Castration-resistant prostate cancer monitoring by cell-free circulating biomarkers

. 2024 ; 14 () : 1394292. [epub] 20240910

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39319053

BACKGROUND: Prostate cancer is the second leading cause of male cancer-related deaths in Western countries, which is predominantly attributed to the metastatic castration-resistant stage of the disease (CRPC). There is an urgent need for better prognostic and predictive biomarkers, particularly for androgen receptor targeted agents and taxanes. METHODS: We have searched the PubMed database for original articles and meta-analyses providing information on blood-based markers for castration-resistant prostate cancer monitoring, risk group stratification and prediction of therapy response. RESULTS: The molecular markers are discussed along with the standard clinical parameters, such as prostate specific antigen, lactate dehydrogenase or C-reactive protein. Androgen receptor (AR) alterations are commonly associated with progression to CRPC. These include amplification of AR and its enhancer, point mutations and splice variants. Among DNA methylations, a novel 5-hydroxymethylcytosine activation marker of TOP2A and EZH2 has been identified for the aggressive disease. miR-375 is currently the most promising candidate among non-coding RNAs and sphingolipid analysis has recently emerged as a novel approach. CONCLUSIONS: The promising biomarkers have the potential to improve the care of metastatic prostate cancer patients, however, they need further validation for routine implementation.

Zobrazit více v PubMed

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. (2023) 73:17–48. doi: 10.3322/caac.21763 PubMed DOI

Karantanos T, Corn PG, Thompson TC. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene. (2013) 32:5501–11. doi: 10.1038/onc.2013.206 PubMed DOI PMC

Roviello G, Catalano M, Ottanelli C, Giorgione R, Rossi V, Gambale E, et al. . Castration-resistant prostate cancer with bone metastases: toward the best therapeutic choice. Med Oncol. (2022) 39:145. doi: 10.1007/s12032-022-01739-3 PubMed DOI

Wang J, Ben-David R, Mehrazin R, Yang W, Tewari AK, Kyprianou N. Novel signatures of prostate cancer progression and therapeutic resistance. Expert Opin Ther Targets. (2023) 27:1195–206. doi: 10.1080/14728222.2023.2293757 PubMed DOI

Madueke I, Lee RJ, Miyamoto DT. Circulating tumor cells and circulating tumor DNA in urologic cancers. Urol Clin North Am. (2023) 50:109–14. doi: 10.1016/j.ucl.2022.09.010 PubMed DOI

Trujillo B, Wu A, Wetterskog D, Attard G. Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br J Cancer. (2022) 127:1394–402. doi: 10.1038/s41416-022-01881-9 PubMed DOI PMC

Tulpule V, Morrison GJ, Falcone M, Quinn DI, Goldkorn A. Integration of liquid biopsies in clinical management of metastatic prostate cancer. Curr Oncol Rep. (2022) 24:1287–98. doi: 10.1007/s11912-022-01278-0 PubMed DOI PMC

Cieślikowski WA, Antczak A, Nowicki M, Zabel M, Budna-Tukan J. Clinical relevance of circulating tumor cells in prostate cancer management. Biomedicines. (2021) 9:1179. doi: 10.3390/biomedicines9091179 PubMed DOI PMC

Kahounová Z, Pícková M, Drápela S, Bouchal J, Szczyrbová E, Navrátil J, et al. . Circulating tumor cell-derived preclinical models: current status and future perspectives. Cell Death Dis. (2023) 14:530. doi: 10.1038/s41419-023-06059-6 PubMed DOI PMC

Groen L, Schalken J. Liquid biopsy for prostate and bladder cancer: progress and pitfalls. Eur Urol Focus. (2022) 8:904–6. doi: 10.1016/j.euf.2022.08.013 PubMed DOI

Tang L, Li X, Wang B, Luo G, Gu L, Chen L, et al. . Prognostic value of neutrophil-to-lymphocyte ratio in localized and advanced prostate cancer: A systematic review and meta-analysis. PloS One. (2016) 11:e0153981. doi: 10.1371/journal.pone.0153981 PubMed DOI PMC

Guan Y, Xiong H, Feng Y, Liao G, Tong T, Pang J. Revealing the prognostic landscape of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in metastatic castration-resistant prostate cancer patients treated with abiraterone or enzalutamide: a meta-analysis. Prostate Cancer Prostatic Dis. (2020) 23:220–31. doi: 10.1038/s41391-020-0209-3 PubMed DOI

Zhou M, Liang J, Hui J, Xu J. Inflammation-related indicators have a potential to increase overall quality of the prostate cancer management: a narrative review. Transl Androl Urol. (2023) 12:809–22. doi: 10.21037/tau PubMed DOI PMC

Lolli C, Caffo O, Scarpi E, Aieta M, Conteduca V, Maines F, et al. . Systemic immune-inflammation index predicts the clinical outcome in patients with mCRPC treated with abiraterone. Front Pharmacol. (2016) 13:7:376. doi: 10.3389/fphar.2016.00376 PubMed DOI PMC

Koo KC, Lee JS, Ha JS, Han KS, Lee KS, Hah YS, et al. . Optimal sequencing strategy using docetaxel and androgen receptor axis-targeted agents in patients with castration-resistant prostate cancer: utilization of neutrophil-to-lymphocyte ratio. World J Urol. (2019) 37:2375–84. doi: 10.1007/s00345-019-02658-1 PubMed DOI

Kerr BA, Harris KS, Shi L, Willey JS, Soto-Pantoja DR, Byzova TV. Platelet TSP-1 controls prostate cancer-induced osteoclast differentiation and bone marrow-derived cell mobilization through TGFβ-1. Am J Clin Exp Urol. (2021) 9:18–31. PubMed PMC

Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. (2008) 454:436–44. doi: 10.1038/nature07205 PubMed DOI

Qi W, Zhou Y, Liu Z, Wang J, Lv G, Zhong M, et al. . Revealing the prognostic and clinicopathological significance of systemic immune-inflammation index in patients with diierent stage prostate cancer: A systematic review and meta-analysis. Front Med. (2022) 9:1–12. doi: 10.3389/fmed.2022.1052943 PubMed DOI PMC

