Deletions of LPL and NKX3.1 in Prostate Cancer Progression: Game Changers or By-Standers in Tumor Evolution
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NW24-03-00265, DRO FNOs/2020 and DRO FNOl00098892
Ministry of Health of the Czech Republic
DRO 61989592, BBMRI-CZ No. CZ.02.1.01/0.0/0.0/16_013/0001674 and Programme EXCELES, ID Project no. LX22NPO5102
MEYS and the European Regional Development Fund
PubMed
40563400
PubMed Central
PMC12190382
DOI
10.3390/biom15060758
PII: biom15060758
Knihovny.cz E-zdroje
- Klíčová slova
- FISH, LPL, NKX3.1, immunohistochemistry, prostate cancer, whole-genome sequencing,
- MeSH
- delece genu * MeSH
- homeodoménové proteiny * genetika metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory prostaty * genetika patologie metabolismus MeSH
- progrese nemoci MeSH
- regulace genové exprese u nádorů MeSH
- senioři MeSH
- transkripční faktory * genetika metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- homeodoménové proteiny * MeSH
- NKX3-1 protein, human MeSH Prohlížeč
- transkripční faktory * MeSH
The tumor suppressor gene NKX3.1 and the LPL gene are located in close proximity on chromosome 8, and their deletion has been reported in multiple studies. However, the significance of LPL loss may be misinterpreted due to its co-deletion with NKX3.1, a well-established event in prostate carcinogenesis. This study investigates whether LPL deletion represents a biologically relevant event or occurs merely as a bystander to NKX3.1 loss. We analyzed 28 formalin-fixed paraffin-embedded prostate cancer samples with confirmed LPL deletion and 28 without. Immunohistochemical staining was performed, and previously published whole-genome sequencing data from 103 prostate cancer patients were reanalyzed. Deletion of the 8p21.3 region was associated with higher Gleason grade groups. While NKX3.1 expression was significantly reduced in prostate cancer compared to benign prostatic hyperplasia, LPL protein expression showed no significant difference between cancerous and benign tissue, nor was it affected by the 8p21.3 deletion status. Copy number analysis confirmed the co-deletion of NKX3.1 and LPL in 54 patients. Notably, NKX3.1 loss without accompanying LPL deletion was observed in eight additional cases. These findings suggest that LPL deletion is a passenger event secondary to NKX3.1 loss and underscore the importance of cautious interpretation of cytogenetic findings involving the LPL locus.
Department of Urology University Hospital Ostrava 703 52 Ostrava Czech Republic
Zobrazit více v PubMed
Elias M., Bouchal J., Kral M., Kurfurstova D. Contemporary Review of Prognostic Markers of Prostate Cancer from a Pathologist Perspective. Biomed. Pap. 2025;169:1–12. doi: 10.5507/bp.2025.003. PubMed DOI
Kral M., Kurfurstova D., Zemla P., Elias M., Bouchal J. New Biomarkers and Multiplex Tests for Diagnosis of Aggressive Prostate Cancer and Therapy Management. Front. Oncol. 2025;15:1542511. doi: 10.3389/fonc.2025.1542511. PubMed DOI PMC
Antao A.M., Ramakrishna S., Kim K.S. The Role of Nkx3.1 in Cancers and Stemness. Int. J. Stem Cells. 2021;14:168–179. doi: 10.15283/ijsc20121. PubMed DOI PMC
Song L.N., Bowen C., Gelmann E.P. Structural and Functional Interactions of the Prostate Cancer Suppressor Protein NKX3.1 with Topoisomerase I. Biochem. J. 2013;453:125–136. doi: 10.1042/BJ20130012. PubMed DOI PMC
Abate-Shen C., Shen M.M., Gelmann E. Integrating Differentiation and Cancer: The Nkx3.1 Homeobox Gene in Prostate Organogenesis and Carcinogenesis. Differentiation. 2008;76:717–727. doi: 10.1111/j.1432-0436.2008.00292.x. PubMed DOI PMC
Wu S.A., Kersten S., Qi L. Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends Endocrinol. Metab. 2021;32:48–61. doi: 10.1016/j.tem.2020.11.005. PubMed DOI PMC
