New biomarkers and multiplex tests for diagnosis of aggressive prostate cancer and therapy management

. 2025 ; 15 () : 1542511. [epub] 20250225

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40115018

Despite improving diagnostic possibilities, the incidence of prostate cancer is increasing, but we are not able to reduce the mortality rate. While PSA, 4K score, PCA3 and other urinary markers, ExoDX, SelectMDX, Confirm MDx or MiPS tests are used to identify potential prostate cancer carriers, Decipher, Prolaris or Oncotype DX tests are used to assess the aggressiveness of proven cancer in order to stratify patients for early or delayed treatment. More modern forms of treatment for advanced disease include second-generation antiandrogens and PARP inhibitors. By assessing genetic mutations (e.g. BRCA1, BRCA2 genes, single nucleotide polymorphism) or the presence of splice variants of the androgen receptor (ARV7), we are able to identify patients in whom the planned treatment may be expected to be ineffective and thus choose other treatment modalities. In the present review article, we offer a comprehensive overview of current diagnostic tests that find application in the diagnosis of early and advanced prostate cancer.

Zobrazit více v PubMed

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. . Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. (2021) 71:209. doi: 10.3322/caac.21660 PubMed DOI

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. (2023) 73:17. doi: 10.3322/caac.21763 PubMed DOI

Hugosson J, Roobol MJ, Månsson M, Tammela TLJ, Zappa M, Nelen V, et al. . A 16-yr follow-up of the european randomized study of screening for prostate cancer. Eur Urol. (2019) 76:43. doi: 10.1016/j.eururo.2019.02.009 PubMed DOI PMC

Palmerola R, Smith P, Elliot V, Reese CT, Mahon FB, Harpster LE, et al. . The digital rectal examination (DRE) remains important - outcomes from a contemporary cohort of men undergoing an initial 12-18 core prostate needle biopsy. Can J Urol. (2012) 19:6542–7. PubMed

Catalona WJ, Smith DS, Ratliff TL, Dodds KM, Coplen DE, Yuan JJ, et al. . Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med. (1991) 324:1156–61. doi: 10.1056/NEJM199104253241702 PubMed DOI

(2023). Available online at: www.uroweb.org/guidelines/prostate-cancer/v. (Accessed November 15, 2024).

Available online at: www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. (Accessed November 19, 2024).

Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, et al. . Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med. (2004) 350(22):2239–46. doi: 10.1056/NEJMoa031918 PubMed DOI

Birtle AJ, Freeman A, Masters JR, Payne HA, Harland SJ. BAUS Section of Oncology Cancer Registry. Clinical features of patients who present with metastatic prostate carcinoma and serum prostate-specific antigen (PSA) levels < 10 ng/mL: the “PSA negative” patients. Cancer. (2003) 98:2362–7. doi: 10.1002/cncr.11821 PubMed DOI

Hernández J, Thompson IM. Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker. Cancer. (2004) 101:894–904. doi: 10.1002/cncr.20480 PubMed DOI

Catalona WJ, Partin AW, Sanda MG, Wei JT, Klee GG, Bangma CH, et al. . A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J Urol. (2011) 185:1650–5. doi: 10.1016/j.juro.2010.12.032 PubMed DOI PMC

Lughezzani G, Lazzeri M, Haese A, McNicholas T, de la Taille A, Buffi NM, et al. . Multicenter European external validation of a prostate health index-based nomogram for predicting prostate cancer at extended biopsy. Eur Urol. (2014) 66:906–12. doi: 10.1016/j.eururo.2013.12.005 PubMed DOI

Wang W, Wang M, Wang L, Adams TS, Tian Y, Xu J. Diagnostic ability of %p2PSA and prostate health index for aggressive prostate cancer: a meta-analysis. Sci Rep. (2014) 4:5012. doi: 10.1038/srep05012 PubMed DOI PMC

Fossati N, Buffi NM, Haese A, Stephan C, Larcher A, McNicholas T, et al. . Preoperative prostate-specific antigen isoform p2PSA and its derivatives, % p2PSA and prostate health index, predict pathologic outcomes in patients undergoing radical prostatectomy for prostate cancer: results from a multicentric European prospective study. Eur Urol. (2015) 68(1):132–8. doi: 10.1016/j.eururo.2014.07.034 PubMed DOI

