DNA damage signalling barrier, oxidative stress and treatment-relevant DNA repair factor alterations during progression of human prostate cancer
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26987799
PubMed Central
PMC5423169
DOI
10.1016/j.molonc.2016.02.005
PII: S1574-7891(16)00037-5
Knihovny.cz E-resources
- Keywords
- DNA damage response barrier, NQO1 and oxidative stress, PARP inhibitor biomarkers, Prostate tumorigenesis, TMPRSS2-ERG, p53 and NKX3.1 tumour suppressors,
- MeSH
- PTEN Phosphohydrolase analysis genetics MeSH
- Oncogene Proteins, Fusion analysis genetics MeSH
- Genotype MeSH
- Middle Aged MeSH
- Humans MeSH
- NAD(P)H Dehydrogenase (Quinone) analysis genetics MeSH
- Prostatic Neoplasms genetics metabolism pathology MeSH
- DNA Repair MeSH
- Oxidative Stress * MeSH
- DNA Damage * MeSH
- Disease Progression MeSH
- Prostate metabolism pathology MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- PTEN Phosphohydrolase MeSH
- Oncogene Proteins, Fusion MeSH
- NAD(P)H Dehydrogenase (Quinone) MeSH
- NQO1 protein, human MeSH Browser
- PTEN protein, human MeSH Browser
- TMPRSS2-ERG fusion protein, human MeSH Browser
The DNA damage checkpoints provide an anti-cancer barrier in diverse tumour types, however this concept has remained unexplored in prostate cancer (CaP). Furthermore, targeting DNA repair defects by PARP1 inhibitors (PARPi) as a cancer treatment strategy is emerging yet requires suitable predictive biomarkers. To address these issues, we performed immunohistochemical analysis of multiple markers of DNA damage signalling, oxidative stress, DNA repair and cell cycle control pathways during progression of human prostate disease from benign hyperplasia, through intraepithelial neoplasia to CaP, complemented by genetic analyses of TMPRSS2-ERG rearrangement and NQO1, an anti-oxidant factor and p53 protector. The DNA damage checkpoint barrier (γH2AX, pATM, p53) mechanism was activated during CaP tumorigenesis, albeit less and with delayed culmination compared to other cancers, possibly reflecting lower replication stress (slow proliferation despite cases of Rb loss and cyclin D1 overexpression) and progressive loss of ATM activator NKX3.1. Oxidative stress (8-oxoguanine lesions) and NQO1 increased during disease progression. NQO1 genotypes of 390 men did not indicate predisposition to CaP, yet loss of NQO1 in CaP suggested potential progression-opposing tumour suppressor role. TMPRSS2-ERG rearrangement and PTEN loss, events sensitizing to PARPi, occurred frequently along with heterogeneous loss of DNA repair factors 53BP1, JMJD1C and Rev7 (all studied here for the first time in CaP) whose defects may cause resistance to PARPi. Overall, our results reveal an unorthodox DNA damage checkpoint barrier scenario in CaP tumorigenesis, and provide novel insights into oxidative stress and DNA repair, with implications for biomarker guidance of future targeted therapy of CaP.
