carbon due to ecosystem fertilization by atmospheric nitrogen deposition demonstrated by regional‐scale modelling and observations. Scientific Reports, 7, 1890. https://doi.org/10.1038/s41598‐017‐02002‐w

Tláskal, V., & Baldrian, P. (2021). Deadwood‐inhabiting bacteria show adaptations to changing carbon and nitrogen availability during decomposition. Frontiers in Microbiology, 12, 685303. https://doi.org/10.3389/fmicb.2021.685303

Treseder, K. K. (2004). A meta‐analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. The New Phytologist, 164, 347–355. https://doi.org/10.1111/j.1469‐8137.2004.01159.x

Treseder, K. K. (2008). Nitrogen additions and microbial biomass: A meta‐analysis of ecosystem studies. Ecology Letters, 11, 1111–1120. https://doi.org/10.1111/j.1461‐0248.2008.01230.x

Treseder, K. K., Marusenko, Y., Romero‐Olivares, A. L., & Maltz, M. R. (2016). Experimental warming alters potential function of the fungal community in boreal forest. Global Change Biology, 22, 3395–3404. https://doi.org/10.1111/gcb.13238

Větrovský, T., Baldrian, P., & Morais, D. (2018). SEED 2: A user‐friendly platform for amplicon high‐throughput sequencing data analyses. Bioinformatics, 34, 2292–2294. https://doi.org/10.1093/bioinformatics/bty071

Viechtbauer, W. (2010). Conducting meta‐analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48. https://doi.org/10.18637/jss.v036.i03

Xing, A., Du, E., Shen, H., Xu, L., De Vries, W., Zhao, M., Liu, X., & Fang, J. (2022). Nonlinear responses of ecosystem carbon fluxes to nitrogen deposition in an old‐growth boreal forest. Ecology Letters, 25, 77–88. https://doi.org/10.1111/ele.13906

Zhang, T., Chen, H. Y. H., & Ruan, H. (2018). Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 12, 1817–1825. https://doi.org/10.1038/s41396‐018‐0096‐y

Zheng, M., Zhang, T., Luo, Y., Liu, J., Lu, X., Ye, Q., Wang, S., Huang, J., Mao, Q., Mo, J., & Zhang, W. (2022). Temporal patterns of soil carbon emission in tropical forests under long‐term nitrogen deposition. Nature Geoscience, 15, 1002–1010. https://doi.org/10.1038/s41561‐022‐01080‐4

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Long-read sequencing sheds light on key bacteria contributing to deadwood decomposition processes

. 2024 Dec 03 ; 19 (1) : 99. [epub] 20241203

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...