Vickers AJ, Cronin AM, Aus G, Pihl CG, Becker C, Pettersson K, et al. . A panel of kallikrein markers can reduce unnecessary biopsy for prostate cancer: data from the European Randomized Study of Prostate Cancer Screening in Göteborg, Sweden. BMC Med. (2008) 6:19. doi: 10.1186/1741-7015-6-19 PubMed DOI PMC

Punnen S, Pavan N, Parekh DJ. Finding the wolf in sheep’s clothing: the 4Kscore is a novel blood test that can accurately identify the risk of aggressive prostate cancer. Rev Urol. (2015) 17:3–13. PubMed PMC

McDonald ML, Parsons JK. 4-kallikrein test and kallikrein markers in prostate cancer screening. Urol Clin North Am. (2016) 43:39–46. doi: 10.1016/j.ucl.2015.08.004 PubMed DOI

Verbeek JFM, Bangma CH, Kweldam CF, van der Kwast TH, Kümmerlin IP, van Leenders GJLH, et al. . Reducing unnecessary biopsies while detecting clinically significant prostate cancer including cribriform growth with the ERSPC Rotterdam risk calculator and 4Kscore. Urol Oncol. (2019) 37:138–44. doi: 10.1016/j.urolonc.2018.11.021 PubMed DOI

Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, et al. . DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. (1999) 59:5975–9. PubMed

Salameh A, Lee AK, Cardó-Vila M, Nunes DN, Efstathiou E, Staquicini FI, et al. . PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci U S A. (2015) 112:8403–8. doi: 10.1073/pnas.1507882112 PubMed DOI PMC

Hessels D, Klein Gunnewiek JM, van Oort I, Karthaus HF, van Leenders GJ, van Balken B, et al. . DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. (2003) 44:8–15;discussion 15-6. doi: 10.1016/s0302-2838(03)00201-x PubMed DOI

Gittelman MC, Hertzman B, Bailen J, Williams T, Koziol I, Henderson RJ, et al. . PCA3 molecular urine test as a predictor of repeat prostate biopsy outcome in men with previous negative biopsies: a prospective multicenter clinical study. J Urol. (2013) 190:64–9. doi: 10.1016/j.juro.2013.02.018 PubMed DOI

Lemos AEG, Matos ADR, Ferreira LB, Gimba ERP. The long non-coding RNA PCA3: an update of its functions and clinical applications as a biomarker in prostate cancer. Oncotarget. (2019) 10:6589–603. doi: 10.18632/oncotarget.27284 PubMed DOI PMC

Jamaspishvili T, Kral M, Khomeriki I, Vyhnankova V, Mgebrishvili G, Student V, et al. . Quadriplex model enhances urine-based detection of prostate cancer. Prostate Cancer Prostatic Dis. (2011) 14:354–60. doi: 10.1038/pcan.2011.32 PubMed DOI

Huskova Z, Knillova J, Kolar Z, Vrbkova J, Kral M, Bouchal J. The percentage of free PSA and urinary markers distinguish prostate cancer from benign hyperplasia and contribute to a more accurate indication for prostate biopsy. Biomedicines. (2020) 8:173. doi: 10.3390/biomedicines8060173 PubMed DOI PMC

Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. . Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. (2005) 310:644–8. doi: 10.1126/science.1117679 PubMed DOI

García-Perdomo HA, Chaves MJ, Osorio JC, Sanchez A. Association between TMPRSS2:ERG fusion gene and the prostate cancer: systematic review and meta-analysis. Cent Eur J Urol. (2018) 71:410–9. doi: 10.5173/ceju.2018.1752 PubMed DOI PMC

Song C, Chen H. Predictive significance of TMRPSS2-ERG fusion in prostate cancer: a meta-analysis. Cancer Cell Int. (2018) 18:177. doi: 10.1186/s12935-018-0672-2 PubMed DOI PMC