Department of Urology Faculty of Medicine and Dentistry Palacky University Olomouc Czech Republic
Division of Experimental Urology Department of Urology Medical University of Innsbruck Austria
See more in PubMed
Ahn, K.S. , Sethi, G. , Jain, A.K. , Jaiswal, A.K. , Aggarwal, B.B. , 2006. Genetic deletion of NAD(P)H:quinone oxidoreductase 1 abrogates activation of nuclear factor-kappaB, IkappaBalpha kinase, c-Jun N-terminal kinase, Akt, p38, and p44/42 mitogen-activated protein kinases and potentiates apoptosis. J. Biol. Chem. 281, 19798–19808. PubMed
Anders, C.K. , Winer, E.P. , Ford, J.M. , Dent, R. , Silver, D.P. , Sledge, G.W. , Carey, L.A. , 2010. Poly(ADP-Ribose) polymerase inhibition: “targeted” therapy for triple-negative breast cancer. Clin. Cancer Res. 16, 4702–4710. PubMed PMC
Andriole, G.L. , Crawford, E.D. , Grubb, R.L. , Buys, S.S. , Chia, D. , Church, T.R. , Fouad, M.N. , Isaacs, C. , Kvale, P.A. , Reding, D.J. , Weissfeld, J.L. , Yokochi, L.A. , O'Brien, B. , Ragard, L.R. , Clapp, J.D. , Rathmell, J.M. , Riley, T.L. , Hsing, A.W. , Izmirlian, G. , Pinsky, P.F. , Kramer, B.S. , Miller, A.B. , Gohagan, J.K. , Prorok, P.C. , 2012. Prostate cancer screening in the randomized prostate, lung, colorectal, and ovarian cancer screening trial: mortality results after 13 years of follow-up. J. Natl. Cancer Inst. 104, 125–132. PubMed PMC
Anwar, A. , Dehn, D. , Siegel, D. , Kepa, J.K. , Tang, L.J. , Pietenpol, J.A. , Ross, D. , 2003. Interaction of human NAD(P)H:quinone oxidoreductase 1 (NQO1) with the tumor suppressor protein p53 in cells and cell-free systems. J. Biol. Chem. 278, 10368–10373. PubMed
Aparicio, A. , Den, R.B. , Knudsen, K.E. , 2011. Time to stratify? The retinoblastoma protein in castrate-resistant prostate cancer. Nat. Rev. Urol. 8, 562–568. PubMed PMC
Asher, G. , Lotem, J. , Cohen, B. , Sachs, L. , Shaul, Y. , 2001. Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc. Natl. Acad. Sci. U. S. A. 98, 1188–1193. PubMed PMC
Bartek, J. , Bartkova, J. , Lukas, J. , 1996. The retinoblastoma protein pathway and the restriction point. Curr. Opin. Cell Biol. 8, 805–814. PubMed
Bartek, J. , Iggo, R. , Gannon, J. , Lane, D.P. , 1990. Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene. 5, 893–899. PubMed
Bartek, J. , Lukas, J. , 2011. DNA repair: cyclin D1 multitasks. Nature. 474, 171–172. PubMed
Bartkova, J. , Hamerlik, P. , Stockhausen, M.T. , Ehrmann, J. , Hlobilkova, A. , Laursen, H. , Kalita, O. , Kolar, Z. , Poulsen, H.S. , Broholm, H. , Lukas, J. , Bartek, J. , 2010. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas. Oncogene. 29, 5095–5102. PubMed
Bartkova, J. , Hoei-Hansen, C.E. , Krizova, K. , Hamerlik, P. , Skakkebaek, N.E. , Rajpert-De, M.E. , Bartek, J. , 2014. Patterns of DNA damage response in intracranial germ cell tumors versus glioblastomas reflect cell of origin rather than brain environment: implications for the anti-tumor barrier concept and treatment. Mol. Oncol. 8, 1667–1678. PubMed PMC
Bartkova, J. , Horejsi, Z. , Koed, K. , Kramer, A. , Tort, F. , Zieger, K. , Guldberg, P. , Sehested, M. , Nesland, J.M. , Lukas, C. , Orntoft, T. , Lukas, J. , Bartek, J. , 2005. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 434, 864–870. PubMed
Bartkova, J. , Horejsi, Z. , Sehested, M. , Nesland, J.M. , Rajpert-De, M.E. , Skakkebaek, N.E. , Stucki, M. , Jackson, S. , Lukas, J. , Bartek, J. , 2007. DNA damage response mediators MDC1 and 53BP1: constitutive activation and aberrant loss in breast and lung cancer, but not in testicular germ cell tumours. Oncogene. 26, 7414–7422. PubMed
