Deletions of LPL and NKX3.1 in Prostate Cancer Progression: Game Changers or By-Standers in Tumor Evolution

. 2025 May 24 ; 15 (6) : . [epub] 20250524

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40563400

Grantová podpora
NW24-03-00265, DRO FNOs/2020 and DRO FNOl00098892 Ministry of Health of the Czech Republic
DRO 61989592, BBMRI-CZ No. CZ.02.1.01/0.0/0.0/16_013/0001674 and Programme EXCELES, ID Project no. LX22NPO5102 MEYS and the European Regional Development Fund

The tumor suppressor gene NKX3.1 and the LPL gene are located in close proximity on chromosome 8, and their deletion has been reported in multiple studies. However, the significance of LPL loss may be misinterpreted due to its co-deletion with NKX3.1, a well-established event in prostate carcinogenesis. This study investigates whether LPL deletion represents a biologically relevant event or occurs merely as a bystander to NKX3.1 loss. We analyzed 28 formalin-fixed paraffin-embedded prostate cancer samples with confirmed LPL deletion and 28 without. Immunohistochemical staining was performed, and previously published whole-genome sequencing data from 103 prostate cancer patients were reanalyzed. Deletion of the 8p21.3 region was associated with higher Gleason grade groups. While NKX3.1 expression was significantly reduced in prostate cancer compared to benign prostatic hyperplasia, LPL protein expression showed no significant difference between cancerous and benign tissue, nor was it affected by the 8p21.3 deletion status. Copy number analysis confirmed the co-deletion of NKX3.1 and LPL in 54 patients. Notably, NKX3.1 loss without accompanying LPL deletion was observed in eight additional cases. These findings suggest that LPL deletion is a passenger event secondary to NKX3.1 loss and underscore the importance of cautious interpretation of cytogenetic findings involving the LPL locus.

Zobrazit více v PubMed

Elias M., Bouchal J., Kral M., Kurfurstova D. Contemporary Review of Prognostic Markers of Prostate Cancer from a Pathologist Perspective. Biomed. Pap. 2025;169:1–12. doi: 10.5507/bp.2025.003. PubMed DOI

Kral M., Kurfurstova D., Zemla P., Elias M., Bouchal J. New Biomarkers and Multiplex Tests for Diagnosis of Aggressive Prostate Cancer and Therapy Management. Front. Oncol. 2025;15:1542511. doi: 10.3389/fonc.2025.1542511. PubMed DOI PMC

Antao A.M., Ramakrishna S., Kim K.S. The Role of Nkx3.1 in Cancers and Stemness. Int. J. Stem Cells. 2021;14:168–179. doi: 10.15283/ijsc20121. PubMed DOI PMC

Song L.N., Bowen C., Gelmann E.P. Structural and Functional Interactions of the Prostate Cancer Suppressor Protein NKX3.1 with Topoisomerase I. Biochem. J. 2013;453:125–136. doi: 10.1042/BJ20130012. PubMed DOI PMC

Abate-Shen C., Shen M.M., Gelmann E. Integrating Differentiation and Cancer: The Nkx3.1 Homeobox Gene in Prostate Organogenesis and Carcinogenesis. Differentiation. 2008;76:717–727. doi: 10.1111/j.1432-0436.2008.00292.x. PubMed DOI PMC

Wu S.A., Kersten S., Qi L. Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends Endocrinol. Metab. 2021;32:48–61. doi: 10.1016/j.tem.2020.11.005. PubMed DOI PMC

Li Y., He P.P., Zhang D.W., Zheng X.L., Cayabyab F.S., Yin W.D., Tang C.K. Lipoprotein Lipase: From Gene to Atherosclerosis. Atherosclerosis. 2014;237:597–608. doi: 10.1016/j.atherosclerosis.2014.10.016. PubMed DOI

Gallucci M., Merola R., Farsetti A., Orlandi G., Sentinelli S., De Carli P., Leonardo C., Carlini P., Guadagni F., Sperduti I., et al. Cytogenetic Profiles as Additional Markers to Pathological Features in Clinically Localized Prostate Carcinoma. Cancer Lett. 2006;237:76–82. doi: 10.1016/j.canlet.2005.05.033. PubMed DOI

Gallucci M., Merola R., Leonardo C., De Carli P., Farsetti A., Sentinelli S., Sperduti I., Mottolese M., Carlini P., Vico E., et al. Genetic Profile Identification in Clinically Localized Prostate Carcinoma. Urol. Oncol. Semin. Orig. Investig. 2009;27:502–508. doi: 10.1016/j.urolonc.2008.04.008. PubMed DOI