Sevcenco S, Mathieu R, Baltzer P, Klatte T, Fajkovic H, Seitz C, et al. . The prognostic role of preoperative serum C-reactive protein in predicting the biochemical recurrence in patients treated with radical prostatectomy. Prostate Cancer Prostatic Dis. (2016) 19:163–7. doi: 10.1038/pcan.2015.60 PubMed DOI

Gómez-Gómez E, Carrasco-Valiente J, Campos-Hernández JP, Blanca-Pedregosa AM, Jiménez-Vacas JM, Ruiz-García J, et al. . Clinical association of metabolic syndrome, C-reactive protein and testosterone levels with clinically significant prostate cancer. J Cell Mol Med. (2019) 23:934–42. doi: 10.1111/jcmm.13994 PubMed DOI PMC

Xu L, Zhao Q, Huang S, Li S, Wang J, Li Q. Serum C-reactive protein acted as a prognostic biomarker for overall survival in metastatic prostate cancer patients. Tumor Biol. (2015) 36:669–73. doi: 10.1007/s13277-014-2670-x PubMed DOI

Schnoeller TJ, Steinestel J, Steinestel K, Jentzmik F, Schrader AJ. Do preoperative serum C-reactive protein levels predict the definitive pathological stage in patients with clinically localized prostate cancer? Int Urol Nephrol. (2015) 47:765–70. doi: 10.1007/s11255-015-0952-x PubMed DOI

Tulloch-Reid MK, McFarlane-Anderson N, Bennett FI, Aiken WD, Jackson MD. Effects of cholesterol, C-reactive protein, and interleukin-6 on prostate cancer risk in a population of African ancestry. Cancer Causes Control. (2017) 28:1313–21. doi: 10.1007/s10552-017-0945-4 PubMed DOI

Canat L, Atalay HA, Can O, Alkan İ, Ötünçtemur A. Serum procalcitonin levels in prostate cancer: A new biomarker? Urologia. (2018) 85:46–50. doi: 10.1177/0391560317752600 PubMed DOI

Ilktac A, Kalkan S, Caliskan S. C-reactive protein and procalcitonin levels in prostate cancer. Int J Clin Pract. (2021) 75:e13935. doi: 10.1111/ijcp.13935 PubMed DOI

Ando K, Sakamoto S, Saito S, Maimaiti M, Imamura Y, Sazuka T, et al. . Prognostic value of high-sensitivity modified glasgow prognostic score in castration-resistant prostate cancer patients who received docetaxel. Cancers (Basel). (2021) 13:1–14. doi: 10.3390/cancers13040773 PubMed DOI PMC

Bryce AH, Alumkal JJ, Armstrong A, Higano CS, Iversen P, Sternberg CN, et al. . Radiographic progression with nonrising PSA in metastatic castration-resistant prostate cancer: Post hoc analysis of PREVAIL. Prostate Cancer Prostatic Dis. (2017) 20:221–7. doi: 10.1038/pcan.2016.71 PubMed DOI PMC

Hamano I, Hatakeyama S, Narita S, Takahashi M, Sakurai T, Kawamura S, et al. . Impact of nadir PSA level and time to nadir during initial androgen deprivation therapy on prognosis in patients with metastatic castration-resistant prostate cancer. World J Urol. (2019) 37:2365–73. doi: 10.1007/s00345-019-02664-3 PubMed DOI

Li D, Lv H, Hao X, Hu B, Song Y. Prognostic value of serum alkaline phosphatase in the survival of prostate cancer: Evidence from a meta-analysis. Cancer Manag Res. (2018) 10:3125–39. doi: 10.2147/CMAR PubMed DOI PMC

Forkasiewicz A, Dorociak M, Stach K, Szelachowski P, Tabola R, Augoff K. The usefulness of lactate dehydrogenase measurements in current oncological practice. Cell Mol Biol Lett. (2020) 9;25:35. doi: 10.1186/s11658-020-00228-7 PubMed DOI PMC

Scher HI, Jia X, de Bono JS, Fleisher M, Pienta KJ, Raghavan D, et al. . Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. (2009) 10:233–9. doi: 10.1016/S1470-2045(08)70340-1 PubMed DOI PMC

Galletti G, Portella L, Tagawa ST, Kirby BJ, Giannakakou P, Nanus DM. Circulating tumor cells in prostate cancer diagnosis and monitoring: an appraisal of clinical potential. Mol Diagn Ther. (2014) 18:389–402. doi: 10.1007/s40291-014-0101-8 PubMed DOI PMC

Mitsui Y, Yamabe F, Hori S, Uetani M, Aoki H, Sakurabayashi K, et al. . Combination of C-reactive protein/albumin ratio and time to castration resistance enhances prediction of prognosis for patients with metastatic castration-resistant prostate cancer. Front Oncol. (2023) 13:1162820. doi: 10.3389/fonc.2023.1162820 PubMed DOI PMC

Hakozaki Y, Yamada Y, Takeshima Y, Taguchi S, Kawai T, Nakamura M, et al. . Low hemoglobin and PSA kinetics are prognostic factors of overall survival in metastatic castration-resistant prostate cancer patients. Sci Rep. (2023) 13:2672. doi: 10.1038/s41598-023-29634-5 PubMed DOI PMC

Wibmer AG, Morris MJ, Gonen M, Zheng J, Hricak H, Larson S, et al. . Quantification of metastatic prostate cancer whole-body tumor burden with 18F-FDG PET parameters and associations with overall survival after first-line abiraterone or enzalutamide: A single-center retrospective cohort study. J Nucl Med. (2021) 62:1050–6. doi: 10.2967/jnumed.120.256602 PubMed DOI PMC

Merkens L, Sailer V, Lessel D, Janzen E, Greimeier S, Kirfel J, et al. . Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation. J Exp Clin Cancer Res. (2022) 41:46. doi: 10.1186/s13046-022-02255-y PubMed DOI PMC