Bartkova, J. , Rezaei, N. , Liontos, M. , Karakaidos, P. , Kletsas, D. , Issaeva, N. , Vassiliou, L.V. , Kolettas, E. , Niforou, K. , Zoumpourlis, V.C. , Takaoka, M. , Nakagawa, H. , Tort, F. , Fugger, K. , Johansson, F. , Sehested, M. , Andersen, C.L. , Dyrskjot, L. , Orntoft, T. , Lukas, J. , Kittas, C. , Helleday, T. , Halazonetis, T.D. , Bartek, J. , Gorgoulis, V.G. , 2006. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 444, 633–637. PubMed
Beyer, R.E. , Segura-Aguilar, J. , Di, B.S. , Cavazzoni, M. , Fato, R. , Fiorentini, D. , Galli, M.C. , Setti, M. , Landi, L. , Lenaz, G. , 1996. The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc. Natl. Acad. Sci. U. S. A. 93, 2528–2532. PubMed PMC
Bouchal, J. , Santer, F.R. , Hoschele, P.P. , Tomastikova, E. , Neuwirt, H. , Culig, Z. , 2011. Transcriptional coactivators p300 and CBP stimulate estrogen receptor-beta signaling and regulate cellular events in prostate cancer. Prostate. 71, 431–437. PubMed
Bouwman, P. , Aly, A. , Escandell, J.M. , Pieterse, M. , Bartkova, J. , van der Gulden, H. , Hiddingh, S. , Thanasoula, M. , Kulkarni, A. , Yang, Q. , Haffty, B.G. , Tommiska, J. , Blomqvist, C. , Drapkin, R. , Adams, D.J. , Nevanlinna, H. , Bartek, J. , Tarsounas, M. , Ganesan, S. , Jonkers, J. , 2010. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17, 688–695. PubMed PMC
Bowen, C. , Ju, J.H. , Lee, J.H. , Paull, T.T. , Gelmann, E.P. , 2013. Functional activation of ATM by the prostate cancer suppressor NKX3.1. Cell Rep. 4, 516–529. PubMed PMC
Brenner, J.C. , Ateeq, B. , Li, Y. , Yocum, A.K. , Cao, Q. , Asangani, I.A. , Patel, S. , Wang, X. , Liang, H. , Yu, J. , Palanisamy, N. , Siddiqui, J. , Yan, W. , Cao, X. , Mehra, R. , Sabolch, A. , Basrur, V. , Lonigro, R.J. , Yang, J. , Tomlins, S.A. , Maher, C.A. , Elenitoba-Johnson, K.S. , Hussain, M. , Navone, N.M. , Pienta, K.J. , Varambally, S. , Feng, F.Y. , Chinnaiyan, A.M. , 2011. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell. 19, 664–678. PubMed PMC
Di Micco, R. , Fumagalli, M. , Cicalese, A. , Piccinin, S. , Gasparini, P. , Luise, C. , Schurra, C. , Garre', M. , Nuciforo, P.G. , Bensimon, A. , Maestro, R. , Pelicci, P.G. , d'Adda di, F.F. , 2006. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 444, 638–642. PubMed
Ding, Z. , Wu, C.-J. , Chu, G.C. , Xiao, Y. , Ho, D. , Zhang, J. , Perry, S.R. , Labrot, E.S. , Wu, X. , Lis, R. , Hoshida, Y. , Hiller, D. , Hu, B. , Jiang, S. , Zheng, H. , Stegh, A.H. , Scott, K.L. , Signoretti, S. , Bardeesy, N. , Wang, Y.A. , Hill, D.E. , Golub, T.R. , Stampfer, M.J. , Wong, W.H. , Loda, M. , Mucci, L. , Chin, L. , DePinho, R.A. , 2011. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature. 470, 269–273. PubMed PMC
Dinkova-Kostova, A.T. , Talalay, P. , 2010. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch. Biochem. Biophys. 501, 116–123. PubMed PMC
Eble, J.N. , Sauter, G. , Epstein, J.I. , Sesterhenn, I.A. , 2004. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs IARCPress; Lyon:
Ergen, H.A. , Gormus, U. , Narter, F. , Zeybek, U. , Bulgurcuoglu, S. , Isbir, T. , 2007. Investigation of NAD(P)H:quinone oxidoreductase 1 (NQO1) C609T polymorphism in prostate cancer. Anticancer Res. 27, 4107–4110. PubMed
