Pancreatic cancer: branched-chain amino acids as putative key metabolic regulators?
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
34962613
DOI
10.1007/s10555-021-10016-0
PII: 10.1007/s10555-021-10016-0
Knihovny.cz E-zdroje
- Klíčová slova
- Adipose tissue, BCAA metabolism, Cancer cachexia, Insulin resistance, PDAC,
- MeSH
- diabetes mellitus * MeSH
- duktální karcinom pankreatu * etiologie patologie MeSH
- inzulinová rezistence * MeSH
- kachexie etiologie MeSH
- lidé MeSH
- nádory slinivky břišní * patologie MeSH
- obezita komplikace metabolismus MeSH
- větvené aminokyseliny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- větvené aminokyseliny MeSH
Branched-chain amino acids (BCAA) are essential amino acids utilized in anabolic and catabolic metabolism. While extensively studied in obesity and diabetes, recent evidence suggests an important role for BCAA metabolism in cancer. Elevated plasma levels of BCAA are associated with an increased risk of developing pancreatic cancer, namely pancreatic ductal adenocarcinoma (PDAC), a tumor with one of the highest 1-year mortality rates. The dreadful prognosis for PDAC patients could be attributable also to the early and frequent development of cancer cachexia, a fatal host metabolic reprogramming leading to muscle and adipose wasting. We propose that BCAA dysmetabolism is a unifying component of several pathological conditions, i.e., obesity, insulin resistance, and PDAC. These conditions are mutually dependent since PDAC ranks among cancers tightly associated with obesity and insulin resistance. It is also well-established that PDAC itself can trigger insulin resistance and new-onset diabetes. However, the exact link between BCAA metabolism, development of PDAC, and tissue wasting is still unclear. Although tissue-specific intracellular and systemic metabolism of BCAA is being intensively studied, unresolved questions related to PDAC and cancer cachexia remain, namely, whether elevated circulating BCAA contribute to PDAC etiology, what is the biological background of BCAA elevation, and what is the role of adipose tissue relative to BCAA metabolism during cancer cachexia. To cover those issues, we provide our view on BCAA metabolism at the intracellular, tissue, and whole-body level, with special emphasis on different metabolic links to BCAA intermediates and the role of insulin in substrate handling.
Zobrazit více v PubMed
Pearson-Stuttard, J., Bennett, J., Cheng, Y. J., Vamos, E. P., Cross, A. J., Ezzati, M., et al. (2021). Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: An epidemiological analysis of linked primary care records. The Lancet Diabetes & Endocrinology, 9(3), 165–173. https://doi.org/10.1016/s2213-8587(20)30431-9 DOI
Huxley, R., Ansary-Moghaddam, A., Berrington De González, A., Barzi, F., & Woodward, M. (2005). Type-II diabetes and pancreatic cancer: A meta-analysis of 36 studies. British Journal of Cancer, 92(11), 2076–2083. https://doi.org/10.1038/sj.bjc.6602619 PubMed DOI PMC
Safiri, S., Sepanlou, S. G., Ikuta, K. S., Bisignano, C., Salimzadeh, H., Delavari, A., et al. (2019). The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology & Hepatology, 4(12), 913–933. https://doi.org/10.1016/s2468-1253(19)30345-0 DOI
Luo, G., Fan, Z., Gong, Y., Jin, K., Yang, C., Cheng, H., et al. (2019). Characteristics and outcomes of pancreatic cancer by histological subtypes. Pancreas, 48(6), 817–822. https://doi.org/10.1097/mpa.0000000000001338 PubMed DOI
Grant, T. J., Hua, K., & Singh, A. (2016). Molecular pathogenesis of pancreatic cancer. In (pp. 241–275): Elsevier.
Basturk, O., Hong, S.-M., Wood, L. D., Adsay, N. V., Albores-Saavedra, J., Biankin, A. V., et al. (2015). A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. American Journal of Surgical Pathology, 39(12), 1730–1741. https://doi.org/10.1097/pas.0000000000000533 DOI
Murtaugh, L. C. (2014). Pathogenesis of pancreatic cancer. Toxicologic Pathology, 42(1), 217–228. https://doi.org/10.1177/0192623313508250 PubMed DOI
Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., et al. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467(7319), 1114–1117. https://doi.org/10.1038/nature09515 PubMed DOI PMC
Ariston Gabriel, A. N., Jiao, Q., Yvette, U., Yang, X., Al-Ameri, S. A., Du, L., et al. (2020). Differences between KC and KPC pancreatic ductal adenocarcinoma mice models, in terms of their modeling biology and their clinical relevance. Pancreatology, 20(1), 79–88. https://doi.org/10.1016/j.pan.2019.11.006 PubMed DOI
Wang, H., Liu, J., Xia, G., Lei, S., Huang, X., & Huang, X. (2020). Survival of pancreatic cancer patients is negatively correlated with age at diagnosis: A population-based retrospective study. Scientific Reports, 10(1), https://doi.org/10.1038/s41598–020–64068–3
Hue, J. J., Sugumar, K., Kyasaram, R. K., Shanahan, J., Lyons, J., Ocuin, L. M., et al. (2021). Weight loss as an untapped early detection marker in pancreatic and periampullary cancer. Annals of Surgical Oncology, 28(11), 6283–6292. https://doi.org/10.1245/s10434-021-09861-8 PubMed DOI
Vanhoutte, G., Van De Wiel, M., Wouters, K., Sels, M., Bartolomeeussen, L., De Keersmaecker, S., et al. (2016). Cachexia in cancer: What is in the definition? BMJ Open Gastroenterology, 3(1), e000097. https://doi.org/10.1136/bmjgast-2016-000097 PubMed DOI PMC
Fearon, K., Strasser, F., Anker, S. D., Bosaeus, I., Bruera, E., Fainsinger, R. L., et al. (2011). Definition and classification of cancer cachexia: An international consensus. The Lancet Oncology (Vol. 12, pp. 489–495): Elsevier.
Ali, R., Baracos, V. E., Sawyer, M. B., Bianchi, L., Roberts, S., Assenat, E., et al. (2016). Lean body mass as an independent determinant of dose-limiting toxicity and neuropathy in patients with colon cancer treated with FOLFOX regimens. Cancer Medicine (Vol. 5, pp. 607–616): John Wiley & Sons, Ltd.
Kordes, M., Larsson, L., Engstrand, L., & Löhr, J. M. (2021). Pancreatic cancer cachexia: Three dimensions of a complex syndrome. British Journal of Cancer, 124(10), 1623–1636. https://doi.org/10.1038/s41416-021-01301-4 PubMed DOI
Mayers, J. R., Wu, C., Clish, C. B., Kraft, P., Torrence, M. E., Fiske, B. P., et al. (2014). Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nature Medicine 2014 20:10 (Vol. 20, pp. 1193–1198): Nature Publishing Group.
García-Jiménez, C., Gutiérrez-Salmerón, M., Chocarro-Calvo, A., García-Martinez, J. M., Castaño, A., & De la Vieja, A. (2016). From obesity to diabetes and cancer: Epidemiological links and role of therapies. British Journal of Cancer 2016 114:7 (Vol. 114, pp. 716–722): Nature Publishing Group.