Rubio-Briones J, Fernández-Serra A, Calatrava A, García-Casado Z, Rubio L, Bonillo MA, et al. . Clinical implications of TMPRSS2-ERG gene fusion expression in patients with prostate cancer treated with radical prostatectomy. J Urol. (2010) 183:2054–61. doi: 10.1016/j.juro.2009.12.096 PubMed DOI

Laxman B, Tomlins SA, Mehra R, Morris DS, Wang L, Helgeson BE, et al. . Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate cancer. Neoplasia. (2006) 8:885–8. doi: 10.1593/neo.06625 PubMed DOI PMC

Salagierski M, Schalken JA. PCA3 and TMPRSS2-ERG: promising biomarkers in prostate cancer diagnosis. Cancers (Basel). (2010) 2:1432–40. doi: 10.3390/cancers2031432 PubMed DOI PMC

Salami SS, Schmidt F, Laxman B, Regan MM, Rickman DS, Scherr D, et al. . Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol Oncol. (2013) 31:566–71. doi: 10.1016/j.urolonc.2011.04.001 PubMed DOI PMC

Tosoian JJ, Chappidi MR, Bishoff JT, Freedland SJ, Reid J, Brawer M, et al. . Prognostic utility of biopsy-derived cell cycle progression score in patients with National Comprehensive Cancer Network low-risk prostate cancer undergoing radical prostatectomy: implications for treatment guidance. BJU Int. (2017) 120:808–14. doi: 10.1111/bju.13911 PubMed DOI

Constantin T, Savu DA, Bucur Ș, Predoiu G, Constantin MM, Jinga V. The role and significance of bioumoral markers in prostate cancer. Cancers (Basel). (2021) 13:5932. doi: 10.3390/cancers13235932 PubMed DOI PMC

Van Neste L, Partin AW, Stewart GD, Epstein JI, Harrison DJ, Van Criekinge W. Risk score predicts high-grade prostate cancer in DNA-methylation positive, histopathologically negative biopsies. Prostate. (2016) 76:1078–87. doi: 10.1002/pros.23191 PubMed DOI PMC

Hendriks RJ, van der Leest MMG, Israël B, Hannink G, YantiSetiasti A, Cornel EB, et al. . Clinical use of the SelectMDx urinary-biomarker test with or without mpMRI in prostate cancer diagnosis: a prospective, multicenter study in biopsy-naïve men. Prostate Cancer Prostatic Dis. (2021) 24:1110–9. doi: 10.1038/s41391-021-00367-8 PubMed DOI PMC

McKiernan J, Donovan MJ, O’Neill V, Bentink S, Noerholm M, Belzer S, et al. . A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. (2016) 2:882–9. doi: 10.1001/jamaoncol.2016.0097 PubMed DOI

McKiernan J, Donovan MJ, Margolis E, Partin A, Carter B, Brown G, et al. . A prospective adaptive utility trial to validate performance of a novel urine exosome gene expression assay to predict high-grade prostate cancer in patients with prostate-specific antigen 2-10ng/ml at initial biopsy. Eur Urol. (2018) 74:731–8. doi: 10.1016/j.eururo.2018.08.019 PubMed DOI

Kretschmer A, Tutrone R, Alter J, Berg E, Fischer C, Kumar S, et al. . Pre-diagnosis urine exosomal RNA (ExoDx EPI score) is associated with post-prostatectomy pathology outcome. World J Urol. (2022) 40:983–9. doi: 10.1007/s00345-022-03937-0 PubMed DOI PMC

Djavan B, Zlotta A, Kratzik C. PSA, PSA density, PSA density of transitional zone, free/total PSA ratio and PSA velocity for early detection of prostate cancer in men with serum PSA 2,5-to 4 ng/ml. Urology. (1999) 54:517–22. doi: 10.1016/S0090-4295(99)00153-3 PubMed DOI

Eichler K, Hempel S, Wilby J, Myers L, Bachmann LM, Kleijnen J. Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol. (2006) 175:1605–12. doi: 10.1016/S0022-5347(05)00957-2 PubMed DOI

Schoots IG, Roobol MJ, Nieboer D, Bangma CH, Steyerberg EW, Hunink MG. Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol. (2015) 68:438–50. doi: 10.1016/j.eururo.2014.11.037 PubMed DOI