Evangelou, K. , Bartkova, J. , Kotsinas, A. , Pateras, I.S. , Liontos, M. , Velimezi, G. , Kosar, M. , Liloglou, T. , Trougakos, I.P. , Dyrskjot, L. , Andersen, C.L. , Papaioannou, M. , Drosos, Y. , Papafotiou, G. , Hodny, Z. , Sosa-Pineda, B. , Wu, X.R. , Klinakis, A. , Orntoft, T. , Lukas, J. , Bartek, J. , Gorgoulis, V.G. , 2013. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis. Cell Death Differ. 20, 1485–1497. PubMed PMC
Fagerholm, R. , Hofstetter, B. , Tommiska, J. , Aaltonen, K. , Vrtel, R. , Syrjakoski, K. , Kallioniemi, A. , Kilpivaara, O. , Mannermaa, A. , Kosma, V.M. , Uusitupa, M. , Eskelinen, M. , Kataja, V. , Aittomaki, K. , von, S.K. , Heikkila, P. , Lukas, J. , Holli, K. , Bartkova, J. , Blomqvist, C. , Bartek, J. , Nevanlinna, H. , 2008. NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat. Genet. 40, 844–853. PubMed
Felgueiras, J. , Silva, J.V. , Fardilha, M. , 2014. Prostate cancer: the need for biomarkers and new therapeutic targets. J. Zhejiang Univ. Sci. B. 15, 16–42. PubMed PMC
Gorgoulis, V.G. , Vassiliou, L.V. , Karakaidos, P. , Zacharatos, P. , Kotsinas, A. , Liloglou, T. , Venere, M. , Ditullio, R.A. , Kastrinakis, N.G. , Levy, B. , Kletsas, D. , Yoneta, A. , Herlyn, M. , Kittas, C. , Halazonetis, T.D. , 2005. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 434, 907–913. PubMed
Halazonetis, T.D. , Gorgoulis, V.G. , Bartek, J. , 2008. An oncogene-induced DNA damage model for cancer development. Science. 319, 1352–1355. PubMed
He, J. , Kang, X. , Yin, Y. , Chao, K.S.C. , Shen, W.H. , 2015. PTEN regulates DNA replication progression and stalled fork recovery. Nat. Commun. 6, 7620 PubMed PMC
Howat, W.J. , Wilson, B.A. , 2014. Tissue fixation and the effect of molecular fixatives on downstream staining procedures. Methods. 70, 12–19. PubMed PMC
Iggo, R. , Gatter, K. , Bartek, J. , Lane, D. , Harris, A.L. , 1990. Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet. 335, 675–679. PubMed
Iskander, K. , Gaikwad, A. , Paquet, M. , Long, D.J. , Brayton, C. , Barrios, R. , Jaiswal, A.K. , 2005. Lower induction of p53 and decreased apoptosis in NQO1-null mice lead to increased sensitivity to chemical-induced skin carcinogenesis. Cancer Res. 65, 2054–2058. PubMed
Jaamaa, S. , Af Hallstrom, T.M. , Sankila, A. , Rantanen, V. , Koistinen, H. , Stenman, U.H. , Zhang, Z. , Yang, Z. , De Marzo, A.M. , Taari, K. , Ruutu, M. , Andersson, L.C. , Laiho, M. , 2010. DNA damage recognition via activated ATM and p53 pathway in nonproliferating human prostate tissue. Cancer Res. 70, 8630–8641. PubMed
Jackson, S.P. , Bartek, J. , 2009. The DNA damage response in human biology and disease. Nature. 461, 1071–1078. PubMed PMC
Jirawatnotai, S. , Hu, Y. , Michowski, W. , Elias, J.E. , Becks, L. , Bienvenu, F. , Zagozdzon, A. , Goswami, T. , Wang, Y.E. , Clark, A.B. , Kunkel, T.A. , van, H.T. , Xia, B. , Correll, M. , Quackenbush, J. , Livingston, D.M. , Gygi, S.P. , Sicinski, P. , 2011. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature. 474, 230–234. PubMed PMC
Kastan, M.B. , Bartek, J. , 2004. Cell-cycle checkpoints and cancer. Nature. 432, 316–323. PubMed
Kelsey, K.T. , Ross, D. , Traver, R.D. , Christiani, D.C. , Zuo, Z.F. , Spitz, M.R. , Wang, M. , Xu, X. , Lee, B.K. , Schwartz, B.S. , Wiencke, J.K. , 1997. Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anti-cancer chemotherapy. Br. J. Cancer. 76, 852–854. PubMed PMC