Wolpin, B. M., Bao, Y., Qian, Z. R., Wu, C., Kraft, P., Ogino, S., et al. (2013). Hyperglycemia, insulin resistance, impaired pancreatic β-cell function, and risk of pancreatic cancer. JNCI: Journal of the National Cancer Institute (Vol. 105, pp. 1027–1035): Oxford Academic.
Herman, M. A., She, P., Peroni, O. D., Lynch, C. J., & Kahn, B. B. (2010). Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. Journal of Biological Chemistry, 285(15), 11348–11356. https://doi.org/10.1074/jbc.m109.075184 DOI
Bianchini, F., Kaaks, R., & Vainio, H. (2002). Overweight, obesity, and cancer risk. The Lancet Oncology, 3(9), 565–574. https://doi.org/10.1016/S1470-2045(02)00849-5 PubMed DOI
De Gonzalez, A. B., Sweetland, S., & Spencer, E. (2003). A meta-analysis of obesity and the risk of pancreatic cancer. British Journal of Cancer, 89(3), 519–523. https://doi.org/10.1038/sj.bjc.6601140 DOI PMC
Lengyel, E., Makowski, L., Digiovanni, J., & Kolonin, M. G. (2018). Cancer as a matter of fat: The crosstalk between adipose tissue and tumors. Trends in Cancer, 4(5), 374–384. https://doi.org/10.1016/j.trecan.2018.03.004 PubMed DOI PMC
Rupert, J. E., Narasimhan, A., Jengelley, D. H. A., Jiang, Y., Liu, J., Au, E., et al. (2021). Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. Journal of Experimental Medicine (Vol. 218): The Rockefeller University Press.
Anthony, J. C., Yoshizawa, F., Anthony, T. G., Vary, T. C., Jefferson, L. S., & Kimball, S. R. (2000). Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. The Journal of Nutrition, 130(10), 2413–2419. https://doi.org/10.1093/jn/130.10.2413 PubMed DOI
Jang, C., Oh, S. F., Wada, S., Rowe, G. C., Liu, L., Chan, M. C., et al. (2016). A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nature Medicine 2016 22:4 (Vol. 22, pp. 421–426): Nature Publishing Group.
Violante, S., Ijlst, L., Brinke, H. T., Almeida, I. T., Wanders, R. J. A., Ventura, F. V., et al. (2013). Carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase are involved in the mitochondrial synthesis and export of acylcarnitines. The FASEB Journal, 27(5), 2039–2044. https://doi.org/10.1096/fj.12-216689 PubMed DOI
Juraszek, B., & Nałęcz, K. A. (2019). SLC22A5 (OCTN2) Carnitine transporter—indispensable for cell metabolism, a Jekyll and Hyde of human cancer. Molecules, 25(1), 14. https://doi.org/10.3390/molecules25010014 DOI PMC
Neinast, M. D., Jang, C., Hui, S., Murashige, D. S., Chu, Q., Morscher, R. J., et al. (2019). Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metabolism (Vol. 29, pp. 417–429.e414): Elsevier.
Najumudeen, A. K., Ceteci, F., Fey, S. K., Hamm, G., Steven, R. T., Hall, H., et al. (2021). The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer. Nature Genetics, 53(1), 16–26. https://doi.org/10.1038/s41588-020-00753-3 PubMed DOI
Bodoy, S., Fotiadis, D., Stoeger, C., Kanai, Y., & Palacín, M. (2013). The small SLC43 family: Facilitator system l amino acid transporters and the orphan EEG1. Molecular Aspects of Medicine, 34(2–3), 638–645. https://doi.org/10.1016/j.mam.2012.12.006 PubMed DOI
Feng, M., Xiong, G., Cao, Z., Yang, G., Zheng, S., Qiu, J., et al. (2018). LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer. Journal of Experimental & Clinical Cancer Research, 37(1), https://doi.org/10.1186/s13046–018–0947–4
Wolfe, R. R. (2017). Branched-chain amino acids and muscle protein synthesis in humans: Myth or reality? Journal of the International Society of Sports Nutrition, 14(1), https://doi.org/10.1186/s12970–017–0184–9
Walejko, J. M., Christopher, B. A., Crown, S. B., Zhang, G. F., Pickar-Oliver, A., Yoneshiro, T., et al. (2021). Branched-chain α-ketoacids are preferentially reaminated and activate protein synthesis in the heart. Nature Communications (Vol. 12): Nature Research.
Mayers, J. R., Torrence, M. E., Danai, L. V., Papagiannakopoulos, T., Davidson, S. M., Bauer, M. R., et al. (2016). Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science, 353(6304), 1161–1165. https://doi.org/10.1126/science.aaf5171 PubMed DOI PMC
Yoneshiro, T., Wang, Q., Tajima, K., Matsushita, M., Maki, H., Igarashi, K., et al. (2019). BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature 2019 572:7771 (Vol. 572, pp. 614–619): Nature Publishing Group.
Silva, L. S., Poschet, G., Nonnenmacher, Y., Becker, H. M., Sapcariu, S., Gaupel, A. C., et al. (2017). Branched‐chain ketoacids secreted by glioblastoma cells via MCT 1 modulate macrophage phenotype. EMBO reports, 18(12), 2172–2185. https://doi.org/10.15252/embr.201744154 PubMed DOI PMC
Whitehead, A., Krause, F. N., Moran, A., MacCannell, A. D. V., Scragg, J. L., McNally, B. D., et al. (2021). Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nature Communications 2021 12:1 (Vol. 12, pp. 1–21): Nature Publishing Group.
Zhu, Z., Achreja, A., Meurs, N., Animasahun, O., Owen, S., Mittal, A., et al. (2020). Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal-rich PDAC tumours. Nature Metabolism 2020 2:8 (Vol. 2, pp. 775–792): Nature Publishing Group.