Zeković M., Bumbaširević U., Živković M., Pejčić T. Alteration of Lipid Metabolism in Prostate Cancer: Multifaceted Oncologic Implications. Int. J. Mol. Sci. 2023;24:1391. doi: 10.3390/ijms24021391. PubMed DOI PMC

Martin F.J., Amode M.R., Aneja A., Austine-Orimoloye O., Azov A.G., Barnes I., Becker A., Bennett R., Berry A., Bhai J., et al. Ensembl 2023. Nucleic Acids Res. 2023;51:D933–D941. doi: 10.1093/nar/gkac958. PubMed DOI PMC

König J.J., Teubel W., van Steenbrugge G.J., Romijn J.C., Hagemeijer A. Characterization of chromosome 8 aberrations in the prostate cancer cell line LNCaP-FGC and sublines. Urol. Res. 1999;27:3–8. doi: 10.1007/s002400050082. PubMed DOI

Qian J., Hirasawa K., Bostwick D.G., Bergstralh E.J., Slezak J.M., Anderl K.L., Borell T.J., Lieber M.M., Jenkins R.B. Loss of p53 and c-myc overrepresentation in stage T(2-3)N(1-3)M(0) prostate cancer are potential markers for cancer progression. Mod. Pathol. 2002;15:35–44. doi: 10.1038/modpathol.3880487. PubMed DOI

Zhang Y., Perez T., Blondin B., Du J., Liu P., Escarzaga D., Coon J.S., Morrison L.E., Pestova K. Identification of FISH Biomarkers to Detect Chromosome Abnormalities Associated with Prostate Adenocarcinoma in Tumour and Field Effect Environment. BMC Cancer. 2014;14:129. doi: 10.1186/1471-2407-14-129. PubMed DOI PMC

Camacho N., Van Loo P., Edwards S., Kay J.D., Matthews L., Haase K., Clark J., Dennis N., Thomas S., Kremeyer B., et al. Appraising the Relevance of DNA Copy Number Loss and Gain in Prostate Cancer Using Whole Genome DNA Sequence Data. PLoS Genet. 2017;13:e1007001. doi: 10.1371/journal.pgen.1007001. PubMed DOI PMC

Ramesh R.G., Bigdeli A., Rushton C., Rosenbaum J.N. CNViz: An R/Shiny Application for Interactive Copy Number Variant Visualization in Cancer. J. Pathol. Inform. 2022;13:100089. doi: 10.1016/j.jpi.2022.100089. PubMed DOI PMC

Wilkinson L. Ggplot2: Elegant Graphics for Data Analysis by WICKHAM, H. Biometrics. 2011;67:678–679. doi: 10.1111/j.1541-0420.2011.01616.x. DOI

Tarhan L., Bistline J., Chang J., Galloway B., Hanna E., Weitz E. Single Cell Portal: An Interactive Home for Single-Cell Genomics Data. bioRxiv. 2023 doi: 10.1101/2023.07.13.548886. DOI

He M.X., Cuoco M.S., Crowdis J., Bosma-Moody A., Zhang Z., Bi K., Kanodia A., Su M.J., Ku S.Y., Garcia M.M., et al. Transcriptional Mediators of Treatment Resistance in Lethal Prostate Cancer. Nat. Med. 2021;27:426–433. doi: 10.1038/s41591-021-01244-6. PubMed DOI PMC

Trock B.J., Fedor H., Gurel B., Jenkins R.B., Knudsen B.S., Fine S.W., Said J.W., Carter H.B., Lotan T.L., De Marzo A.M. PTEN Loss and Chromosome 8 Alterations in Gleason Grade 3 Prostate Cancer Cores Predicts the Presence of Un-Sampled Grade 4 Tumor: Implications for Active Surveillance. Mod. Pathol. 2016;29:764–771. doi: 10.1038/modpathol.2016.63. PubMed DOI PMC

Kluth M., Amschler N.N., Galal R., Möller-Koop C., Barrow P., Tsourlakis M.C., Jacobsen F., Hinsch A., Wittmer C., Steurer S., et al. Deletion of 8p is an independent prognostic parameter in prostate cancer. Oncotarget. 2017;8:379–392. doi: 10.18632/oncotarget.13425. PubMed DOI PMC

Bethel C.R., Faith D., Li X., Guan B., Hicks J.L., Lan F., Jenkins R.B., Bieberich C.J., De Marzo A.M. Decreased NKX3.1 Protein Expression in Focal Prostatic Atrophy, Prostatic Intraepithelial Neoplasia, and Adenocarcinoma: Association with Gleason Score and Chromosome 8p Deletion. Cancer Res. 2006;66:10683–10690. doi: 10.1158/0008-5472.CAN-06-0963. PubMed DOI

