Collagen I Increases Palmitate-Induced Lipotoxicity in HepG2 Cells via Integrin-Mediated Death

. 2024 Sep 20 ; 14 (9) : . [epub] 20240920

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39334945

Grantová podpora
GA UK 336221 Grant Agency of the Charles University
SVV‑2023‑260656 Grant Agency of the Charles University
AZV NU21-07-00550 Ministry of Health of the Czech Republic
NETPHARM CZ.02.01.01/00/22_008/0004607 European Regional Development Fund (ERDF)

Various strategies have been employed to improve the reliability of 2D, 3D, and co-culture in vitro models of nonalcoholic fatty liver disease, including using extracellular matrix proteins such as collagen I to promote cell adhesion. While studies have demonstrated the significant benefits of culturing cells on collagen I, its effects on the HepG2 cell line after exposure to palmitate (PA) have not been investigated. Therefore, this study aimed to assess the effects of PA-induced lipotoxicity in HepG2 cultured in the absence or presence of collagen I. HepG2 cultured in the absence or presence of collagen I was exposed to PA, followed by analyses that assessed cell proliferation, viability, adhesion, cell death, mitochondrial respiration, reactive oxygen species production, gene and protein expression, and triacylglycerol accumulation. Culturing HepG2 on collagen I was associated with increased cell proliferation, adhesion, and expression of integrin receptors, and improved cellular spreading compared to culturing them in the absence of collagen I. However, PA-induced lipotoxicity was greater in collagen I-cultured HepG2 than in those cultured in the absence of collagen I and was associated with increased α2β1 receptors. In summary, the present study demonstrated for the first time that collagen I-cultured HepG2 exhibited exacerbated cell death following exposure to PA through integrin-mediated death. The findings from this study may serve as a caution to those using 2D models or 3D scaffold-based models of HepG2 in the presence of collagen I.

Zobrazit více v PubMed

Ramos M.J., Bandiera L., Menolascina F., Fallowfield J.A. In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience. 2022;25:103549. doi: 10.1016/j.isci.2021.103549. PubMed DOI PMC

Maurice J., Manousou P. Non-alcoholic fatty liver disease. Clin. Med. 2018;18:245–250. doi: 10.7861/clinmedicine.18-3-245. PubMed DOI PMC

Aasadollahei N., Rezaei N., Golroo R., Agarwal T., Vosough M., Piryaei A. Bioengineering liver microtissues for modeling non-alcoholic fatty liver disease. EXCLI J. 2023;22:367–391. PubMed PMC

Soret P.-A., Magusto J., Housset C., Gautheron J. In Vitro and In Vivo Models of Non-Alcoholic Fatty Liver Disease: A Critical Appraisal. J. Clin. Med. 2021;10:36. doi: 10.3390/jcm10010036. PubMed DOI PMC

Dong C., Lv Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers. 2016;8:42. doi: 10.3390/polym8020042. PubMed DOI PMC

Elango J., Hou C., Bao B., Wang S., Maté Sánchez de Val J.E., Wenhui W. The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers. 2022;14:876. doi: 10.3390/polym14050876. PubMed DOI PMC

Chua P., Lim W.K. The strategic uses of collagen in adherent cell cultures. Cell Biol. Int. 2023;47:367–373. doi: 10.1002/cbin.11966. PubMed DOI PMC

Müller F.A., Sturla S.J. Human in vitro models of nonalcoholic fatty liver disease. Curr. Opin. Toxicol. 2019;16:9–16. doi: 10.1016/j.cotox.2019.03.001. DOI

Pelechá M., Villanueva-Bádenas E., Timor-López E., Donato M.T., Tolosa L. Cell Models and Omics Techniques for the Study of Nonalcoholic Fatty Liver Disease: Focusing on Stem Cell-Derived Cell Models. Antioxidants. 2022;11:86. doi: 10.3390/antiox11010086. PubMed DOI PMC

Wiriyakulsit N., Keawsomnuk P., Thongin S., Ketsawatsomkron P., Muta K. A model of hepatic steatosis with declined viability and function in a liver-organ-on-a-chip. Sci. Rep. 2023;13:17019. doi: 10.1038/s41598-023-44198-0. PubMed DOI PMC

Donato M.T., Tolosa L., Gómez-Lechón M.J. Culture and Functional Characterization of Human Hepatoma HepG2 Cells. Methods Mol. Biol. 2015;1250:77–93. PubMed

Koliaki C., Szendroedi J., Kaul K., Jelenik T., Nowotny P., Jankowiak F., Herder C., Carstensen M., Krausch M., Knoefel W.T., et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 2015;21:739–746. doi: 10.1016/j.cmet.2015.04.004. PubMed DOI

Pérez-Carreras M., Del Hoyo P., Martín M.A., Rubio J.C., Martín A., Castellano G., Colina F., Arenas J., Solis-Herruzo J.A. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology. 2003;38:999–1007. doi: 10.1002/hep.1840380426. PubMed DOI