Li Y., He P.P., Zhang D.W., Zheng X.L., Cayabyab F.S., Yin W.D., Tang C.K. Lipoprotein Lipase: From Gene to Atherosclerosis. Atherosclerosis. 2014;237:597–608. doi: 10.1016/j.atherosclerosis.2014.10.016. PubMed DOI
Gallucci M., Merola R., Farsetti A., Orlandi G., Sentinelli S., De Carli P., Leonardo C., Carlini P., Guadagni F., Sperduti I., et al. Cytogenetic Profiles as Additional Markers to Pathological Features in Clinically Localized Prostate Carcinoma. Cancer Lett. 2006;237:76–82. doi: 10.1016/j.canlet.2005.05.033. PubMed DOI
Gallucci M., Merola R., Leonardo C., De Carli P., Farsetti A., Sentinelli S., Sperduti I., Mottolese M., Carlini P., Vico E., et al. Genetic Profile Identification in Clinically Localized Prostate Carcinoma. Urol. Oncol. Semin. Orig. Investig. 2009;27:502–508. doi: 10.1016/j.urolonc.2008.04.008. PubMed DOI
Zeković M., Bumbaširević U., Živković M., Pejčić T. Alteration of Lipid Metabolism in Prostate Cancer: Multifaceted Oncologic Implications. Int. J. Mol. Sci. 2023;24:1391. doi: 10.3390/ijms24021391. PubMed DOI PMC
Martin F.J., Amode M.R., Aneja A., Austine-Orimoloye O., Azov A.G., Barnes I., Becker A., Bennett R., Berry A., Bhai J., et al. Ensembl 2023. Nucleic Acids Res. 2023;51:D933–D941. doi: 10.1093/nar/gkac958. PubMed DOI PMC
König J.J., Teubel W., van Steenbrugge G.J., Romijn J.C., Hagemeijer A. Characterization of chromosome 8 aberrations in the prostate cancer cell line LNCaP-FGC and sublines. Urol. Res. 1999;27:3–8. doi: 10.1007/s002400050082. PubMed DOI
Qian J., Hirasawa K., Bostwick D.G., Bergstralh E.J., Slezak J.M., Anderl K.L., Borell T.J., Lieber M.M., Jenkins R.B. Loss of p53 and c-myc overrepresentation in stage T(2-3)N(1-3)M(0) prostate cancer are potential markers for cancer progression. Mod. Pathol. 2002;15:35–44. doi: 10.1038/modpathol.3880487. PubMed DOI
Zhang Y., Perez T., Blondin B., Du J., Liu P., Escarzaga D., Coon J.S., Morrison L.E., Pestova K. Identification of FISH Biomarkers to Detect Chromosome Abnormalities Associated with Prostate Adenocarcinoma in Tumour and Field Effect Environment. BMC Cancer. 2014;14:129. doi: 10.1186/1471-2407-14-129. PubMed DOI PMC
Camacho N., Van Loo P., Edwards S., Kay J.D., Matthews L., Haase K., Clark J., Dennis N., Thomas S., Kremeyer B., et al. Appraising the Relevance of DNA Copy Number Loss and Gain in Prostate Cancer Using Whole Genome DNA Sequence Data. PLoS Genet. 2017;13:e1007001. doi: 10.1371/journal.pgen.1007001. PubMed DOI PMC
Ramesh R.G., Bigdeli A., Rushton C., Rosenbaum J.N. CNViz: An R/Shiny Application for Interactive Copy Number Variant Visualization in Cancer. J. Pathol. Inform. 2022;13:100089. doi: 10.1016/j.jpi.2022.100089. PubMed DOI PMC
Wilkinson L. Ggplot2: Elegant Graphics for Data Analysis by WICKHAM, H. Biometrics. 2011;67:678–679. doi: 10.1111/j.1541-0420.2011.01616.x. DOI
Tarhan L., Bistline J., Chang J., Galloway B., Hanna E., Weitz E. Single Cell Portal: An Interactive Home for Single-Cell Genomics Data. bioRxiv. 2023 doi: 10.1101/2023.07.13.548886. DOI
He M.X., Cuoco M.S., Crowdis J., Bosma-Moody A., Zhang Z., Bi K., Kanodia A., Su M.J., Ku S.Y., Garcia M.M., et al. Transcriptional Mediators of Treatment Resistance in Lethal Prostate Cancer. Nat. Med. 2021;27:426–433. doi: 10.1038/s41591-021-01244-6. PubMed DOI PMC
Trock B.J., Fedor H., Gurel B., Jenkins R.B., Knudsen B.S., Fine S.W., Said J.W., Carter H.B., Lotan T.L., De Marzo A.M. PTEN Loss and Chromosome 8 Alterations in Gleason Grade 3 Prostate Cancer Cores Predicts the Presence of Un-Sampled Grade 4 Tumor: Implications for Active Surveillance. Mod. Pathol. 2016;29:764–771. doi: 10.1038/modpathol.2016.63. PubMed DOI PMC
Kluth M., Amschler N.N., Galal R., Möller-Koop C., Barrow P., Tsourlakis M.C., Jacobsen F., Hinsch A., Wittmer C., Steurer S., et al. Deletion of 8p is an independent prognostic parameter in prostate cancer. Oncotarget. 2017;8:379–392. doi: 10.18632/oncotarget.13425. PubMed DOI PMC