Huang YH, Zhang YQ, Huang JT. Neuroendocrine cells of prostate cancer: biologic functions and molecular mechanisms. Asian J Androl. (2019) 21:291–5. doi: 10.4103/aja.aja_128_18 PubMed DOI PMC

Pernicová Z, Slabáková E, Fedr R, Šimečková Š, Jaroš J, Suchánková T, et al. . The role of high cell density in the promotion of neuroendocrine transdifferentiation of prostate cancer cells. Mol Cancer. (2014) 13:113. doi: 10.1186/1476-4598-13-113 PubMed DOI PMC

Pernicová Z, Slabáková E, Kharaishvili G, Bouchal J, Král M, Kunická Z, et al. . Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia. (2011) 13:526–36. doi: 10.1593/neo.11182 PubMed DOI PMC

Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. . SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. (2017) 355:84–8. doi: 10.1126/science.aah4307 PubMed DOI PMC

Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, et al. . Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. (2017) 355:78–83. doi: 10.1126/science.aah4199 PubMed DOI PMC

Sreekumar A, Saini S. Role of transcription factors and chromatin modifiers in driving lineage reprogramming in treatment-induced neuroendocrine prostate cancer. Front Cell Dev Biol. (2023) 11:1075707. doi: 10.3389/fcell.2023.1075707 PubMed DOI PMC

Conteduca V, Burgio SL, Menna C, Carretta E, Rossi L, Bianchi E, et al. . Chromogranin A is a potential prognostic marker in prostate cancer patients treated with enzalutamide. Prostate. (2014) 74:1691–6. doi: 10.1002/pros.v74.16 PubMed DOI

Bray AW, Duan R, Malalur P, Drusbosky LM, Gourdin TS, Hill EG, et al. . Elevated serum CEA is associated with liver metastasis and distinctive circulating tumor DNA alterations in patients with castration-resistant prostate cancer. Prostate. (2022) 82:1264–72. doi: 10.1002/pros.24400 PubMed DOI PMC

Aparicio AM, Harzstark AL, Corn PG, Wen S, Araujo JC, Tu SM, et al. . Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res. (2013) 19:3621–30. doi: 10.1158/1078-0432.CCR-12-3791 PubMed DOI PMC

Bardelli A, Pantel K. Liquid biopsies, what we do not know (Yet). Cancer Cell Cell Press;. (2017) 31:172–9. doi: 10.1016/j.ccell.2017.01.002 PubMed DOI

Mouliere F, Rosenfeld N. Circulating tumor-derived DNA is shorter than somatic DNA in plasma. Proc Natl Acad Sci U S A. (2015) 112:3178–9. doi: 10.1073/pnas.1501321112 PubMed DOI PMC

Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. . Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat Rev Cancer. (2017) 17:223–38. doi: 10.1038/nrc.2017.7 PubMed DOI

Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. . Circulating mutant DNA to assess tumor dynamics. Nat Med. (2008) 14:985–90. doi: 10.1038/nm.1789 PubMed DOI PMC

Dawson SJ, Tsui DWY, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. . Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. (2013) 368:1199–209. doi: 10.1056/NEJMoa1213261 PubMed DOI

Zainfeld D, Goldkorn A. Liquid biopsy in prostate cancer: circulating tumor cells and beyond. Cancer Treat Res. (2018) 175:87–104. doi: 10.1007/978-3-319-93339-9_4 PubMed DOI PMC

Torquato S, Pallavajjala A, Goldstein A, Toro PV, Silberstein JL, Lee J, et al. . Genetic alterations detected in cell-free DNA are associated with enzalutamide and abiraterone resistance in castration-resistant prostate cancer. JCO Precis Oncol. (2019) 3:PO.18.00227. doi: 10.1200/PO.18.00227 PubMed DOI PMC

Liu H, Gao Y, Vafaei S, Gu X, Zhong X. The prognostic value of plasma cell-free DNA concentration in the prostate cancer: A systematic review and meta-analysis. Front Oncol. (2021) 11:599602. doi: 10.3389/fonc.2021.599602 PubMed DOI PMC

Reichert ZR, Morgan TM, Li G, Castellanos E, Snow T, Dall’Olio FG, et al. . Prognostic value of plasma circulating tumor DNA fraction across four common cancer types: a real-world outcomes study. Ann Oncol. (2023) 34:111–20. doi: 10.1016/j.annonc.2022.09.163 PubMed DOI PMC

Aghamir SMK, Rahimnia A, Zadeh SST, Roudgari H. Circulating tumor cells and DNAs in prostate tumors. In: Liquid biopsy in urogenital cancers and its clinical utility. Amsterdam, Netherlands: Elsevier; (2022). p. 67–99.

Husain H, Pavlick DC, Fendler BJ, Madison RW, Decker B, Gjoerup O, et al. . Tumor fraction correlates with detection of actionable variants across > 23,000 circulating tumor DNA samples. JCO Precis Oncol. (2022) 6:2200261. doi: 10.1200/PO.22.00261 PubMed DOI PMC

Patel KM, Tsui DWY. The translational potential of circulating tumour DNA in oncology. Clin Biochem. (2015) 48:957–61. doi: 10.1016/j.clinbiochem.2015.04.005 PubMed DOI

Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. . Detection of circulating tumor DNA in early- and late-stage human Malignancies. Sci Transl Med. (2014) 6:224ra24. doi: 10.1093/neuonc/nou206.24 PubMed DOI PMC

Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discovery. (2016) 6:479–91. doi: 10.1158/2159-8290.CD-15-1483 PubMed DOI

Diaz LA, Bardelli A. Liquid biopsies: Genotyping circulating tumor DNA. J Clin Oncol. (2014) 32:579–86. doi: 10.1200/JCO.2012.45.2011 PubMed DOI PMC

Mostaghel EA, Plymate SR, Montgomery B. Molecular pathways: Targeting resistance in the androgen receptor for therapeutic benefit. Clin Cancer Res. (2014) 20:791–8. doi: 10.1158/1078-0432.CCR-12-3601 PubMed DOI PMC

Tan ME, Li J, Xu HE, Melcher K, Yong EL. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin. (2015) 36:3–23. doi: 10.1038/aps.2014.18 PubMed DOI PMC