Connor MJ, Gorin MA, Eldred-Evans D, Bass EJ, Desai A, Dudderidge T, et al. . Landmarks in the evolution of prostate biopsy. Nat Rev Urol. (2023) 20:241–58. doi: 10.1038/s41585-022-00684-0 PubMed DOI

Kudlackova S, Kurfurstova D, Kral M, Hruska F, Vidlar A, Student V. Do not underestimate anterior prostate cancer. BioMed Pap Med Fac Univ Palacky Olomouc Czech Repub. (2021) 165:198–202. doi: 10.5507/bp.2020.054 PubMed DOI

Bologna E, Ditonno F, Licari LC, Franco A, Manfredi C, Mossack S, et al. . Tissue-based genomic testing in prostate cancer: 10-year analysis of national trends on the use of prolaris, decipher, proMark, and oncotype DX. Clin Pract. (2024) 14:508–20. doi: 10.3390/clinpract14020039 PubMed DOI PMC

Elias M, Bouchal J, Kral M, Kurfurstova D. Contemporary review of prognostic markers of prostate cancer from a pathologist perspective. BioMed Pap Med Fac Univ Palacky Olomouc Czech Repub. (2025). doi: 10.5507/bp.2025.003. Epub ahead of print. PubMed DOI

Hanson JA, Gillespie JW, Grover A, Tangrea MA, Chuaqui RF, Emmert-Buck MR, et al. . Gene promoter methylation in prostate tumor-associated stromal cells. J Natl Cancer Inst. (2006) 98:255–61. doi: 10.1093/jnci/djj051 PubMed DOI

Stewart GD, Van Neste L, Delvenne P, Delrée P, Delga A, McNeill SA, et al. . Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol. (2013) 189:1110–6. doi: 10.1016/j.juro.2012.08.219 PubMed DOI

Partin AW, Van Neste L, Ea K, Ls M, Jr G, da T, et al. . Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J Urol. (2014) 192:1081–7. doi: 10.1016/j.juro.2014.04.013 PubMed DOI PMC

Van Neste L, Hendriks RJ, Dijkstra S, Trooskens G, Cornel EB, Jannink SA, et al. . Detection of high-grade prostate cancer using a urinary molecular biomarker-based risk score. Eur Urol. (2016) 70:740–8. doi: 10.1016/j.eururo.2016.04.012 PubMed DOI

Feng FY, Huang HC, Spratt DE, Zhao SG, Sandler HM, Simko JP, et al. . Validation of a 22-gene genomic classifier in patients with recurrent prostate cancer: an ancillary study of the NRG/RTOG 9601 randomized clinical trial. JAMA Oncol. (2021) 7:544–52. doi: 10.1001/jamaoncol.2020.7671 PubMed DOI PMC

Cucchiara V, Cooperberg MR, Dall’Era M, Lin DW, Montorsi F, Schalken JA, et al. . Genomic markers in prostate cancer decision making. Eur Urol. (2018) 73:572–82. doi: 10.1016/j.eururo.2017.10.036 PubMed DOI

Eggener SE, Rumble RB, Armstrong AJ, Morgan TM, Crispino T, Cornford P, et al. . Molecular biomarkers in localized prostate cancer: ASCO guideline. J Clin Oncol. (2020) 38:1474–94. doi: 10.1200/JCO.19.02768 PubMed DOI

Spratt DE, Yousefi K, Deheshi S, Ross AE, Den RB, Schaeffer EM, et al. . Individual patient-level meta-analysis of the performance of the decipher genomic classifier in high-risk men after prostatectomy to predict development of metastatic disease. J Clin Oncol. (2017) 35:1991–8. doi: 10.1200/JCO.2016.70.2811 PubMed DOI PMC

Dalela D, Santiago-Jiménez M, Yousefi K, Karnes RJ, Ross AE, Den RB, et al. . Genomic classifier augments the role of pathological features in identifying optimal candidates for adjuvant radiation therapy in patients with prostate cancer: development and internal validation of a multivariable prognostic model. J Clin Oncol. (2017) 35:1982–90. doi: 10.1200/JCO.2016.69.9918 PubMed DOI PMC