Gu, Z., Liu, Y., Cai, F., Patrick, M., Zmajkovic, J., Cao, H., et al. (2019). Loss of EZH2 Reprograms BCAA metabolism to drive leukemic transformation. Cancer Discovery, 9(9), 1228–1247. https://doi.org/10.1158/2159-8290.Cd-19-0152 PubMed DOI PMC
Hattori, A., Tsunoda, M., Konuma, T., Kobayashi, M., Nagy, T., Glushka, J., et al. (2017). Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature, 545(7655), 500–504. https://doi.org/10.1038/nature22314 PubMed DOI PMC
Adeva-Andany, M. M., López-Maside, L., Donapetry-García, C., Fernández-Fernández, C., & Sixto-Leal, C. (2017). Enzymes involved in branched-chain amino acid metabolism in humans. Amino Acids, 49(6), 1005–1028. https://doi.org/10.1007/s00726-017-2412-7 PubMed DOI
Lu, G., Sun, H., She, P., Youn, J.-Y., Warburton, S., Ping, P., et al. (2009). Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells. Journal of Clinical Investigation, 119(6), 1678–1687. https://doi.org/10.1172/jci38151 DOI
Green, C. R., Wallace, M., Divakaruni, A. S., Phillips, S. A., Murphy, A. N., Ciaraldi, T. P., et al. (2016). Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nature Chemical Biology, 12(1), 15–21. https://doi.org/10.1038/nchembio.1961 PubMed DOI
Lee, J. H., Cho, Y.-R., Kim, J. H., Kim, J., Nam, H. Y., Kim, S. W., et al. (2019). Branched-chain amino acids sustain pancreatic cancer growth by regulating lipid metabolism. Experimental & Molecular Medicine, 51(11), 1–11. https://doi.org/10.1038/s12276-019-0350-z DOI
Nilsen, M. S., Jersin, R. A., Ulvik, A., Madsen, A., McCann, A., Svensson, P. A., et al. (2020). 3-hydroxyisobutyrate, a strong marker of insulin resistance in type 2 diabetes and obesity that modulates white and brown adipocyte metabolism. Diabetes, 69(9), 1903–1916. https://doi.org/10.2337/db19-1174 PubMed DOI PMC
Rosenthal, J., Angel, A., & Farkas, J. (1974). Metabolic fate of leucine: A significant sterol precursor in adipose tissue and muscle. American Journal of Physiology, 226(2), 411–418. https://doi.org/10.1152/ajplegacy.1974.226.2.411 DOI
Estrada-Alcalde, I., Tenorio-Guzman, M. R., Tovar, A. R., Salinas-Rubio, D., Torre-Villalvazo, I., Torres, N., et al. (2017). Metabolic fate of branched-chain amino acids during adipogenesis, in adipocytes from obese mice and C2C12 myotubes. Journal of Cellular Biochemistry, 118(4), 808–818. https://doi.org/10.1002/jcb.25755 PubMed DOI
Carrer, A., Trefely, S., Zhao, S., Campbell, S. L., Norgard, R. J., Schultz, K. C., et al. (2019). Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discovery, 9(3), 416–435. https://doi.org/10.1158/2159-8290.Cd-18-0567 PubMed DOI PMC
She, P., Olson, K. C., Kadota, Y., Inukai, A., Shimomura, Y., Hoppel, C. L., et al. (2013). Leucine and protein metabolism in obese Zucker rats. PLoS One (Vol. 8, pp. e59443): Public Library of Science.
Noland, R. C., Koves, T. R., Seiler, S. E., Lum, H., Lust, R. M., Ilkayeva, O., et al. (2009). Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. Journal of Biological Chemistry, 284(34), 22840–22852. https://doi.org/10.1074/jbc.M109.032888 DOI
Muoio, D. M., Noland, R. C., Kovalik, J. P., Seiler, S. E., Davies, M. N., DeBalsi, K. L., et al. (2012). Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metabolism, 15(5), 764–777. https://doi.org/10.1016/j.cmet.2012.04.005 PubMed DOI PMC
Allman, B. R., Spray, B. J., Mercer, K. E., Andres, A., & Børsheim, E. (2021). Markers of branched-chain amino acid catabolism are not affected by exercise training in pregnant women with obesity. Journal of Applied Physiology, 130(3), 651–659. https://doi.org/10.1152/japplphysiol.00673.2020 PubMed DOI PMC
Violante, S., Ijlst, L., Ruiter, J., Koster, J., van Lenthe, H., Duran, M., et al. (2013). Substrate specificity of human carnitine acetyltransferase: Implications for fatty acid and branched-chain amino acid metabolism. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease (Vol. 1832, pp. 773–779): Elsevier.
Seiler, S. E., Martin, O. J., Noland, R. C., Slentz, D. H., DeBalsi, K. L., Ilkayeva, O. R., et al. (2014). Obesity and lipid stress inhibit carnitine acetyltransferase activity. Journal of Lipid Research (Vol. 55, pp. 635–644): Elsevier.
Wallace, M., Green, C. R., Roberts, L. S., Lee, Y. M., McCarville, J. L., Sanchez-Gurmaches, J., et al. (2018). Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nature Chemical Biology 2018 14:11 (Vol. 14, pp. 1021–1031): Nature Publishing Group.
Li, J.-T., Yin, M., Wang, D., Wang, J., Lei, M.-Z., Zhang, Y., et al. (2020). BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma. Nature Cell Biology 2020 22:2 (Vol. 22, pp. 167–174): Nature Publishing Group.
Wang, K., Zhang, Z., Tsai, H.-i., Liu, Y., Gao, J., Wang, M., et al. (2020). Branched-chain amino acid aminotransferase 2 regulates ferroptotic cell death in cancer cells. Cell Death & Differentiation 2020 28:4 (Vol. 28, pp. 1222–1236): Nature Publishing Group.
Carrer, A., Trefely, S., Zhao, S., Campbell, S. L., Norgard, R. J., Schultz, K. C., et al. (2019). Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discovery, 9(3), 416–435. https://doi.org/10.1158/2159-8290.cd-18-0567 PubMed DOI PMC
Sherman, M. H., Yu, R. T., Tseng, T. W., Sousa, C. M., Liu, S., Truitt, M. L., et al. (2017). Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proceedings of the National Academy of Sciences (Vol. 114, pp. 1129–1134): National Academy of Sciences.
Chellappa, S., Hugenschmidt, H., Hagness, M., Line, P. D., Labori, K. J., Wiedswang, G., et al. (2016). Regulatory T cells that co-express RORγt and FOXP3 are pro-inflammatory and immunosuppressive and expand in human pancreatic cancer. OncoImmunology, 5(4), e1102828. https://doi.org/10.1080/2162402x.2015.1102828 PubMed DOI
Ikeda, K., Kinoshita, M., Kayama, H., Nagamori, S., Kongpracha, P., Umemoto, E., et al. (2017). Slc3a2 Mediates branched-chain amino-acid-dependent maintenance of regulatory T cells. Cell Reports, 21(7), 1824–1838. https://doi.org/10.1016/j.celrep.2017.10.082 PubMed DOI
Wandmacher, A. M., Mehdorn, A.-S., & Sebens, S. (2021). The heterogeneity of the tumor microenvironment as essential determinant of development, progression and therapy response of pancreatic cancer. Cancers, 13(19), 4932. https://doi.org/10.3390/cancers13194932 PubMed DOI PMC
Lei, M.-Z., Li, X.-X., Zhang, Y., Li, J.-T., Zhang, F., Wang, Y.-P., et al. (2020). Acetylation promotes BCAT2 degradation to suppress BCAA catabolism and pancreatic cancer growth. Signal Transduction and Targeted Therapy 2020 5:1 (Vol. 5, pp. 1–9): Nature Publishing Group.
Dey, P., Baddour, J., Muller, F., Wu, C. C., Wang, H., Liao, W.-T., et al. (2017). Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature, 542(7639), 119–123. https://doi.org/10.1038/nature21052 PubMed DOI PMC
Parker, S. J., Amendola, C. R., Hollinshead, K. E. R., Yu, Q., Yamamoto, K., Encarnación-Rosado, J., et al. (2020). Selective alanine transporter utilization creates a targetable metabolic niche in pancreatic cancer. Cancer Discovery, 10(7), 1018–1037. https://doi.org/10.1158/2159-8290.cd-19-0959 PubMed DOI PMC
Zhang, B., Chen, Y., Shi, X., Zhou, M., Bao, L., Hatanpaa, K. J., et al. (2021). Regulation of branched-chain amino acid metabolism by hypoxia-inducible factor in glioblastoma. Cellular and Molecular Life Sciences, 78(1), 195–206. https://doi.org/10.1007/s00018-020-03483-1 PubMed DOI
Suh, E. H., Hackett, E. P., Wynn, R. M., Chuang, D. T., Zhang, B., Luo, W., et al. (2019). In vivo assessment of increased oxidation of branched-chain amino acids in glioblastoma. Science and Reports, 9(1), 340. https://doi.org/10.1038/s41598-018-37390-0 DOI
Vellai, T. (2021). How the amino acid leucine activates the key cell-growth regulator mTOR. Nature 2021 596:7871 (Vol. 596, pp. 192–194): Nature Publishing Group.