Bethel C.R., Faith D., Li X., Guan B., Hicks J.L., Lan F., Jenkins R.B., Bieberich C.J., De Marzo A.M. Decreased NKX3.1 Protein Expression in Focal Prostatic Atrophy, Prostatic Intraepithelial Neoplasia, and Adenocarcinoma: Association with Gleason Score and Chromosome 8p Deletion. Cancer Res. 2006;66:10683–10690. doi: 10.1158/0008-5472.CAN-06-0963. PubMed DOI
Kurfurstova D., Bartkova J., Vrtel R., Mickova A., Burdova A., Majera D., Mistrik M., Kral M., Santer F.R., Bouchal J., et al. DNA Damage Signalling Barrier, Oxidative Stress and Treatment-Relevant DNA Repair Factor Alterations during Progression of Human Prostate Cancer. Mol. Oncol. 2016;10:879–894. doi: 10.1016/j.molonc.2016.02.005. PubMed DOI PMC
Howat W.J., Wilson B.A. Tissue Fixation and the Effect of Molecular Fixatives on Downstream Staining Procedures. Methods. 2014;70:12–19. doi: 10.1016/j.ymeth.2014.01.022. PubMed DOI PMC
Asatiani E., Huang W.X., Wang A., Rodriguez Ortner E., Cavalli L.R., Haddad B.R., Gelmann E.P. Deletion, methylation, and expression of the NKX3.1 suppressor gene in primary human prostate cancer. Cancer Res. 2005;65:1164–1173. doi: 10.1158/0008-5472.CAN-04-2688. PubMed DOI
Anderson P.D., McKissic S.A., Logan M., Roh M., Franco O.E., Wang J., Doubinskaia I., Van Der Meer R., Hayward S.W., Eischen C.M., et al. Nkx3.1 and Myc Crossregulate Shared Target Genes in Mouse and Human Prostate Tumorigenesis. J. Clin. Investig. 2012;122:1907–1919. doi: 10.1172/JCI58540. PubMed DOI PMC
Gan Q., Joseph C.T., Guo M., Zhang M., Sun X., Gong Y. Utility of NKX3.1 Immunostaining in the Detection of Metastatic Prostatic Carcinoma on Fine-Needle Aspiration Smears. Am. J. Clin. Pathol. 2019;152:495–501. doi: 10.1093/ajcp/aqz063. PubMed DOI PMC
Tan P.Y., Chang C.W., Chng K.R., Wansa K.D., Sung W.K., Cheung E. Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol. Cell. Biol. 2012;32:399–414. doi: 10.1128/MCB.05958-11. PubMed DOI PMC
Inoue K., Fry E.A. Haploinsufficient tumor suppressor genes. Adv. Med. Biol. 2017;118:83–122. PubMed PMC
Magee J.A., Abdulkadir S.A., Milbrandt J. Haploinsufficiency at the Nkx3.1 locus. A paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation. Cancer Cell. 2003;3:273–283. doi: 10.1016/S1535-6108(03)00047-3. PubMed DOI
Neuwirt H., Bouchal J., Kharaishvili G., Ploner C., Jöhrer K., Pitterl F., Weber A., Klocker H., Eder I.E. Cancer-Associated Fibroblasts Promote Prostate Tumor Growth and Progression through Upregulation of Cholesterol and Steroid Biosynthesis. Cell Commun. Signal. 2020;18:11. doi: 10.1186/s12964-019-0505-5. PubMed DOI PMC
Lazniewska J., Li K.L., Johnson I.R.D., Sorvina A., Logan J.M., Martini C., Moore C., Ung B.S.Y., Karageorgos L., Hickey S.M., et al. Dynamic Interplay between Sortilin and Syndecan-1 Contributes to Prostate Cancer Progression. Sci. Rep. 2023;13:13489. doi: 10.1038/s41598-023-40347-7. PubMed DOI PMC
Kim J.W., Cheng Y., Liu W., Li T., Yegnasubramanian S., Zheng S.L., Xu J., Isaacs W.B., Chang B.L. Genetic and Epigenetic Inactivation of LPL Gene in Human Prostate Cancer. Int. J. Cancer. 2009;124:734–738. doi: 10.1002/ijc.23972. PubMed DOI PMC
Kuemmerle N.B., Rysman E., Lombardo P.S., Flanagan A.J., Lipe B.C., Wells W.A., Pettus J.R., Froehlich H.M., Memoli V.A., Morganelli P.M., et al. Lipoprotein Lipase Links Dietary Fat to Solid Tumor Cell Proliferation. Mol. Cancer Ther. 2011;10:427–436. doi: 10.1158/1535-7163.MCT-10-0802. PubMed DOI PMC
Bova G.S., Carter B.S., Bussemakers M.J., Emi M., Fujiwara Y., Kyprianou N., Jacobs S.C., Robinson J.C., Epstein J.I., Walsh P.C., et al. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res. 1993;53:3869–3873. PubMed