Jairath NK, Dal Pra A, Vince R, Jr, Dess RT, Jackson WC, Tosoian JJ, et al. . A systematic review of the evidence for the decipher genomic classifier in prostate cancer. Eur Urol. (2021) 79:374–83. doi: 10.1016/j.eururo.2020.11.021 PubMed DOI

Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, Reid JE, et al. . Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. (2011) 12:245–55. doi: 10.1016/S1470-2045(10)70295-3 PubMed DOI PMC

Shangguan X, Qian H, Jiang Z, Xin Z, Pan J, Dong B, et al. . Cell cycle progression score improves risk stratification in prostate cancer patients with adverse pathology after radical prostatectomy. J Cancer Res Clin Oncol. (2020) 146:687–94. doi: 10.1007/s00432-019-03089-6 PubMed DOI PMC

Tosoian JJ, Zhang Y, Xiao L, Xie C, Samora NL, Niknafs YS, et al. . Development and validation of an 18-gene urine test for high-grade prostate cancer. JAMA Oncol. (2024) 10:726–36. doi: 10.1001/jamaoncol.2024.0455 PubMed DOI PMC

Shipitsin M, Small C, Choudhury S, Giladi E, Friedlander S, Nardone J, et al. . Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error. Br J Cancer. (2014) 111:1201–12. doi: 10.1038/bjc.2014.396 PubMed DOI PMC

Blume-Jensen P, Berman DM, Rimm DL, Shipitsin M, Putzi M, Nifong TP, et al. . Development and clinical validation of an in situ biopsy-based multimarker assay for risk stratification in prostate cancer. Clin Cancer Res. (2015) 21:2591–600. doi: 10.1158/1078-0432.CCR-14-2603 PubMed DOI

Klein EA, Cooperberg MR, Magi-Galluzzi C, Simko JP, Falzarano SM, Maddala T, et al. . A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol. (2014) 66:550–60. doi: 10.1016/j.eururo.2014.05.004 PubMed DOI

Eggener S, Karsh LI, Richardson T, Shindel AW, Lu R, Rosenberg S, et al. . A 17-gene panel for prediction of adverse prostate cancer pathologic features: prospective clinical validation and utility. Urology. (2019) 126:76–82. doi: 10.1016/j.urology.2018.11.050 PubMed DOI

Van Den Eeden SK, Lu R, Zhang N, Quesenberry CP, Jr, Shan J, Han JS, et al. . A biopsy-based 17-gene genomic prostate score as a predictor of metastases and prostate cancer death in surgically treated men with clinically localized disease. Eur Urol. (2018) 73:129–38. doi: 10.1016/j.eururo.2017.09.013 PubMed DOI

Covas Moschovas M, Chew C, Bhat S, Sandri M, Rogers T, Dell’Oglio P, et al. . Association between oncotype DX genomic prostate score and adverse tumor pathology after radical prostatectomy. Eur Urol Focus. (2022) 8:418–24. doi: 10.1016/j.euf.2021.03.015 PubMed DOI

Leone G, Tucci M, Buttigliero C, Zichi C, Pignataro D, Bironzo P, et al. . Antiandrogen withdrawal syndrome (AAWS) in the treatment of patients with prostate cancer. Endocr Relat Cancer. (2018) 25:R1–9. doi: 10.1530/ERC-17-0355 PubMed DOI

Vasseur A, Kiavue N, Bidard FC, Pierga JY, Cabel L. Clinical utility of circulating tumor cells: an update. Mol Oncol. (2021) 15:1647–66. doi: 10.1002/1878-0261.12869 PubMed DOI PMC

Chrenková E, Študentová H, Holá K, Kahounová Z, Hendrychová R, Souček K, et al. . Castration-resistant prostate cancer monitoring by cell-free circulating biomarkers. Front Oncol. (2024) 14:1394292. doi: 10.3389/fonc.2024.1394292 PubMed DOI PMC

Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. . AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. (2014) 371:1028–38. doi: 10.1056/NEJMoa1315815 PubMed DOI PMC

