Obesity alters adipose tissue response to fasting and refeeding in women: A study on lipolytic and endocrine dynamics and acute insulin resistance

. 2024 Sep 30 ; 10 (18) : e37875. [epub] 20240914

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39328508
Odkazy

PubMed 39328508
PubMed Central PMC11425135
DOI 10.1016/j.heliyon.2024.e37875
PII: S2405-8440(24)13906-0
Knihovny.cz E-zdroje

Fasting induces significant shifts in substrate utilization with signs of acute insulin resistance (IR), while obesity is associated with chronic IR. Nonetheless, both states substantially influence adipose tissue (AT) function. Therefore, in this interventional study (NCT04260542), we investigated if excessive adiposity in premenopausal women alters insulin sensitivity and AT metabolic and endocrine activity in response to a 60-h fast and a subsequent 48-h refeeding period. Using physiological methods, lipidomics, and AT explants, we showed that obesity partially modified AT endocrine activity and blunted the dynamics of AT insulin resistance in response to the fasting/refeeding challenge compared to that observed in lean women. AT adapted to its own excess by reducing lipolytic activity/free fatty acids (FFA) flux per mass. This adaptation persisted even after a 60-h fast, resulting in lower ketosis in women with obesity. This could be a protective mechanism that limits the lipotoxic effects of FFA; however, it may ultimately impede desirable weight loss induced by caloric restriction in women with obesity.

Zobrazit více v PubMed

Klein S., et al. Why does obesity cause diabetes? Cell Metabol. 2022;34(1):11–20. PubMed PMC

Petersen M.C., Shulman G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 2018;98(4):2133–2223. PubMed PMC

Duncan R.E., et al. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 2007;27:79–101. PubMed PMC

Johnson A.M., Olefsky J.M. The origins and drivers of insulin resistance. Cell. 2013;152(4):673–684. PubMed

Karpe F., Dickmann J.R., Frayn K.N. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60(10):2441–2449. PubMed PMC

Wolfe R.R., et al. Effect of short-term fasting on lipolytic responsiveness in normal and obese human subjects. Am. J. Physiol. 1987;252(2 Pt 1):E189–E196. PubMed

Mittendorfer B., et al. Relationship between body fat mass and free fatty acid kinetics in men and women. Obesity. 2009;17(10):1872–1877. PubMed PMC

Horowitz J.F., et al. Effect of short-term fasting on lipid kinetics in lean and obese women. Am. J. Physiol. 1999;276(2 Pt 1):E278–E284. PubMed

Morigny P., Boucher J., Arner P., Langin D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol. 2021;17:276–295. PubMed

Smith G.I., Mittendorfer B., Klein S. Metabolically healthy obesity: facts and fantasies. J. Clin. Invest. 2019;129(10):3978–3989. PubMed PMC

Soeters M.R., Soeters P.B. The evolutionary benefit of insulin resistance. Clin. Nutr. 2012;31(6):1002–1007. PubMed

Steinhauser M.L., et al. The circulating metabolome of human starvation. JCI Insight. 2018;3(16) PubMed PMC

Brooks G.A. Lactate as a fulcrum of metabolism. Redox Biol. 2020;35 PubMed PMC

Qiao Q., et al. Glucose restriction Plus refeeding in vitro induce changes of the human adipocyte secretome with an impact on complement factors and cathepsins. Int. J. Mol. Sci. 2019;20(16) PubMed PMC

Cushing E.M., et al. Angiopoietin-like 4 directs uptake of dietary fat away from adipose during fasting. Mol. Metabol. 2017;6(8):809–818. PubMed PMC

Crowe S., et al. Pigment epithelium-derived factor contributes to insulin resistance in obesity. Cell Metabol. 2009;10(1):40–47. PubMed

Li Y., Wright G.L., Peterson J.M. C1q/TNF-Related protein 3 (CTRP3) function and regulation. Compr. Physiol. 2017;7(3):863–878. PubMed PMC

Ezpeleta M., Cienfuegos S., Lin S., Pavlou V., Gabel K., Varady K.A. Efficacy and safety of prolonged water fasting: a narrative review of human trials. Nutr. Rev. 2023;82:664–675. PubMed