Shiota M, Akamatsu S, Tsukahara S, Nagakawa S, Matsumoto T, Eto M. Androgen receptor mutations for precision medicine in prostate cancer. Endocr Relat Cancer. (2022) 29:R143–155. doi: 10.1530/ERC-22-0140 PubMed DOI

Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. (2015) 15:701–11. doi: 10.1038/nrc4016 PubMed DOI PMC

Kwan EM, Wyatt AW. Androgen receptor genomic alterations and treatment resistance in metastatic prostate cancer. Prostate. (2022) 82:S25–36. doi: 10.1002/pros.24356 PubMed DOI

Henzler C, Li Y, Yang R, McBride T, Ho Y, Sprenger C, et al. . Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nat Commun. (2016) 7:13668. doi: 10.1038/ncomms13668 PubMed DOI PMC

Armenia J, Wankowicz SAM, Liu D, Gao J, Kundra R, Reznik E, et al. . The long tail of oncogenic drivers in prostate cancer. Nat Genet. (2018) 50:645–51. doi: 10.1038/s41588-018-0078-z PubMed DOI PMC

Robinson D, van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. . Integrative clinical genomics of advanced prostate cancer. Cell. (2015) 161:1215–28. doi: 10.1016/j.cell.2015.05.001 PubMed DOI PMC

Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al. . Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. (2018) 174:758–69. doi: 10.1016/j.cell.2018.06.039 PubMed DOI PMC

Romanel A, Tandefelt DG, Conteduca V, Jayaram A, Casiraghi N, Wetterskog D, et al. . Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med. (2015) 7:312re10. doi: 10.1126/scitranslmed.aac9511 PubMed DOI PMC

Conteduca V, Wetterskog D, Sharabiani MTA, Grande E, Fernandez-Perez MP, Jayaram A, et al. . Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: A multi-institution correlative biomarker study. Ann Oncol. (2017) 28:1508–16. doi: 10.1093/annonc/mdx155 PubMed DOI PMC

Kohli M, Li J, Du M, Hillman DW, Dehm SM, Tan W, et al. . Prognostic association of plasma cell-free DNA-based androgen receptor amplification and circulating tumor cells in pre-chemotherapy metastatic castration-resistant prostate cancer patients. Prostate Cancer Prostatic Dis. (2018) 21:411–8. doi: 10.1038/s41391-018-0043-z PubMed DOI PMC

Azad AA, Volik SV, Wyatt AW, Haegert A, Le Bihan S, Bell RH, et al. . Androgen receptor gene aberrations in circulating cell-free DNA: Biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res. (2015) 21:2315–24. doi: 10.1158/1078-0432.CCR-14-2666 PubMed DOI

Du M, Huang CC, Tan W, Kohli M, Wang L. Multiplex digital pcr to detect amplifications of specific androgen receptor loci in cell-free DNA for prognosis of metastatic castration-resistant prostate cancer. Cancers. (2020) 12:1–13. doi: 10.3390/cancers12082139 PubMed DOI PMC

Takeda DY, Spisák S, Seo JH, Bell C, O’Connor E, Korthauer K, et al. . A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell. (2018) 174:422–32. doi: 10.1016/j.cell.2018.05.037 PubMed DOI PMC

Dang HX, Chauhan PS, Ellis H, Feng W, Harris PK, Smith G, et al. . Cell-free DNA alterations in the AR enhancer and locus predict resistance to AR-directed therapy in patients with metastatic prostate cancer. JCO Precis Oncol. (2020) 4:680–713. doi: 10.1200/PO.20.00047 PubMed DOI PMC

Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, MacDonald TY, et al. . Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol. (2013) 63:920–6. doi: 10.1016/j.eururo.2012.08.053 PubMed DOI PMC

Sumiyoshi T, Mizuno K, Yamasaki T, Miyazaki Y, Makino Y, Okasho K, et al. . Clinical utility of androgen receptor gene aberrations in circulating cell-free DNA as a biomarker for treatment of castration-resistant prostate cancer. Sci Rep. (2019) 9:4030. doi: 10.1038/s41598-019-40719-y PubMed DOI PMC

Morova T, McNeill DR, Lallous N, Gönen M, Dalal K, Wilson DM, et al. . Androgen receptor-binding sites are highly mutated in prostate cancer. Nat Commun. (2020) 11:832. doi: 10.1038/s41467-020-14644-y PubMed DOI PMC

Silva R, Moran B, Russell NM, Fahey C, Vlajnic T, Manecksha RP, et al. . Evaluating liquid biopsies for methylomic profiling of prostate cancer. Epigenetics. (2020) 15:715–27. doi: 10.1080/15592294.2020.1712876 PubMed DOI PMC

Rouprêt M, Hupertan V, Catto JWF, Yates DR, Rehman I, Proctor LM, et al. . Promoter hypermethylation in circulating blood cells identifies prostate cancer progression. Int J Cancer. (2008) 122:952–6. doi: 10.1002/ijc.23196 PubMed DOI

Martignano F, Gurioli G, Salvi S, Calistri D, Costantini M, Gunelli R, et al. . GSTP1 methylation and protein expression in prostate cancer: diagnostic implications. Dis Markers. (2016) 2016:4358292. doi: 10.1155/2016/4358292 PubMed DOI PMC

Dubois F, Bergot E, Zalcman G, Levallet G. RASSF1A, puppeteer of cellular homeostasis, fights tumorigenesis, and metastasis-an updated review. Cell Death Dis. (2019) 10:928. doi: 10.1038/s41419-019-2169-x PubMed DOI PMC

Shin HJ, Hua JT, Li H. Recent advances in understanding DNA methylation of prostate cancer. Front Oncol. (2023) 13:1182727. doi: 10.3389/fonc.2023.1182727 PubMed DOI PMC

Hendriks RJ, Dijkstra S, Smit FP, Vandersmissen J, Van de Voorde H, Mulders PFA, et al. . Epigenetic markers in circulating cell-free DNA as prognostic markers for survival of castration-resistant prostate cancer patients. Prostate. (2018) 78:336–42. doi: 10.1002/pros.23477 PubMed DOI PMC