Armstrong AJ, Halabi S, Luo J, Nanus DM, Giannakakou P, Szmulewitz RZ, et al. . Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study. J Clin Oncol. (2019) 37:1120–9. doi: 10.1200/JCO.18.01731 PubMed DOI PMC

Li H, Wang Z, Tang K, Zhou H, Liu H, Yan L, et al. . Prognostic value of androgen receptor splice variant 7 in the treatment of castration-resistant prostate cancer with next generation androgen receptor signal inhibition: A systematic review and meta-analysis. Eur Urol Focus. (2018) 4:529–39. doi: 10.1016/j.euf.2017.01.004 PubMed DOI

Cozar JM, Robles-Fernandez I, Martinez-Gonzalez LJ, Pascual-Geler M, Rodriguez-Martinez A, Serrano MJ, et al. . Genetic markers a landscape in prostate cancer. Mutat Res Rev Mutat Res. (2018) 775:1–10. doi: 10.1016/j.mrrev.2017.11.004 PubMed DOI

Kral M, Rosinska V, Student V, Grepl M, Hrabec M, Bouchal J. Genetic determinants of prostate cancer: a review. BioMed Pap Med Fac Univ Palacky Olomouc Czech Repub. (2011) 155:3–9. doi: 10.5507/bp.155.2011.001 PubMed DOI

Kurfurstova D, Bartkova J, Vrtel R, Mickova A, Burdova A, Majera D, et al. . DNA damage signalling barrier, oxidative stress and treatment-relevant DNA repair factor alterations during progression of human prostate cancer. Mol Oncol. (2016) 10:879–94. doi: 10.1016/j.molonc.2016.02.005 PubMed DOI PMC

Kwon WA. PARP inhibitors in the treatment of prostate cancer: from scientific rationale to clinical development. World J Mens Health. (2024) 42(2):290–303. doi: 10.5534/wjmh.230177 PubMed DOI PMC

Alvarez-Cubero MJ, Pascual-Geler M, Martinez-Gonzalez LJ, Expósito Ruiz M, Saiz M, Cozar JM, et al. . MSR1, and ELAC2 single nucleotide polymorphisms and gene expression in prostate cancer risk. Urol Oncol. (2016) 34:431.e1–8. doi: 10.1016/j.urolonc.2016.05.018 PubMed DOI

Beuten J, Gelfond JA, Franke JL, Shook S, Johnson-Pais TL, Thompson IM, et al. . Single and multivariate associations of MSR1, ELAC2, and RNASEL with prostate cancer in an ethnic diverse cohort of men. Cancer Epidemiol Biomarkers Prev. (2010) 19:588–99. doi: 10.1158/1055-9965.EPI-09-0864 PubMed DOI PMC

Eure G, Germany R, Given R, Lu R, Shindel AW, Rothney M, et al. . Use of a 17-gene prognostic assay in contemporary urologic practice: results of an interim analysis in an observational cohort. Urology. (2017) 107:67–75. doi: 10.1016/j.urology.2017.02.052 PubMed DOI

Lynch JA, Rothney MP, Salup RR, Ercole CE, Mathur SC, Duchene DA, et al. . Improving risk stratification among veterans diagnosed with prostate cancer: impact of the 17-gene prostate score assay. Am J Manag Care. (2018) 24:S4–S10. PubMed

Gore JL, du Plessis M, Zhang J, Dai D, Thompson DJS, Karsh L, et al. . Clinical utility of a genomic classifier in men undergoing radical prostatectomy: the PRO-IMPACT trial. Pract Radiat Oncol. (2020) 10:e82–90. doi: 10.1016/j.prro.2019.09.016 PubMed DOI

Shore ND, Kella N, Moran B, Boczko J, Bianco FJ, Crawford ED, et al. . Impact of the cell cycle progression test on physician and patient treatment selection for localized prostate cancer. J Urol. (2016) 195:612–8. doi: 10.1016/j.juro.2015.09.072 PubMed DOI

Hu JC, Tosoian JJ, Qi J, Kaye D, Johnson A, Linsell S, et al. . Clinical utility of gene expression classifiers in men with newly diagnosed prostate cancer. JCO Precis Oncol. (2018) 2:PO.18.00163. doi: 10.1200/po.18.00163 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...