Horowitz J.F., Klein S. Whole body and abdominal lipolytic sensitivity to epinephrine is suppressed in upper body obese women. Am. J. Physiol. Endocrinol. Metab. 2000;278(6):E1144–E1152. PubMed

Arner P., et al. Adipose lipid turnover and long-term changes in body weight. Nat. Med. 2019;25(9):1385–1389. PubMed

Pasarica M., et al. Reduced oxygenation in human obese adipose tissue is associated with impaired insulin suppression of lipolysis. J. Clin. Endocrinol. Metab. 2010;95(8):4052–4055. PubMed PMC

Arngrim N., et al. Reduced adipose tissue lymphatic drainage of macromolecules in obese subjects: a possible link between obesity and local tissue inflammation? Int. J. Obes. 2013;37(5):748–750. PubMed

Monelli E., et al. Angiocrine polyamine production regulates adiposity. Nat. Metab. 2022;4(3):327–343. PubMed

Aupetit A., Decaunes P., Belles C., Riant E., Galitzky J., Chapouly C., Laisne M., Flores-Flores R., Chaput B., Vie K., Arnal J.F., Bouloumie A., Briot A. Endothelial DLL4 Is an adipose depot-specific fasting sensor regulating fatty acid fluxes. Arterioscler. Thromb. Vasc. Biol. 2023;43:684–696. PubMed

Koska J., et al. Exenatide protects against glucose- and lipid-induced endothelial dysfunction: evidence for direct vasodilation effect of GLP-1 receptor agonists in humans. Diabetes. 2015;64(7):2624–2635. PubMed PMC

Van Vliet S., Koh H.E., Patterson B.W., Yoshino M., Laforest R., Gropler R.J., Klein S., Mittendorfer B. Obesity is associated with increased basal and postprandial beta-cell insulin secretion even in the absence of insulin resistance. Diabetes. 2020;69:2112–2119. PubMed PMC

Sondergaard E., Jensen M.D. Quantification of adipose tissue insulin sensitivity. J. Invest. Med. 2016;64(5):989–991. PubMed

Frayn K.N., Humphreys S.M. Metabolic characteristics of human subcutaneous abdominal adipose tissue after overnight fast. Am. J. Physiol. Endocrinol. Metab. 2012;302(4):E468–E475. PubMed PMC

Wang Y., et al. Glycerol not lactate is the major net carbon source for gluconeogenesis in mice during both short and prolonged fasting. Mol. Metabol. 2020;31:36–44. PubMed PMC

Horowitz J.F., Coppack S.W., Klein S. Whole-body and adipose tissue glucose metabolism in response to short-term fasting in lean and obese women. Am. J. Clin. Nutr. 2001;73(3):517–522. PubMed

Fougerat A., et al. ATGL-dependent white adipose tissue lipolysis controls hepatocyte PPARα activity. Cell Rep. 2022;39(10) PubMed

Whytock K.L., et al. Metabolic adaptation characterizes short-term resistance to weight loss induced by a low-calorie diet in overweight/obese individuals. Am. J. Clin. Nutr. 2021;114(1):267–280. PubMed

Krycer J.R., et al. Lactate production is a prioritized feature of adipocyte metabolism. J. Biol. Chem. 2020;295(1):83–98. PubMed PMC

Newby F.D., et al. Adipocyte lactate production remains elevated during refeeding after fasting. Am. J. Physiol. 1990;259(6 Pt 1):E865–E871. PubMed

Rossmeislova L., Gojda J., Smolkova K. Pancreatic cancer: branched-chain amino acids as putative key metabolic regulators? Cancer Metastasis Rev. 2021;40(4):1115–1139. PubMed

Wijngaarden M.A., et al. Effects of prolonged fasting on AMPK signaling, gene expression, and mitochondrial respiratory chain content in skeletal muscle from lean and obese individuals. Am. J. Physiol. Endocrinol. Metab. 2013;304(9):E1012–E1021. PubMed

Bak A.M., et al. Differential regulation of lipid and protein metabolism in obese vs. lean subjects before and after a 72-h fast. Am. J. Physiol. Endocrinol. Metab. 2016;311(1):E224–E235. PubMed