Blomstrand, E., Eliasson, J., Karlsson, H. K. R., & Köhnke, R. (2006). Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. The Journal of Nutrition, 136(1), 269S-273S. https://doi.org/10.1093/jn/136.1.269s PubMed DOI
Wolfe, R. R. (2002). Regulation of muscle protein by amino acids. The Journal of Nutrition, 132(10), 3219S-3224S. https://doi.org/10.1093/jn/131.10.3219s PubMed DOI
Shao, D., Villet, O., Zhang, Z., Choi, S. W., Yan, J., Ritterhoff, J., et al. (2018). Glucose promotes cell growth by suppressing branched-chain amino acid degradation. Nature Communications, 9(1), https://doi.org/10.1038/s41467–018–05362–7
Zhang, Y.-K., Qu, Y.-Y., Lin, Y., Wu, X.-H., Chen, H.-Z., Wang, X., et al. (2017). Enoyl-CoA hydratase-1 regulates mTOR signaling and apoptosis by sensing nutrients. Nature Communications 2017 8:1 (Vol. 8, pp. 1–16): Nature Publishing Group.
Ericksen, R. E., Lim, S. L., McDonnell, E., Shuen, W. H., Vadiveloo, M., White, P. J., et al. (2019). Loss of BCAA catabolism during carcinogenesis enhances mTORC1 activity and promotes tumor development and progression. Cell Metabolism, 29(5), 1151-1165.e1156. https://doi.org/10.1016/j.cmet.2018.12.020 PubMed DOI PMC
Qu, Y. Y., Zhao, R., Zhang, H. L., Zhou, Q., Xu, F. J., Zhang, X., et al. (2020). Inactivation of the AMPK-GATA3-ECHS1 pathway induces fatty acid synthesis that promotes clear cell renal cell carcinoma growth. Cancer Research, 80(2), 319–333. https://doi.org/10.1158/0008-5472.Can-19-1023 PubMed DOI
Luo, L., Sun, W., Zhu, W., Li, S., Zhang, W., Xu, X., et al. (2021). BCAT1 decreases the sensitivity of cancer cells to cisplatin by regulating mTOR-mediated autophagy via branched-chain amino acid metabolism. Cell Death & Disease 2021 12:2 (Vol. 12, pp. 1–13): Nature Publishing Group.
Guo, Y., Zhu, H., Weng, M., Zhang, H., Wang, C., & Sun, L. (2020). CC-223, NSC781406, and BGT226 exerts a cytotoxic effect against pancreatic cancer cells via mTOR signaling. Frontiers in Pharmacology (Vol. 0, pp. 1703): Frontiers.
Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., et al. (2018). Oncogenic signaling pathways in the Cancer Genome Atlas. Cell, 173(2), 321-337.e310. https://doi.org/10.1016/j.cell.2018.03.035 PubMed DOI PMC
Palm, W., Park, Y., Wright, K., Pavlova, N. N., Tuveson, D. A., & Thompson, C. B. (2015). The Utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell (Vol. 162, pp. 259–270): Elsevier.
Nofal, M., Zhang, K., Han, S., & Rabinowitz, J. D. (2017). mTOR inhibition restores amino acid balance in cells dependent on catabolism of extracellular protein. Molecular Cell, 67(6), 936-946.e935. https://doi.org/10.1016/j.molcel.2017.08.011 PubMed DOI PMC
Kamphorst, J. J., Nofal, M., Commisso, C., Hackett, S. R., Lu, W., Grabocka, E., et al. (2015). Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Research (Vol. 75, pp. 544–553): American Association for Cancer Research.
Gojda, J., Straková, R., Plíhalová, A., Tůma, P., Potočková, J., Polák, J., et al. (2017). Increased incretin but not insulin response after oral versus intravenous branched chain amino acids. Annals of Nutrition and Metabolism (Vol. 70, pp. 293–302): Karger Publishers.
Wahren, J., Felig, P., & Hagenfeldt, L. (1976). Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. Journal of Clinical Investigation (Vol. 57, pp. 987): American Society for Clinical Investigation.
Neis, E., Dejong, C., & Rensen, S. (2015). The role of microbial amino acid metabolism in host metabolism. Nutrients, 7(4), 2930–2946. https://doi.org/10.3390/nu7042930 PubMed DOI PMC
Pedersen, H. K., Gudmundsdottir, V., Nielsen, H. B., Hyotylainen, T., Nielsen, T., Jensen, B. A. H., et al. (2016). Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016 535:7612 (Vol. 535, pp. 376–381): Nature Publishing Group.
Shimomura, Y., Honda, T., Shiraki, M., Murakami, T., Sato, J., Kobayashi, H., et al. (2006). Branched-chain amino acid catabolism in exercise and liver disease. The Journal of Nutrition (Vol. 136, pp. 250S-253S): Oxford Academic.
Neinast, M., Murashige, D., & Arany, Z. (2019). Branched chain amino acids. Annual Review of Physiology, 81(1), 139–164. https://doi.org/10.1146/annurev-physiol-020518-114455 PubMed DOI
Hutson, S. M. (1988). Subcellular distribution of branched-chain aminotransferase activity in rat tissues. The Journal of Nutrition (Vol. 118, pp. 1475–1481): Oxford Academic.
Shou, J., CHen, P.-J., & Xiao, W.-H. (2019). The effects of BCAAs on insulin resistance in athletes. Journal of Nutritional Science and Vitaminology (Vol. 65, pp. 383–389): Center for Academic Publications Japan.
Zinnanti, W. J., & Lazovic, J. (2012). Interrupting the mechanisms of brain injury in a model of maple syrup urine disease encephalopathy. Journal of Inherited Metabolic Disease (Vol. 35, pp. 71–79): John Wiley & Sons, Ltd.