Okegawa T, Nutahara K, Higashihara E. Association of circulating tumor cells with tumor-related methylated DNA in patients with hormone-refractory prostate cancer. Int J Urol. (2010) 17:466–75. doi: 10.1111/j.1442-2042.2010.02502.x PubMed DOI

Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC, et al. . Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res. (2004) 64:1975–86. doi: 10.1158/0008-5472.CAN-03-3972 PubMed DOI

Enokida H, Shiina H, Igawa M, Ogishima T, Kawakami T, Bassett WW, et al. . CpG hypermethylation of MDR1 gene contributes to the pathogenesis and progression of human prostate cancer. Cancer Res. (2004) 64:5956–62. doi: 10.1158/0008-5472.CAN-04-0081 PubMed DOI

Wang L, Lin YL, Li B, Wang YZ, Li WP, Ma JG. Aberrant promoter methylation of the cadherin 13 gene in serum and its relationship with clinicopathological features of prostate cancer. J Int Med Res. (2014) 42:1085–92. doi: 10.1177/0300060514540631 PubMed DOI

Mahon KL, Qu W, Lin HM, Spielman C, Cain D, Jacobs C, et al. . Serum free methylated glutathione S-transferase 1 DNA levels, survival, and response to docetaxel in metastatic, castration-resistant prostate cancer: post hoc analyses of data from a phase 3 trial. Eur Urol. (2019) 76:306–12. doi: 10.1016/j.eururo.2018.11.001 PubMed DOI

Dillinger T, Sheibani-Tezerji R, Pulverer W, Stelzer I, Hassler MR, Scheibelreiter J, et al. . Identification of tumor tissue-derived DNA methylation biomarkers for the detection and therapy response evaluation of metastatic castration resistant prostate cancer in liquid biopsies. Mol Cancer. (2022) 21:7. doi: 10.1186/s12943-021-01445-0 PubMed DOI PMC

He HJ, Gu XF, Xu WH, Yang DJ, Wang XM, Su Y. Krüppel-like factor 8 is a novel androgen receptor co-activator in human prostate cancer. Acta Pharmacol Sin. (2013) 34:282–8. doi: 10.1038/aps.2012.130 PubMed DOI PMC

Currall BB, Chen M, Sallari RC, Cotter M, Wong KE, Robertson NG, et al. . Loss of LDAH associated with prostate cancer and hearing loss. Hum Mol Genet. (2018) 27:4194–203. doi: 10.1093/hmg/ddy310 PubMed DOI PMC

Bjerre MT, Nørgaard M, Larsen OH, Jensen SØ, Strand SH, Østergren P, et al. . Epigenetic analysis of circulating tumor DNA in localized and metastatic prostate cancer: evaluation of clinical biomarker potential. Cells. (2020) 9:1362. doi: 10.3390/cells9061362 PubMed DOI PMC

Sjostrom M, Zhao SG, Levy S, Zhang M, Ning Y, Shrestha R, et al. . The 5-hydroxymethylcytosine landscape of prostate cancer. Cancer Res. (2022) 82:3888–902. doi: 10.1158/0008-5472.CAN-22-1123 PubMed DOI PMC

Xin L. EZH2 accompanies prostate cancer progression. Nat Cell Biol. (2021) 23:934–6. doi: 10.1038/s41556-021-00744-4 PubMed DOI

de Resende MF, Vieira S, Chinen LT, Chiappelli F, da Fonseca FP, Guimarães GC, et al. . Prognostication of prostate cancer based on TOP2A protein and gene assessment: TOP2A in prostate cancer. J Transl Med. (2013) 11:36. doi: 10.1186/1479-5876-11-36 PubMed DOI PMC

Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol. (2022) 23:407–27. doi: 10.1038/s41580-022-00452-3 PubMed DOI PMC

Schaefer-Klein JL, Murphy SJ, Johnson SH, Vasmatzis G, Kovtun IV. Topoisomerase 2 alpha cooperates with androgen receptor to contribute to prostate cancer progression. PloS One. (2015) 10:e0142327. doi: 10.1371/journal.pone.0142327 PubMed DOI PMC

van der Vlag J, Otte AP. Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet. (1999) 23:474–8. doi: 10.1038/70602 PubMed DOI

Labbé DP, Sweeney CJ, Brown M, Galbo P, Rosario S, Wadosky KM, et al. . TOP2A and EZH2 provide early detection of an aggressive prostate cancer subgroup. Clin Cancer Res. (2017) 23:7072–83. doi: 10.1158/1078-0432.CCR-17-0413 PubMed DOI PMC

Hansen AF, Høiem TS, Selnaes KM, Bofin AM, Størkersen Ø, Bertilsson H, et al. . Prediction of recurrence from metabolites and expression of TOP2A and EZH2 in prostate cancer patients treated with radiotherapy. NMR Biomed. (2023) 36:e4694. doi: 10.1002/nbm.4694 PubMed DOI

Wu A, Cremaschi P, Wetterskog D, Conteduca V, Franceschini GM, Kleftogiannis D, et al. . Genome-wide plasma DNA methylation features of metastatic prostate cancer. J Clin Invest. (2020) 130:1991–2000. doi: 10.1172/JCI130887 PubMed DOI PMC

Ke XS, Qu Y, Rostad K, Li WC, Lin B, Halvorsen OJ, et al. . Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PloS One. (2009) 4:e4687. doi: 10.1371/journal.pone.0004687 PubMed DOI PMC

Deligezer U, Yaman F, Darendeliler E, Dizdar Y, Holdenrieder S, Kovancilar M, et al. . Post-treatment circulating plasma BMP6 mRNA and H3K27 methylation levels discriminate metastatic prostate cancer from localized disease. Clin Chim Acta. (2010) 411:1452–6. doi: 10.1016/j.cca.2010.05.040 PubMed DOI

Ehsani M, David FO, Baniahmad A. Androgen receptor-dependent mechanisms mediating drug resistance in prostate cancer. Cancers (Basel). (2021) 13:1534. doi: 10.3390/cancers13071534 PubMed DOI PMC