Kim, G. , Ison, G. , McKee, A.E. , Zhang, H. , Tang, S. , Gwise, T. , Sridhara, R. , Lee, E. , Tzou, A. , Philip, R. , Chiu, H.J. , Ricks, T.K. , Palmby, T. , Russell, A.M. , Ladouceur, G. , Pfuma, E. , Li, H. , Zhao, L. , Liu, Q. , Venugopal, R. , Ibrahim, A. , Pazdur, R. , 2015. FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin. Cancer Res. 21, 4257–4261. PubMed
Kolar, Z. , Burdova, A. , Jamaspishvili, T. , Bouchal, J. , Kucerova, R. , Bienova, M. , Kral, M. , Student, V. , 2014. Relation of ETS transcription factor family member ERG, androgen receptor and topoisomerase 2beta expression to TMPRSS2-ERG fusion status in prostate cancer. Neoplasma. 61, 9–16. PubMed
Kosova, F. , Temeltas, G. , Ari, Z. , Lekili, M. , 2014. Possible relations between oxidative damage and apoptosis in benign prostate hyperplasia and prostate cancer patients. Tumour. Biol. 35, 4295–4299. PubMed
Long, D.J. , Waikel, R.L. , Wang, X.J. , Perlaky, L. , Roop, D.R. , Jaiswal, A.K. , 2000. NAD(P)H:quinone oxidoreductase 1 deficiency increases susceptibility to benzo(a)pyrene-induced mouse skin carcinogenesis. Cancer Res. 60, 5913–5915. PubMed
Lord, C.J. , Ashworth, A. , 2012. The DNA damage response and cancer therapy. Nature. 481, 287–294. PubMed
Lukas, J. , Lukas, C. , Bartek, J. , 2011. More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat. Cell Biol. 13, 1161–1169. PubMed
Malins, D.C. , Johnson, P.M. , Wheeler, T.M. , Barker, E.A. , Polissar, N.L. , Vinson, M.A. , 2001. Age-related radical-induced DNA damage is linked to prostate cancer. Cancer Res. 61, 6025–6028. PubMed
Mateo, J. , Carreira, S. , Sandhu, S. , Miranda, S. , Mossop, H. , Perez-Lopez, R. , Nava, R.D. , Robinson, D. , Omlin, A. , Tunariu, N. , Boysen, G. , Porta, N. , Flohr, P. , Gillman, A. , Figueiredo, I. , Paulding, C. , Seed, G. , Jain, S. , Ralph, C. , Protheroe, A. , Hussain, S. , Jones, R. , Elliott, T. , McGovern, U. , Bianchini, D. , Goodall, J. , Zafeiriou, Z. , Williamson, C.T. , Ferraldeschi, R. , Riisnaes, R. , Ebbs, B. , Fowler, G. , Roda, D. , Yuan, W. , Wu, Y.M. , Cao, X. , Brough, R. , Pemberton, H. , A'Hern, R. , Swain, A. , Kunju, L.P. , Eeles, R. , Attard, G. , Lord, C.J. , Ashworth, A. , Rubin, M.A. , Knudsen, K.E. , Feng, F.Y. , Chinnaiyan, A.M. , Hall, E. , de Bono, J.S. , 2015. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708. PubMed PMC
Mendes-Pereira, A.M. , Martin, S.A. , Brough, R. , McCarthy, A. , Taylor, J.R. , Kim, J.S. , Waldman, T. , Lord, C.J. , Ashworth, A. , 2009. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1, 315–322. PubMed PMC
Miyake, H. , Hara, I. , Kamidono, S. , Eto, H. , 2004. Oxidative DNA damage in patients with prostate cancer and its response to treatment. J. Urol. 171, 1533–1536. PubMed
Schiewer, M.J. , Knudsen, K.E. , 2014. Transcriptional roles of PARP1 in cancer. Mol. Cancer Res. 12, 1069–1080. PubMed PMC
Schroder, F.H. , Hugosson, J. , Roobol, M.J. , Tammela, T.L. , Zappa, M. , Nelen, V. , Kwiatkowski, M. , Lujan, M. , Maattanen, L. , Lilja, H. , Denis, L.J. , Recker, F. , Paez, A. , Bangma, C.H. , Carlsson, S. , Puliti, D. , Villers, A. , Rebillard, X. , Hakama, M. , Stenman, U.H. , Kujala, P. , Taari, K. , Aus, G. , Huber, A. , van der Kwast, T.H. , van Schaik, R.H. , de Koning, H.J. , Moss, S.M. , Auvinen, A. , 2014. Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet. 384, 2027–2035. PubMed PMC
Sfanos, K.S. , De Marzo, A.M. , 2012. Prostate cancer and inflammation: the evidence. Histopathology. 60, 199–215. PubMed PMC