Roda, K. M. O., Vincenzi, R., Fonseca, E. A., Benavides, M., Turine, P., Afonso, R. C., et al. (2019). Domino liver transplant in maple syrup urine disease: Technical details of cases in which the first surgery involved a living donor. Transplantation, 103(3), 536–543. https://doi.org/10.1097/tp.0000000000002300 PubMed DOI
Suryawan, A., Hawes, J. W., Harris, R. A., Shimomura, Y., Jenkins, A. E., & Hutson, S. M. (1998). A molecular model of human branched-chain amino acid metabolism. The American Journal of Clinical Nutrition, 68(1), 72–81. https://doi.org/10.1093/ajcn/68.1.72 PubMed DOI
Shimomura, Y., Honda, T., Shiraki, M., Murakami, T., Sato, J., Kobayashi, H., et al. (2006). Branched-chain amino acid catabolism in exercise and liver disease. The Journal of Nutrition, 136(1), 250S-253S. https://doi.org/10.1093/jn/136.1.250s PubMed DOI
Kasperek, G. J., Dohm, G. L., & Snider, R. D. (1985). Activation of branched-chain keto acid dehydrogenase by exercise. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 248(2), R166–R171. https://doi.org/10.1152/ajpregu.1985.248.2.R166 DOI
Shimomura, Y., Fujii, H., Suzuki, M., Murakami, T., Fujitsuka, N., & Nakai, N. (1995). Branched-chain α-keto acid dehydrogenase complex in rat skeletal muscle: Regulation of the activity and gene expression by nutrition and physical exercise. The Journal of Nutrition, 125(suppl_6), 1762S-1765S, https://doi.org/10.1093/jn/125.suppl_6.1762S .
Newgard, C. B. (2012). Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metabolism, 15(5), 606–614. https://doi.org/10.1016/j.cmet.2012.01.024 PubMed DOI PMC
Poloz, Y., & Stambolic, V. (2015). Obesity and cancer, a case for insulin signaling. Cell Death & Disease, 6(12), e2037–e2037. https://doi.org/10.1038/cddis.2015.381 DOI
Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9(4), 311–326. https://doi.org/10.1016/j.cmet.2009.02.002 PubMed DOI PMC
Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17(4), 448–453. https://doi.org/10.1038/nm.2307 PubMed DOI PMC
Brocco, D., Florio, R., De Lellis, L., Veschi, S., Grassadonia, A., Tinari, N., et al. (2020). The role of dysfunctional adipose tissue in pancreatic cancer: A molecular perspective. Cancers (Basel), 12(7), https://doi.org/10.3390/cancers12071849 .
Eriksson, L. S., & Björkman, O. (1993). Influence of insulin on peripheral uptake of branched chain amino acids in the 60-hour fasted state. Clinical Nutrition, 12(4), 217–222. https://doi.org/10.1016/0261-5614(93)90018-Y PubMed DOI
Schauder, P., Herbertz, L., & Langenbeck, U. (1985). Serum branched chain amino and keto acid response to fasting in humans. Metabolism, 34(1), 58–61. https://doi.org/10.1016/0026-0495(85)90061-7 PubMed DOI
Nair, K. S., Woolf, P. D., Welle, S. L., & Matthews, D. E. (1987). Leucine, glucose, and energy metabolism after 3 days of fasting in healthy human subjects. American Journal of Clinical Nutrition, 46(4), 557–562. https://doi.org/10.1093/ajcn/46.4.557 DOI
Pozefsky, T., Tancredi, R. G., Moxley, R. T., Dupre, J., & Tobin, J. D. (1976). Effects of brief starvation on muscle amino acid metabolism in nonobese man. Journal of Clinical Investigation, 57(2), 444–449. https://doi.org/10.1172/jci108295 DOI PMC
Holecek, M., Sprongl, L., & Tilser, I. (2001). Metabolism of branched-chain amino acids in starved rats: The role of hepatic tissue. Physiological Research, 50(1), 25–33. PubMed
Adibi, S. (1968). Influence of dietary deprivations on plasma concentration of free amino acids of man. Journal of Applied Physiology, 25(1), 52–57. https://doi.org/10.1152/jappl.1968.25.1.52 PubMed DOI
Felig, P., Marliss, E., & Cahill, G. F. (1969). Plasma amino acid levels and insulin secretion in obesity. New England Journal of Medicine, 281(15), 811–816. https://doi.org/10.1056/nejm196910092811503 DOI
Holeček, M. (1996). Leucine metabolism in fasted and tumor necrosis factor-treated rats. Clinical Nutrition, 15(2), 91–93. https://doi.org/10.1016/S0261-5614(96)80028-8 PubMed DOI
Nawabi, M. D., Block, K. P., Chakrabarti, M. C., & Buse, M. G. (1990). Administration of endotoxin, tumor necrosis factor, or interleukin 1 to rats activates skeletal muscle branched-chain alpha-keto acid dehydrogenase. Journal of Clinical Investigation, 85(1), 256–263. https://doi.org/10.1172/jci114421 DOI PMC
Hamaya, R., Mora, S., Lawler, P. R., Cook, N. R., Ridker, P. M., Buring, J. E., et al. (2021). Association of plasma branched-chain amino acid with biomarkers of inflammation and lipid metabolism in women. Circulation: Genomic and Precision Medicine, 14(4), e003330. https://doi.org/10.1161/CIRCGEN.121.003330 DOI
Shin, A. C., Fasshauer, M., Filatova, N., Grundell, L. A., Zielinski, E., Zhou, J.-Y., et al. (2014). Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Cell Metabolism, 20(5), 898–909. https://doi.org/10.1016/j.cmet.2014.09.003 PubMed DOI PMC
Ho, J. E., Larson, M. G., Vasan, R. S., Ghorbani, A., Cheng, S., Rhee, E. P., et al. (2013). Metabolite profiles during oral glucose challenge. Diabetes, 62(8), 2689–2698. https://doi.org/10.2337/db12-0754 PubMed DOI PMC
Chevalier, S., Gougeon, R., Kreisman, S. H., Cassis, C., & Morais, J. A. (2004). The hyperinsulinemic amino acid clamp increases whole-body protein synthesis in young subjects<sup>1</sup>. Metabolism - Clinical and Experimental, 53(3), 388–396. https://doi.org/10.1016/j.metabol.2003.09.016 PubMed DOI
Nellis, M. M., Doering, C. B., Kasinski, A., & Danner, D. J. (2002). Insulin increases branched-chain alpha-ketoacid dehydrogenase kinase expression in Clone 9 rat cells. American journal of physiology. Endocrinology and metabolism, 283(4), E853-860. https://doi.org/10.1152/ajpendo.00133.2002 PubMed DOI
Biswas, D., Duffley, L., & Pulinilkunnil, T. (2019). Role of branched-chain amino acid–catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. The FASEB Journal, 33(8), 8711–8731. https://doi.org/10.1096/fj.201802842rr PubMed DOI
Zwick, R. K., Guerrero-Juarez, C. F., Horsley, V., & Plikus, M. V. (2018). Anatomical, physiological, and functional diversity of adipose tissue. Cell Metabolism, 27(1), 68–83. https://doi.org/10.1016/j.cmet.2017.12.002 PubMed DOI PMC
Lackey, D. E., Lynch, C. J., Olson, K. C., Mostaedi, R., Ali, M., Smith, W. H., et al. (2013). Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. American Journal of Physiology-Endocrinology and Metabolism (Vol. 304, pp. 1175–1187).