Paliouras M, Alvarado C, Trifiro M. Redefining androgen receptor function: clinical implications in understanding prostate cancer progression and therapeutic resistance. Prostate Cancer - Leading-edge Diagn Procedures Treatments. InTech. (2016) 93–103. doi: 10.5772/64392 DOI

Lu C, Luo J. Decoding the androgen receptor splice variants. Transl Androl Urol. (2013) 2:178–86. doi: 10.3978/j.issn.2223-4683.2013.09.08 PubMed DOI PMC

Scher HI, Graf RP, Schreiber NA, McLaughlin B, Lu D, Louw J, et al. . Nuclear-specific AR-V7 protein localization is necessary to guide treatment selection in metastatic castration-resistant prostate cancer. Eur Urol. (2017) 71:874–82. doi: 10.1016/j.eururo.2016.11.024 PubMed DOI PMC

Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, et al. . Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. (2009) 69:16–22. doi: 10.1158/0008-5472.CAN-08-2764 PubMed DOI PMC

Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, et al. . A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. (2009) 69:2305–13. doi: 10.1158/0008-5472.CAN-08-3795 PubMed DOI PMC

Tagawa ST, Antonarakis ES, Gjyrezi A, Galletti G, Kim S, Worroll D, et al. . Expression of AR-V7 and ARV 567Es in circulating tumor cells correlates with outcomes to taxane therapy in men with metastatic prostate cancer treated in taxynergy. Clin Cancer Res. (2019) 25:1880–8. doi: 10.1158/1078-0432.CCR-18-0320 PubMed DOI PMC

Erb HHH, Sparwasser P, Diehl T, Hemmerlein-Thomas M, Tsaur I, Jüngel E, et al. . AR-V7 protein expression in circulating tumour cells is not predictive of treatment response in mCRPC. Urol Int. (2020) 104:253–62. doi: 10.1159/000504416 PubMed DOI

Ma Y, Luk A, Young FP, Lynch D, Chua W, Balakrishnar B, et al. . Droplet digital PCR based androgen receptor variant 7 (AR-V7) detection from prostate cancer patient blood biopsies. Int J Mol Sci. (2016) 17:1264. doi: 10.3390/ijms17081264 PubMed DOI PMC

Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Zhu Y, et al. . Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first-and second-line abiraterone and enzalutamide. J Clin Oncol. (2017) 35:2149–56. doi: 10.1200/JCO.2016.70.1961 PubMed DOI PMC

Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. . AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. (2014) 371:1028–38. doi: 10.1056/NEJMoa1315815 PubMed DOI PMC

Zhou J, Liu R. The association between androgen receptor splice variant 7 status and prognosis of metastatic castration-resistant prostate cancer: A systematic review and meta-analysis. Andrologia. (2020) 52:00:e13642. doi: 10.1111/and.13642 PubMed DOI

Wang J, Zhang Y, Wei C, Gao X, Yuan P, Gan J, et al. . Prognostic value of androgen receptor splice variant 7 in the treatment of metastatic castration-resistant prostate cancer: A systematic review and meta-analysis. Front Oncol. (2020) 10:562504. doi: 10.3389/fonc.2020.562504 PubMed DOI PMC

Khan T, Khan T, Becker TM, Scott KF, Descallar J, de Souza P, et al. . Prognostic and predictive value of liquid biopsy-derived androgen receptor variant 7 (AR-V7) in prostate cancer: A systematic review and meta-analysis. Front Oncol. (2022) 12:868031. doi: 10.3389/fonc.2022.868031 PubMed DOI PMC

Qu F, Xie W, Nakabayashi M, Zhang H, Jeong SH, Wang X, et al. . Association of AR-V7 and prostate-specific antigen RNA levels in blood with efficacy of abiraterone acetate and enzalutamide treatment in men with prostate cancer. Clin Cancer Res. (2017) 23:726–34. doi: 10.1158/1078-0432.CCR-16-1070 PubMed DOI PMC

Del Re M, Crucitta S, Sbrana A, Rofi E, Paolieri F, Gianfilippo G, et al. . Androgen receptor (AR) splice variant 7 and full-length AR expression is associated with clinical outcome: a translational study in patients with castrate-resistant prostate cancer. BJU Int. (2019) 124:693–700. doi: 10.1111/bju.14792 PubMed DOI

Stuopelyte K, Sabaliauskaite R, Bakavicius A, Haflidadóttir BS, Visakorpi T, Väänänen RM, et al. . Analysis of AR-FL and AR-V1 in whole blood of patients with castration resistant prostate cancer as a tool for predicting response to abiraterone acetate. J Urol. (2020) 204:71–8. doi: 10.1097/JU.0000000000000803 PubMed DOI PMC

Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. . Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. (2008) 105:10513–8. doi: 10.1073/pnas.0804549105 PubMed DOI PMC

Cava C, Bertoli G, Colaprico A, Bontempi G, Mauri G, Castiglioni I. In-silico integration approach to identify a key miRNA regulating a gene network in aggressive prostate cancer. Int J Mol Sci. (2018) 19:910. doi: 10.3390/ijms19030910 PubMed DOI PMC

Zhang W, Zang J, Jing X, Sun Z, Yan W, Yang D, et al. . Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer. J Transl Med. (2014) 12:66. doi: 10.1186/1479-5876-12-66 PubMed DOI PMC

Slabáková E, Kahounová Z, Procházková J, Souček K. Regulation of neuroendocrine-like differentiation in prostate cancer by non-coding rnas. Noncoding RNA. (2021) 7:75. doi: 10.3390/ncrna7040075 PubMed DOI PMC

Gujrati H, Ha S, Wang BD. Deregulated microRNAs involved in prostate cancer aggressiveness and treatment resistance mechanisms. Cancers (Basel). (2023) 15:3140. doi: 10.3390/cancers15123140 PubMed DOI PMC

Brase JC, Johannes M, Schlomm T, Haese A, Steuber T, Beissbarth T, et al. . Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. (2011) 128:608–16. doi: 10.1002/ijc.25376 PubMed DOI