Shen, W.H. , Balajee, A.S. , Wang, J. , Wu, H. , Eng, C. , Pandolfi, P.P. , Yin, Y. , 2007. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell. 128, 157–170. PubMed
Shevde, L.A. , Samant, R.S. , 2014. Role of osteopontin in the pathophysiology of cancer. Matrix Biol. 37, 131–141. PubMed PMC
Siegel, D. , Anwar, A. , Winski, S.L. , Kepa, J.K. , Zolman, K.L. , Ross, D. , 2001. Rapid polyubiquitination and proteasomal degradation of a mutant form of NAD(P)H:quinone oxidoreductase 1. Mol. Pharmacol. 59, 263–268. PubMed
Siegel, D. , Bolton, E.M. , Burr, J.A. , Liebler, D.C. , Ross, D. , 1997. The reduction of alpha-tocopherolquinone by human NAD(P)H: quinone oxidoreductase: the role of alpha-tocopherolhydroquinone as a cellular antioxidant. Mol. Pharmacol. 52, 300–305. PubMed
Siegel, D. , Gustafson, D.L. , Dehn, D.L. , Han, J.Y. , Boonchoong, P. , Berliner, L.J. , Ross, D. , 2004. NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol. Pharmacol. 65, 1238–1247. PubMed
Siegel, R. , Ma, J. , Zou, Z. , Jemal, A. , 2014. Cancer statistics, 2014. CA Cancer J. Clin. 64, 9–29. PubMed
Steinbrecher, A. , Rohrmann, S. , Timofeeva, M. , Risch, A. , Jansen, E. , Linseisen, J. , 2010. Dietary glucosinolate intake, polymorphisms in selected biotransformation enzymes, and risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 19, 135–143. PubMed
Steiner, M. , Hillenbrand, M. , Borkowsi, M. , Seiter, H. , Schuff-Werner, P. , 1999. 609 C--> T polymorphism in NAD(P)H:quinone oxidoreductase gene in patients with prostatic adenocarcinoma or benign prostatic hyperplasia. Cancer Lett. 135, 67–71. PubMed
Stoehr, C.G. , Nolte, E. , Wach, S. , Wieland, W.F. , Hofstaedter, F. , Hartmann, A. , Stoehr, R. , 2012. NAD(P)H:quinone oxidoreductase 1 (NQO1) P187S polymorphism and prostate cancer risk in Caucasians. Int. J. Mol. Sci. 13, 10959–10969. PubMed PMC
Thapa, D. , Meng, P. , Bedolla, R.G. , Reddick, R.L. , Kumar, A.P. , Ghosh, R. , 2014. NQO1 suppresses NF-kappaB-p300 interaction to regulate inflammatory mediators associated with prostate tumorigenesis. Cancer Res. 74, 5644–5655. PubMed PMC
Tort, F. , Bartkova, J. , Sehested, M. , Orntoft, T. , Lukas, J. , Bartek, J. , 2006. Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis. Cancer Res. 66, 10258–10263. PubMed
Watanabe, S. , Watanabe, K. , Akimov, V. , Bartkova, J. , Blagoev, B. , Lukas, J. , Bartek, J. , 2013. JMJD1C demethylates MDC1 to regulate the RNF8 and BRCA1-mediated chromatin response to DNA breaks. Nat. Struct. Mol. Biol. 20, 1425–1433. PubMed
Williams, J.L. , Greer, P.A. , Squire, J.A. , 2014. Recurrent copy number alterations in prostate cancer: an in silico meta-analysis of publicly available genomic data. Cancer Genet. 207, 474–488. PubMed
Xu, G. , Chapman, J.R. , Brandsma, I. , Yuan, J. , Mistrik, M. , Bouwman, P. , Bartkova, J. , Gogola, E. , Warmerdam, D. , Barazas, M. , Jaspers, J.E. , Watanabe, K. , Pieterse, M. , Kersbergen, A. , Sol, W. , Celie, P.H.N. , Schouten, P.C. , van den Broek, B. , Salman, A. , Nieuwland, M. , de Rink, I. , de Ronde, J. , Jalink, K. , Boulton, S.J. , Chen, J. , van Gent, D.C. , Bartek, J. , Jonkers, J. , Borst, P. , Rottenberg, S. , 2015. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature. 521, 541–544. PubMed PMC
Zimmermann, M. , Lottersberger, F. , Buonomo, S.B. , Sfeir, A. , de Lange, T. , 2013. 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science. 339, 700–704. PubMed PMC