Zimmerman, H. A., Olson, K. C., Chen, G., & Lynch, C. J. (2013). Adipose transplant for inborn errors of branched chain amino acid metabolism in mice. Molecular Genetics and Metabolism, 109(4), 345–353. https://doi.org/10.1016/j.ymgme.2013.05.010 PubMed DOI PMC
Chuang, D. T., Hu, C. W. C., & Patel, M. S. (1983). Induction of the branched-chain 2-oxo acid dehydrogenase complex in 3T3-L1 adipocytes during differentiation. Biochemical Journal, 214(1), 177–181. https://doi.org/10.1042/bj2140177 DOI PMC
Zaganjor, E., Yoon, H., Spinelli, J. B., Nunn, E. R., Laurent, G., Keskinidis, P., et al. (2021). SIRT4 is an early regulator of branched-chain amino acid catabolism that promotes adipogenesis. Cell Reports, 36(2), 109345. https://doi.org/10.1016/j.celrep.2021.109345 PubMed DOI
She, P., Reid, T. M., Bronson, S. K., Vary, T. C., Hajnal, A., Lynch, C. J., et al. (2007). Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metabolism, 6(3), 181–194. https://doi.org/10.1016/j.cmet.2007.08.003 PubMed DOI PMC
Lee, S., Gulseth, H. L., Langleite, T. M., Norheim, F., Olsen, T., Refsum, H., et al. (2020). Branched-chain amino acid metabolism, insulin sensitivity and liver fat response to exercise training in sedentary dysglycaemic and normoglycaemic men. Diabetologia 2020 64:2 (Vol. 64, pp. 410–423): Springer.
Boulet, M. M., Chevrier, G., Grenier-Larouche, T., Pelletier, M., Nadeau, M., Scarpa, J., et al. (2015). Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. American journal of physiology. Endocrinology and metabolism, 309(8), E736-746. https://doi.org/10.1152/ajpendo.00231.2015 PubMed DOI
Polakof, S., Rémond, D., David, J., Dardevet, D., & Savary-Auzeloux, I. (2018). Time-course changes in circulating branched-chain amino acid levels and metabolism in obese Yucatan minipig. Nutrition, 50, 66–73. https://doi.org/10.1016/j.nut.2017.11.004 PubMed DOI
Raajendiran, A., Krisp, C., Souza, D. P., Ooi, G., Burton, P. R., Taylor, R. A., et al. (2021). Proteome analysis of human adipocytes identifies depot-specific heterogeneity at metabolic control points. American journal of physiology. Endocrinology and metabolism, 320(6), E1068-e1084. https://doi.org/10.1152/ajpendo.00473.2020 PubMed DOI
Manolopoulos, K. N., Karpe, F., & Frayn, K. N. (2010). Gluteofemoral body fat as a determinant of metabolic health. International Journal of Obesity, 34(6), 949–959. https://doi.org/10.1038/ijo.2009.286 PubMed DOI
Ina, M.-P., Jinchu, V., Marie-Michelle, S., Elin, G., & André, T. (2020). Large-scale analysis of circulating amino acids and gene expression in relation to abdominal obesity. Cold Spring Harbor Laboratory.
Kedishvili, N. Y., Popov, K. M., Jaskiewicz, J. A., & Harris, R. A. (1994). Coordinated expression of valine catabolic enzymes during adipogenesis: Analysis of activity, mRNA, protein levels, and metabolic consequences. Archives of Biochemistry and Biophysics, 315(2), 317–322. https://doi.org/10.1006/abbi.1994.1506 PubMed DOI
Si, Y., Yoon, J., & Lee, K. (2007). Flux profile and modularity analysis of time-dependent metabolic changes of de novo adipocyte formation. American journal of physiology. Endocrinology and metabolism, 292(6), E1637-1646. https://doi.org/10.1152/ajpendo.00670.2006 . PubMed DOI
Katagiri, R., Goto, A., Nakagawa, T., Nishiumi, S., Kobayashi, T., Hidaka, A., et al. (2018). Increased levels of branched-chain amino acid associated with increased risk of pancreatic cancer in a prospective case–control study of a large cohort. Gastroenterology (Vol. 155, pp. 1474–1482.e1471): Elsevier.
Sivanand, S., & Heiden, M. G. V. (2020). Emerging roles for branched-chain amino acid metabolism in cancer. Cancer Cell (Vol. 37, pp. 147–156): Elsevier.
Tobias, D. K., Hazra, A., Lawler, P. R., Chandler, P. D., Chasman, D. I., Buring, J. E., et al. (2020). Circulating branched-chain amino acids and long-term risk of obesity-related cancers in women. Scientific Reports, 10(1), https://doi.org/10.1038/s41598–020–73499-x
Jiang, W., Qiao, L., Han, Y., Zhang, A., An, H., Xiao, J., et al. (2021). Pancreatic stellate cells regulate branched-chain amino acid metabolism in pancreatic cancer. Annals of Translational Medicine, 9(5), 417–417, https://doi.org/10.21037/atm-21–761
Roux, C., Riganti, C., Borgogno, S. F., Curto, R., Curcio, C., Catanzaro, V., et al. (2017). Endogenous glutamine decrease is associated with pancreatic cancer progression. Oncotarget, 8(56), 95361–95376. https://doi.org/10.18632/oncotarget.20545
Fukutake, N., Ueno, M., Hiraoka, N., Shimada, K., Shiraishi, K., Saruki, N., et al. (2015). A novel multivariate index for pancreatic cancer detection based on the plasma free amino acid profile. PLoS ONE, 10(7), e0132223. https://doi.org/10.1371/journal.pone.0132223 PubMed DOI PMC
Ananieva, E. A., Bostic, J. N., Torres, A. A., Glanz, H. R., McNitt, S. M., Brenner, M. K., et al. (2018). Mice deficient in the mitochondrial branched-chain aminotransferase (BCATm) respond with delayed tumour growth to a challenge with EL-4 lymphoma. British Journal of Cancer, 119(8), 1009–1017. https://doi.org/10.1038/s41416-018-0283-7 PubMed DOI PMC
Biswas, D., Dao, K. T., Mercer, A., Cowie, A. M., Duffley, L., El Hiani, Y., et al. (2020). Branched-chain ketoacid overload inhibits insulin action in the muscle. Journal of Biological Chemistry (Vol. 295, pp. 15597–15621): Elsevier.
Biswas, D., Tozer, K., Dao, K. T., Perez, L. J., Mercer, A., Brown, A., et al. (2020). Adverse outcomes in obese cardiac surgery patients correlates with altered branched-chain amino acid catabolism in adipose tissue and heart. [Original Research]. Frontiers in Endocrinology, 11(534), https://doi.org/10.3389/fendo.2020.00534 .
Badoud, F., Lam, K. P., DiBattista, A., Perreault, M., Zulyniak, M. A., Cattrysse, B., et al. (2014). Serum and adipose tissue amino acid homeostasis in the metabolically healthy obese. Journal of Proteome Research, 13(7), 3455–3466. https://doi.org/10.1021/pr500416v PubMed DOI
White, P. J., Lapworth, A. L., An, J., Wang, L., McGarrah, R. W., Stevens, R. D., et al. (2016). Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol Metab, 5(7), 538–551. https://doi.org/10.1016/j.molmet.2016.04.006 PubMed DOI PMC
Van Der Kolk, B. W., Saari, S., Lovric, A., Arif, M., Alvarez, M., Ko, A., et al. (2021). Molecular pathways behind acquired obesity: Adipose tissue and skeletal muscle multiomics in monozygotic twin pairs discordant for BMI. Cell Reports Medicine, 2(4), 100226. https://doi.org/10.1016/j.xcrm.2021.100226 PubMed DOI PMC
Yin, Q., Brameld, J. M., Parr, T., & Murton, A. J. (2020). Leucine and mTORc1 act independently to regulate 2-deoxyglucose uptake in L6 myotubes. Amino Acids 2020 52:3 (Vol. 52, pp. 477–486): Springer.