Nguyen HCN, Xie W, Yang M, Hsieh CL, Drouin S, Lee GSM, et al. . Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate. (2013) 73:346–54. doi: 10.1002/pros.22572 PubMed DOI PMC

Zedan AH, Osther PJS, Assenholt J, Madsen JS, Hansen TF. Circulating miR-141 and miR-375 are associated with treatment outcome in metastatic castration resistant prostate cancer. Sci Rep. (2020) 10:227. doi: 10.1038/s41598-019-57101-7 PubMed DOI PMC

Bidarra D, Constâncio V, Barros-Silva D, Ramalho-Carvalho J, Moreira-Barbosa C, Antunes L, et al. . Circulating microRNAs as biomarkers for prostate cancer detection and metastasis development prediction. Front Oncol. (2019) 9:900. doi: 10.3389/fonc.2019.00900 PubMed DOI PMC

Benoist GE, van Oort IM, Boerrigter E, Verhaegh GW, van Hooij O, Groen L, et al. . Prognostic value of novel liquid biomarkers in patients with metastatic castration-resistant prostate cancer treated with enzalutamide: A prospective observational study. Clin Chem. (2020) 66:842–51. doi: 10.1093/clinchem/hvaa095 PubMed DOI

Al-Muhtaresh HA, Al-Kafaji G. Evaluation of Two-Diabetes Related microRNAs Suitability as Earlier Blood Biomarkers for Detecting Prediabetes and type 2 Diabetes Mellitus. J Clin Med. (2018) 7:12. doi: 10.3390/jcm7020012 PubMed DOI PMC

Dandare A, Khan MJ, Naeem A, Liaquat A. Clinical relevance of circulating non-coding RNAs in metabolic diseases: Emphasis on obesity, diabetes, cardiovascular diseases and metabolic syndrome. Genes Dis. (2022) 10:2393–413. doi: 10.1016/j.gendis.2022.05.022 PubMed DOI PMC

Heianza Y, Krohn K, Yaskolka Meir A, Wang X, Ziesche S, Ceglarek U, et al. . Changes in circulating miR-375-3p and improvements in visceral and hepatic fat contents in response to lifestyle interventions: the CENTRAL trial. Diabetes Care. (2022) 45:1911–3. doi: 10.2337/dc21-2517 PubMed DOI PMC

Santos JI, Teixeira AL, Dias F, Maurício J, Lobo F, Morais A, et al. . Influence of peripheral whole-blood microRNA-7 and microRNA-221 high expression levels on the acquisition of castration-resistant prostate cancer: Evidences from in vitro and in vivo studies. Tumor Biol. (2014) 35:7105–13. doi: 10.1007/s13277-014-1918-9 PubMed DOI

Lin HM, Castillo L, Mahon KL, Chiam K, Lee BY, Nguyen Q, et al. . Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer. Br J Cancer. (2014) 110:2462–71. doi: 10.1038/bjc.2014.181 PubMed DOI PMC

Watahiki Y, Macfarlane RJ, Gleave ME, Crea F, Wang Y, Helgason CD, et al. . Plasma miRNAs as biomarkers to identify patients with castration-resistant metastatic prostate cancer. Int J Mol Sci. (2013) 14:7757–70. doi: 10.3390/ijms14047757 PubMed DOI PMC

Groen L, Yurevych V, Ramu H, Chen J, Steenge L, Boer S, et al. . The androgen regulated lncRNA NAALADL2-AS2 promotes tumor cell survival in prostate cancer. Noncoding RNA. (2022) 8:81. doi: 10.3390/ncrna8060081 PubMed DOI PMC

Zhang B, Zhang M, Shen C, Liu G, Zhang F, Hou J, et al. . LncRNA PCBP1-AS1-mediated AR/AR-V7 deubiquitination enhances prostate cancer enzalutamide resistance. Cell Death Dis. (2021) 12:856. doi: 10.1038/s41419-021-04144-2 PubMed DOI PMC

Zhang G, Luo Y. An immune-related lncrna signature to predict the biochemical recurrence and immune landscape in prostate cancer. Int J Gen Med. (2021) 14:9031–49. doi: 10.2147/IJGM.S336757 PubMed DOI PMC

Li G, Zhang Y, Mao J, Hu P, Chen Q, Ding W, et al. . LncRNA TUC338 is overexpressed in prostate carcinoma and downregulates miR-466. Gene. (2019) 707:224–30. doi: 10.1016/j.gene.2019.05.026 PubMed DOI

Chandra Gupta S, Nandan Tripathi Y. Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int J Cancer. (2017) 140:955–67. doi: 10.1002/ijc.30546 PubMed DOI

Anil P, Ghosh Dastidar S, Banerjee S. Unravelling the role of long non-coding RNAs in prostate carcinoma. Adv Cancer Biol - Metastasis. (2022) 6:100067. doi: 10.1016/j.adcanc.2022.100067 DOI

Huang H, Tang Y, Ye X, Chen W, Xie H, Chen S. The influence of lncRNAs on the prognosis of prostate cancer based on TCGA database. Transl Androl Urol. (2021) 10:1302–13. doi: 10.21037/tau PubMed DOI PMC

An C, Wang I, Li X, Xia R, Deng F. Long non-coding RNA in prostate cancer. Am J Clin Exp Urol. (2022) 10:170–9. PubMed PMC

Song S, Zhu Y, Zhang X, Chen S, Liu S. Prognostic values of long noncoding RNA in bone metastasis of prostate cancer: A systematic review and meta-analysis. Front Oncol. (2023) 13:1085464. doi: 10.3389/fonc.2023.1085464 PubMed DOI PMC

Alvarez-Cubero MJ, Arance E, de Santiago E, Sanchez P, Sepúlveda MR, Marrero R, et al. . Follow-up biomarkers in the evolution of prostate cancer, levels of S100A4 as a detector in plasma. Int J Mol Sci. (2023) 24:547. doi: 10.3390/ijms24010547 PubMed DOI PMC