Kurfurstova D., Bartkova J., Vrtel R., Mickova A., Burdova A., Majera D., Mistrik M., Kral M., Santer F.R., Bouchal J., et al. DNA Damage Signalling Barrier, Oxidative Stress and Treatment-Relevant DNA Repair Factor Alterations during Progression of Human Prostate Cancer. Mol. Oncol. 2016;10:879–894. doi: 10.1016/j.molonc.2016.02.005. PubMed DOI PMC

Howat W.J., Wilson B.A. Tissue Fixation and the Effect of Molecular Fixatives on Downstream Staining Procedures. Methods. 2014;70:12–19. doi: 10.1016/j.ymeth.2014.01.022. PubMed DOI PMC

Asatiani E., Huang W.X., Wang A., Rodriguez Ortner E., Cavalli L.R., Haddad B.R., Gelmann E.P. Deletion, methylation, and expression of the NKX3.1 suppressor gene in primary human prostate cancer. Cancer Res. 2005;65:1164–1173. doi: 10.1158/0008-5472.CAN-04-2688. PubMed DOI

Anderson P.D., McKissic S.A., Logan M., Roh M., Franco O.E., Wang J., Doubinskaia I., Van Der Meer R., Hayward S.W., Eischen C.M., et al. Nkx3.1 and Myc Crossregulate Shared Target Genes in Mouse and Human Prostate Tumorigenesis. J. Clin. Investig. 2012;122:1907–1919. doi: 10.1172/JCI58540. PubMed DOI PMC

Gan Q., Joseph C.T., Guo M., Zhang M., Sun X., Gong Y. Utility of NKX3.1 Immunostaining in the Detection of Metastatic Prostatic Carcinoma on Fine-Needle Aspiration Smears. Am. J. Clin. Pathol. 2019;152:495–501. doi: 10.1093/ajcp/aqz063. PubMed DOI PMC

Tan P.Y., Chang C.W., Chng K.R., Wansa K.D., Sung W.K., Cheung E. Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol. Cell. Biol. 2012;32:399–414. doi: 10.1128/MCB.05958-11. PubMed DOI PMC

Inoue K., Fry E.A. Haploinsufficient tumor suppressor genes. Adv. Med. Biol. 2017;118:83–122. PubMed PMC

Magee J.A., Abdulkadir S.A., Milbrandt J. Haploinsufficiency at the Nkx3.1 locus. A paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation. Cancer Cell. 2003;3:273–283. doi: 10.1016/S1535-6108(03)00047-3. PubMed DOI

Neuwirt H., Bouchal J., Kharaishvili G., Ploner C., Jöhrer K., Pitterl F., Weber A., Klocker H., Eder I.E. Cancer-Associated Fibroblasts Promote Prostate Tumor Growth and Progression through Upregulation of Cholesterol and Steroid Biosynthesis. Cell Commun. Signal. 2020;18:11. doi: 10.1186/s12964-019-0505-5. PubMed DOI PMC

Lazniewska J., Li K.L., Johnson I.R.D., Sorvina A., Logan J.M., Martini C., Moore C., Ung B.S.Y., Karageorgos L., Hickey S.M., et al. Dynamic Interplay between Sortilin and Syndecan-1 Contributes to Prostate Cancer Progression. Sci. Rep. 2023;13:13489. doi: 10.1038/s41598-023-40347-7. PubMed DOI PMC

Kim J.W., Cheng Y., Liu W., Li T., Yegnasubramanian S., Zheng S.L., Xu J., Isaacs W.B., Chang B.L. Genetic and Epigenetic Inactivation of LPL Gene in Human Prostate Cancer. Int. J. Cancer. 2009;124:734–738. doi: 10.1002/ijc.23972. PubMed DOI PMC

Kuemmerle N.B., Rysman E., Lombardo P.S., Flanagan A.J., Lipe B.C., Wells W.A., Pettus J.R., Froehlich H.M., Memoli V.A., Morganelli P.M., et al. Lipoprotein Lipase Links Dietary Fat to Solid Tumor Cell Proliferation. Mol. Cancer Ther. 2011;10:427–436. doi: 10.1158/1535-7163.MCT-10-0802. PubMed DOI PMC

Bova G.S., Carter B.S., Bussemakers M.J., Emi M., Fujiwara Y., Kyprianou N., Jacobs S.C., Robinson J.C., Epstein J.I., Walsh P.C., et al. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res. 1993;53:3869–3873. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...