Cifarelli, V., Beeman, S. C., Smith, G. I., Yoshino, J., Morozov, D., Beals, J. W., et al. (2020). Decreased adipose tissue oxygenation associates with insulin resistance in individuals with obesity. The Journal of Clinical Investigation, 130(12), 6688–6699. https://doi.org/10.1172/jci141828 PubMed DOI PMC
Burrill, J. S., Long, E. K., Reilly, B., Deng, Y., Armitage, I. M., Scherer, P. E., et al. (2015). Inflammation and ER stress regulate branched-chain amino acid uptake and metabolism in adipocytes. Molecular Endocrinology, 29(3), 411–420. https://doi.org/10.1210/me.2014-1275 PubMed DOI PMC
Petruzzelli, M., & Wagner, E. F. (2016). Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes & Development, 30(5), 489–501. https://doi.org/10.1101/gad.276733.115 DOI
Rohm, M., Schäfer, M., Laurent, V., Üstünel, B. E., Niopek, K., Algire, C., et al. (2016). An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nature Medicine, 22(10), 1120–1130. https://doi.org/10.1038/nm.4171 PubMed DOI
Boden, G. (2009). Endoplasmic reticulum stress: Another link between obesity and insulin resistance/inflammation? Diabetes, 58(3), 518–519. https://doi.org/10.2337/db08-1746 PubMed DOI PMC
Kays, J. K., Shahda, S., Stanley, M., Bell, T. M., O’Neill, B. H., Kohli, M. D., et al. (2018). Three cachexia phenotypes and the impact of fat-only loss on survival in FOLFIRINOX therapy for pancreatic cancer. Journal of Cachexia, Sarcopenia and Muscle, 9(4), 673–684. https://doi.org/10.1002/jcsm.12307 PubMed DOI PMC
Bachmann, J., Büchler, M. W., Friess, H., & Martignoni, M. E. (2013). Cachexia in patients with chronic pancreatitis and pancreatic cancer: Impact on survival and outcome. Nutrition and Cancer, 65(6), 827–833. https://doi.org/10.1080/01635581.2013.804580 PubMed DOI
Choi, Y., Oh, D.-Y., Kim, T.-Y., Lee, K.-H., Han, S.-W., Im, S.-A., et al. (2015). Skeletal muscle depletion predicts the prognosis of patients with advanced pancreatic cancer undergoing palliative chemotherapy, independent of body mass index. PLoS ONE, 10(10), e0139749. https://doi.org/10.1371/journal.pone.0139749 PubMed DOI PMC
Hendifar, A. E., Chang, J. I., Huang, B. Z., Tuli, R., & Wu, B. U. (2017). Cachexia, and not obesity, prior to pancreatic cancer diagnosis worsens survival and is negated by chemotherapy. Journal of Gastrointestinal Oncology, 9(1), 17–23. DOI
Mitsunaga, S., Kasamatsu, E., & Machii, K. (2020). Incidence and frequency of cancer cachexia during chemotherapy for advanced pancreatic ductal adenocarcinoma. Supportive Care in Cancer, 28(11), 5271–5279. https://doi.org/10.1007/s00520-020-05346-8 PubMed DOI PMC
Danai, L. V., Babic, A., Rosenthal, M. H., Dennstedt, E. A., Muir, A., Lien, E. C., et al. (2018). Altered exocrine function can drive adipose wasting in early pancreatic cancer. Nature, 558(7711), 600–604. https://doi.org/10.1038/s41586-018-0235-7 PubMed DOI PMC
Argilés, J. M., Betancourt, A., Guàrdia-Olmos, J., Peró-Cebollero, M., López-Soriano, F. J., Madeddu, C., et al. (2017). Validation of the CAchexia SCOre (CASCO). Staging cancer patients: The use of miniCASCO as a simplified tool. [Original Research]. Frontiers in Physiology, 8(92), https://doi.org/10.3389/fphys.2017.00092 .
Evans, W. J., Morley, J. E., Argilés, J., Bales, C., Baracos, V., Guttridge, D., et al. (2008). Cachexia: A new definition. Clinical Nutrition, 27(6), 793–799. https://doi.org/10.1016/j.clnu.2008.06.013 PubMed DOI
Penet, M.-F., & Bhujwalla, Z. M. (2015). Cancer cachexia, recent advances, and future directions. The Cancer Journal, 21(2), 117–122. https://doi.org/10.1097/ppo.0000000000000100 PubMed DOI
Kosmiski, L., Schmiege, S. J., Mascolo, M., Gaudiani, J., & Mehler, P. S. (2014). Chronic starvation secondary to anorexia nervosa is associated with an adaptive suppression of resting energy expenditure. The Journal of Clinical Endocrinology & Metabolism, 99(3), 908–914. https://doi.org/10.1210/jc.2013-1694 DOI
Frankenfield, D. C., Smith, J. S., Jr., Cooney, R. N., Blosser, S. A., & Sarson, G. Y. (1997). Relative association of fever and injury with hypermetabolism in critically ill patients. Injury, 28(9), 617–621. https://doi.org/10.1016/S0020-1383(97)00117-4 PubMed DOI
Knox, L. S., Crosby, L. O., Feurer, I. D., Buzby, G. P., Miller, C. L., & Mullen, J. L. (1983). Energy expenditure in malnourished cancer patients. Annals of Surgery, 197(2), 152–162. https://doi.org/10.1097/00000658-198302000-00006 PubMed DOI PMC
Tan, C. R., Yaffee, P. M., Jamil, L. H., Lo, S. K., Nissen, N., Pandol, S. J., et al. (2014). Pancreatic cancer cachexia: A review of mechanisms and therapeutics. Frontiers in Physiology, 5, 88. https://doi.org/10.3389/fphys.2014.00088 PubMed DOI PMC
Arner, P., & Langin, D. (2014). Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends in Endocrinology and Metabolism, 25(5), 255–262. https://doi.org/10.1016/j.tem.2014.03.002 PubMed DOI
Das, S. K., Eder, S., Schauer, S., Diwoky, C., Temmel, H., Guertl, B., et al. (2011). Adipose triglyceride lipase contributes to cancer-associated cachexia. Science, 333(6039), 233–238. https://doi.org/10.1126/science.1198973 PubMed DOI
Agustsson, T., Rydén, M., Hoffstedt, J., Van Harmelen, V., Dicker, A., Laurencikiene, J., et al. (2007). Mechanism of increased lipolysis in cancer cachexia. Cancer Research, 67(11), 5531–5537. https://doi.org/10.1158/0008-5472.can-06-4585 PubMed DOI
Fouladiun, M., Körner, U., Bosaeus, I., Daneryd, P., Hyltander, A., & Lundholm, K. G. (2005). Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care—correlations with food intake, metabolism, exercise capacity, and hormones. Cancer, 103(10), 2189–2198. https://doi.org/10.1002/cncr.21013 PubMed DOI
Narasimhan, A., Zhong, X., Au, E., Ceppa, E. P., Nakeeb, A., House, M. G., et al. (2021). Profiling of matched adipose and skeletal muscle in human pancreatic cancer cachexia reveals distinct gene profiles with convergent pathways. Preprints.