Kato T, Kawakami K, Mizutani K, Ando T, Sakai Y, Sakurai K, et al. . H19 in serum extracellular vesicles reflects resistance to AR axis-targeted therapy among CRPC patients. Cancer Genomics Proteomics. (2023) 20:456–68. doi: 10.21873/cgp.20397 PubMed DOI PMC

Misawa A, Takayama KI, Inoue S. Long non-coding RNAs and prostate cancer. Cancer Sci. (2017) 108:2107–14. doi: 10.1111/cas.13352 PubMed DOI PMC

Scaglia N, Frontini-López YR, Zadra G. Prostate cancer progression: as a matter of fats. Front Oncol. (2021) 11:719865. doi: 10.3389/fonc.2021.719865 PubMed DOI PMC

Beier AMK, Puhr M, Stope MB, Thomas C, Erb HHH. Metabolic changes during prostate cancer development and progression. J Cancer Res Clin Oncol. (2023) 149:2259–70. doi: 10.1007/s00432-022-04371-w PubMed DOI PMC

Harshman LC, Wang X, Nakabayashi M, Xie W, Valenca L, Werner L, et al. . Statin use at the time of initiation of androgen deprivation therapy and time to progression in patients with hormone-sensitive prostate cancer. JAMA Oncol. (2015) 1:495–504. doi: 10.1001/jamaoncol.2015.0829 PubMed DOI PMC

Neuwirt H, Bouchal J, Kharaishvili G, Ploner C, Jöhrer K, Pitterl F, et al. . Cancer-associated fibroblasts promote prostate tumor growth and progression through upregulation of cholesterol and steroid biosynthesis. Cell Communication Signaling. (2020) 18:11. doi: 10.1186/s12964-019-0505-5 PubMed DOI PMC

Lin HM, Mak B, Yeung N, Huynh K, Meikle TG, Mellett NA, et al. . Overcoming enzalutamide resistance in metastatic prostate cancer by targeting sphingosine kinase. EBioMedicine. (2021) 72:103625. doi: 10.1016/j.ebiom.2021.103625 PubMed DOI PMC

Lin HM, Mahon KL, Weir JM, Mundra PA, Spielman C, Briscoe K, et al. . A distinct plasma lipid signature associated with poor prognosis in castration-resistant prostate cancer. Int J Cancer. (2017) 141:2112–20. doi: 10.1002/ijc.30903 PubMed DOI

Lin HM, Huynh K, Kohli M, Tan W, Azad AA, Yeung N, et al. . Aberrations in circulating ceramide levels are associated with poor clinical outcomes across localised and metastatic prostate cancer. Prostate Cancer Prostatic Dis. (2021) 24:860–70. doi: 10.1038/s41391-021-00338-z PubMed DOI PMC

Mak B, Lin HM, Kwan EM, Fettke H, Tran B, Davis ID, et al. . Combined impact of lipidomic and genetic aberrations on clinical outcomes in metastatic castration-resistant prostate cancer. BMC Med. (2022) 20:112. doi: 10.1186/s12916-022-02298-0 PubMed DOI PMC

Scheinberg T, Lin HM, Fitzpatrick M, Azad AA, Bonnitcha P, Davies A, et al. . PCPro: a clinically accessible, circulating lipid biomarker signature for poor-prognosis metastatic prostate cancer. Prostate Cancer Prostatic Dis. (2023) 27:136–43. doi: 10.1038/s41391-023-00666-2 PubMed DOI PMC

Uchimoto T, Komura K, Fukuokaya W, Kimura T, Takahashi K, Fujiwara Y, et al. . Risk stratification for the prediction of overall survival could assist treatment decision-making at diagnosis of castration-resistant prostate cancer: a multicentre collaborative study in Japan. BJU Int. (2021) 127:212–21. doi: 10.1111/bju.15187 PubMed DOI

Yamada Y, Sakamoto S, Rii J, Yamamoto S, Kamada S, Imamura Y, et al. . Prognostic value of an inflammatory index for patients with metastatic castration-resistant prostate cancer. Prostate. (2020) 80:559–69. doi: 10.1002/pros.23969 PubMed DOI

Kosaka T, Hongo H, Mizuno R, Oya M. Risk stratification of castration-resistant prostate cancer patients treated with cabazitaxel. Mol Clin Oncol. (2018) 9:683–8. doi: 10.3892/mco.2018.1724 PubMed DOI PMC

Bauckneht M, Rebuzzi SE, Signori A, Frantellizzi V, Murianni V, Lodi Rizzini E, et al. . The prognostic power of inflammatory indices and clinical factors in metastatic castration-resistant prostate cancer patients treated with radium-223 (BIO-Ra study). Eur J Nucl Med Mol Imaging. (2022) 49:1063–74. doi: 10.1007/s00259-021-05550-6 PubMed DOI PMC

Del Re M, Biasco E, Crucitta S, Derosa L, Rofi E, Orlandini C, et al. . The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol. (2017) 71:680–7. doi: 10.1016/j.eururo.2016.08.012 PubMed DOI

Seitz AK, Thoene S, Bietenbeck A, Nawroth R, Tauber R, Thalgott M, et al. . AR-V7 in peripheral whole blood of patients with castration-resistant prostate cancer: association with treatment-specific outcome under abiraterone and enzalutamide. Eur Urol. (2017) 72:828–34. doi: 10.1016/j.eururo.2017.07.024 PubMed DOI

Todenhöfer T, Azad A, Stewart C, Gao J, Eigl BJ, Gleave ME, et al. . AR-V7 transcripts in whole blood RNA of patients with metastatic castration resistant prostate cancer correlate with response to abiraterone acetate. J Urol. (2017) 197:135–42. doi: 10.1016/j.juro.2016.06.094 PubMed DOI

Kwan EM, Fettke H, Docanto MM, To SQ, Bukczynska P, Mant A, et al. . Prognostic utility of a whole-blood androgen receptor-based gene signature in metastatic castration-resistant prostate cancer. Eur Urol Focus. (2019) 7:63–70. doi: 10.1016/j.euf.2019.04.020 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

New biomarkers and multiplex tests for diagnosis of aggressive prostate cancer and therapy management

. 2025 ; 15 () : 1542511. [epub] 20250225

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...