Ekberg K., et al. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes. 1999;48(2):292–298. PubMed

Stern J.H., et al. Obesity dysregulates fasting-induced changes in glucagon secretion. J. Endocrinol. 2019;243(2):149–160. PubMed PMC

Cen J., Sargsyan E., Bergsten P. Fatty acids stimulate insulin secretion from human pancreatic islets at fasting glucose concentrations via mitochondria-dependent and -independent mechanisms. Nutr. Metab. 2016;13(1):59. PubMed PMC

Zembic A., et al. An empirically derived definition of metabolically healthy obesity based on risk of cardiovascular and total mortality. JAMA Netw. Open. 2021;4(5) PubMed PMC

Funcke J.B., Scherer P.E. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J. Lipid Res. 2019;60(10):1648–1684. PubMed PMC

Merl V., et al. Serum adiponectin concentrations during a 72-hour fast in over- and normal-weight humans. Int. J. Obes. 2005;29(8):998–1001. PubMed

Ye J.J., et al. Adiponectin and related C1q/TNF-related proteins bind selectively to anionic phospholipids and sphingolipids. Proc. Natl. Acad. Sci. U. S. A. 2020;117(29):17381–17388. PubMed PMC

Ruppert P.M.M., et al. Fasting induces ANGPTL4 and reduces LPL activity in human adipose tissue. Mol. Metabol. 2020;40 PubMed PMC

Chung C., et al. Anti-angiogenic pigment epithelium-derived factor regulates hepatocyte triglyceride content through adipose triglyceride lipase (ATGL) J. Hepatol. 2008;48(3):471–478. PubMed

Pietzner M., Uluvar B., Kolnes K.J., Jeppesen P.B., Frivold S.V., Skattebo O., Johansen E.I., Skalhegg B.S., Wojtaszewski J.F.P., Kolnes A.J., Yeo G.S.H., O’Rahilly S., Jensen J., Langenberg C. Systemic proteome adaptions to 7-day complete caloric restriction in humans. Nat. Metab. 2024;6:764–777. PubMed

Schauder P., Herbertz L., Langenbeck U. Serum branched chain amino and keto acid response to fasting in humans. Metabolism. 1985;34(1):58–61. PubMed

Rothman D.L., et al. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science. 1991;254(5031):573–576. PubMed

Collet T.H., Sonoyama T., Henning E., Keogh J.M., Ingram B., Kelway S., Guo L., Farooqi I.S. A metabolomic signature of acute caloric restriction. J. Clin. Endocrinol. Metab. 2017;102:4486–4495. PubMed PMC

Mansell P.I., Macdonald I.A. Reappraisal of the Weir equation for calculation of metabolic rate. Am. J. Physiol. 1990;258(6 Pt 2):R1347–R1354. PubMed

Degrelle S.A., et al. DietSee: an on-hand, portable, strip-type biosensor for lipolysis monitoring via real-time amperometric determination of glycerol in blood. Anal. Chim. Acta. 2021;1155 PubMed

Tuma P., et al. Sensitive monitoring of 3-hydroxybutyrate as an indicator of human fasting by capillary electrophoresis in a PAMAMPS coated capillary. Talanta. 2022;247 PubMed

Tuma P., et al. Monitoring of circulating amino acids in patients with pancreatic cancer and cancer cachexia using capillary electrophoresis and contactless conductivity detection. Electrophoresis. 2021;42(19):1885–1891. PubMed

Gastaldelli A. Measuring and estimating insulin resistance in clinical and research settings. Obesity. 2022;30(8):1549–1563. PubMed PMC

Brezinova M., et al. Exercise training induces insulin-sensitizing PAHSAs in adipose tissue of elderly women. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2019 PubMed

Hricko J., et al. Short-term stability of serum and liver extracts for untargeted metabolomics and lipidomics. Antioxidants. 2023;12(5) PubMed PMC

Sistilli G., et al. Krill oil supplementation reduces exacerbated hepatic steatosis induced by thermoneutral housing in mice with diet-induced obesity. Nutrients. 2021;13(2) PubMed PMC

Chong J., et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486–W494. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...