Babic, A., Rosenthal, M. H., Bamlet, W. R., Takahashi, N., Sugimoto, M., Danai, L. V., et al. (2019). Postdiagnosis loss of skeletal muscle, but not adipose tissue, is associated with shorter survival of patients with advanced pancreatic cancer. Cancer Epidemiology and Prevention Biomarkers (Vol. 28, pp. 2062–2069): American Association for Cancer Research.
Naumann, P., Eberlein, J., Farnia, B., Liermann, J., Hackert, T., Debus, J., et al. (2019). Cachectic body composition and inflammatory markers portend a poor prognosis in patients with locally advanced pancreatic cancer treated with chemoradiation. Cancers, 11(11), 1655. https://doi.org/10.3390/cancers11111655 DOI PMC
Daas, S. I., Rizeq, B. R., & Nasrallah, G. K. (2018). Adipose tissue dysfunction in cancer cachexia. Journal of Cellular Physiology, 234(1), 13–22. https://doi.org/10.1002/jcp.26811 PubMed DOI
Laurencikiene, J., Stenson, B. M., Nordström, E. A., Agustsson, T., Langin, D., Isaksson, B., et al. (2008). Evidence for an important role of CIDEA in human cancer cachexia. Cancer Research (Vol. 68, pp. 9247–9254): American Association for Cancer Research.
Tsoli, M., Swarbrick, M. M., & Robertson, G. R. (2016). Lipolytic and thermogenic depletion of adipose tissue in cancer cachexia. Seminars in Cell & Developmental Biology, 54, 68–81. https://doi.org/10.1016/j.semcdb.2015.10.039 DOI
Zhang, F., Zhao, S., Yan, W., Xia, Y., Chen, X., Wang, W., et al. (2016). Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy. eBioMedicine, 13, 157–167. https://doi.org/10.1016/j.ebiom.2016.10.013 PubMed DOI PMC
Rydén, M., Agustsson, T., Laurencikiene, J., Britton, T., Sjölin, E., Isaksson, B., et al. (2008). Lipolysis—not inflammation, cell death, or lipogenesis—is involved in adipose tissue loss in cancer cachexia. Cancer (Vol. 113, pp. 1695–1704): John Wiley & Sons, Ltd.
Bartelt, A., & Heeren, J. (2014). Adipose tissue browning and metabolic health. Nature Reviews Endocrinology, 10(1), 24–36. https://doi.org/10.1038/nrendo.2013.204 PubMed DOI
Sah, R. P., Sharma, A., Nagpal, S., Patlolla, S. H., Sharma, A., Kandlakunta, H., et al. (2019). Phases of metabolic and soft tissue changes in months preceding a diagnosis of pancreatic ductal adenocarcinoma. Gastroenterology, 156(6), 1742–1752. https://doi.org/10.1053/j.gastro.2019.01.039 PubMed DOI
Villarroya, J., Cereijo, R., Gavaldà-Navarro, A., Peyrou, M., Giralt, M., & Villarroya, F. (2019). New insights into the secretory functions of brown adipose tissue. Journal of Endocrinology, 243(2), R19-r27. https://doi.org/10.1530/joe-19-0295 DOI
Gallot, Y. S., Durieux, A. C., Castells, J., Desgeorges, M. M., Vernus, B., Plantureux, L., et al. (2014). Myostatin gene inactivation prevents skeletal muscle wasting in cancer. Cancer Research, 74(24), 7344–7356. https://doi.org/10.1158/0008-5472.Can-14-0057 PubMed DOI
Talar-Wojnarowska, R., Wozniak, M., Borkowska, A., Olakowski, M., & Malecka-Panas, E. (2020). Clinical significance of activin A and myostatin in patients with pancreatic adenocarcinoma and progressive weight loss. J Physiol Pharmacol, 71(1), https://doi.org/10.26402/jpp.2020.1.10 .
Abdullahi, A., & Jeschke, M. G. (2017). Taming the flames: Targeting white adipose tissue browning in hypermetabolic conditions. Endocrine Reviews, 38(6), 538–549. https://doi.org/10.1210/er.2017-00163 PubMed DOI PMC
Kwok, K. H., Lam, K. S., & Xu, A. (2016). Heterogeneity of white adipose tissue: Molecular basis and clinical implications. Experimental & Molecular Medicine, 48(3), e215. https://doi.org/10.1038/emm.2016.5 DOI
Arslan, A. A., Helzlsouer, K. J., Kooperberg, C., Shu, X. O., Steplowski, E., Bueno-de-Mesquita, H. B., et al. (2010). Anthropometric measures, body mass index, and pancreatic cancer: A pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). Archives of Internal Medicine, 170(9), 791–802. https://doi.org/10.1001/archinternmed.2010.63 PubMed DOI PMC
Cascetta, P., Cavaliere, A., Piro, G., Torroni, L., Santoro, R., Tortora, G., et al. (2018). Pancreatic cancer and obesity: Molecular mechanisms of cell transformation and chemoresistance. Int J Mol Sci, 19(11), https://doi.org/10.3390/ijms19113331 .
Chang, H.-H., & Eibl, G. (2019). Obesity-induced adipose tissue inflammation as a strong promotional factor for pancreatic ductal adenocarcinoma. Cells (Vol. 8, pp. 673): Multidisciplinary Digital Publishing Institute (MDPI).
Okumura, T., Ohuchida, K., Sada, M., Abe, T., Endo, S., Koikawa, K., et al. (2017). Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells. Oncotarget (Vol. 8, pp. 18280): Impact Journals, LLC.
Wajchenberg, B. L. (2000). Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocrine Reviews, 21(6), 697–738. https://doi.org/10.1210/edrv.21.6.0415 PubMed DOI
Chanclón, B., Wu, Y., Vujičić, M., Bauzá-Thorbrügge, M., Banke, E., Micallef, P., et al. (2020). Peripancreatic adipose tissue protects against high-fat-diet-induced hepatic steatosis and insulin resistance in mice. International Journal of Obesity, 44(11), 2323–2334. https://doi.org/10.1038/s41366-020-00657-6 PubMed DOI
Jamieson, N. B., Foulis, A. K., Oien, K. A., Dickson, E. J., Imrie, C. W., Carter, R., et al. (2011). Peripancreatic fat invasion is an independent predictor of poor outcome following pancreaticoduodenectomy for pancreatic ductal adenocarcinoma. Journal of Gastrointestinal Surgery, 15(3), 512–524. https://doi.org/10.1007/s11605-010-1395-4 PubMed DOI
Zhang, Y., Daquinag, A. C., Amaya-Manzanares, F., Sirin, O., Tseng, C., & Kolonin, M. G. (2012). Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Research, 72(20), 5198–5208. https://doi.org/10.1158/0008-5472.Can-12-0294 PubMed DOI