Garcia-Ruiz I., Solis-Munoz P., Fernandez-Moreira D., Munoz-Yague T., Solis-Herruzo J.A. In vitro treatment of HepG2 cells with saturated fatty acids reproduces mitochondrial dysfunction found in nonalcoholic steatohepatitis. Dis. Models Mech. 2015;8:183–191. PubMed PMC

Maseko T.E., Elkalaf M., Peterová E., Lotková H., Staňková P., Melek J., Dušek J., Žádníková P., Čížková D., Bezrouk A., et al. Comparison of HepaRG and HepG2 cell lines to model mitochondrial respiratory adaptations in non-alcoholic fatty liver disease. Int. J. Mol. Med. 2024;53:18. doi: 10.3892/ijmm.2023.5342. PubMed DOI PMC

Chethikkattuveli Salih A.R., Hyun K., Asif A., Soomro A.M., Farooqi H.M.U., Kim Y.S., Kim K.H., Lee J.W., Huh D., Choi K.H. Extracellular Matrix Optimization for Enhanced Physiological Relevance in Hepatic Tissue-Chips. Polymers. 2021;13:3016. doi: 10.3390/polym13173016. PubMed DOI PMC

Amirrah I.N., Lokanathan Y., Zulkiflee I., Wee M.F.M.R., Motta A., Fauzi M.B. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines. 2022;10:2307. doi: 10.3390/biomedicines10092307. PubMed DOI PMC

Boraschi-Diaz I., Wang J., Mort J.S., Komarova S.V. Collagen Type I as a Ligand for Receptor-Mediated Signaling. Front. Phys. 2017;5:12. doi: 10.3389/fphy.2017.00012. DOI

Zheng X., Liu W., Xiang J., Liu P., Ke M., Wang B., Wu R., Lv Y. Collagen I promotes hepatocellular carcinoma cell proliferation by regulating integrin β1/FAK signaling pathway in nonalcoholic fatty liver. Oncotarget. 2017;8:95586–95595. doi: 10.18632/oncotarget.21525. PubMed DOI PMC

Juratli M.A., Zhou H., Oppermann E., Bechstein W.O., Pascher A., Chun F.K.H., Juengel E., Rutz J., Blaheta R.A. Integrin α2 and β1 Cross-Communication with mTOR/AKT and the CDK-Cyclin Axis in Hepatocellular Carcinoma Cells. Cancers. 2022;14:2430. doi: 10.3390/cancers14102430. PubMed DOI PMC

Stupack D.G. Integrins as a distinct subtype of dependence receptors. Cell Death Differ. 2005;12:1021–1030. doi: 10.1038/sj.cdd.4401658. PubMed DOI

Kim J.E., Lee S.K., Park J., Jung M.J., An S.E., Yang H.J., Chung W.Y. Buddlejasaponin IV induces apoptotic cell death by activating the mitochondrial-dependent apoptotic pathway and reducing α2β1 integrin-mediated adhesion in HT-29 human colorectal cancer cells. Oncol. Rep. 2023;49:58. doi: 10.3892/or.2023.8495. PubMed DOI

Hanayama M., Yamamoto Y., Utsunomiya H., Yoshida O., Liu S., Mogi M., Matsuura B., Takeshita E., Ikeda Y., Hiasa Y. The mechanism of increased intestinal palmitic acid absorption and its impact on hepatic stellate cell activation in nonalcoholic steatohepatitis. Sci. Rep. 2021;11:13380. doi: 10.1038/s41598-021-92790-z. PubMed DOI PMC

Mota M., Banini B.A., Cazanave S.C., Sanyal A.J. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metab. Clin. Exp. 2016;65:1049–1061. doi: 10.1016/j.metabol.2016.02.014. PubMed DOI PMC

Moravcová A., Červinková Z., Kučera O., Mezera V., Rychtrmoc D., Lotková H. The effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat hepatocytes in primary culture. Physiol. Res. 2015;64((Suppl. S5)):S627–S636. doi: 10.33549/physiolres.933224. PubMed DOI

Geng Y., Villanueva A.H., Oun A., Buist-Homan M., Blokzijl H., Faber K.N., Dolga A., Moshage H. Protective effect of metformin against palmitate-induced hepatic cell death. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2020;1866:165621. doi: 10.1016/j.bbadis.2019.165621. PubMed DOI

Stefanowicz-Hajduk J., Ochocka J.R. Real-time cell analysis system in cytotoxicity applications: Usefulness and comparison with tetrazolium salt assays. Toxicol. Rep. 2020;7:335–344. doi: 10.1016/j.toxrep.2020.02.002. PubMed DOI PMC

Koutova D., Maafi N., Muthna D., Kralovec K., Kroustkova J., Pidany F., Timbilla A.A., Cermakova E., Cahlikova L., Rezacova M., et al. Antiproliferative activity and apoptosis-inducing mechanism of Amaryllidaceae alkaloid montanine on A549 and MOLT-4 human cancer cells. Biomed. Pharmacother. 2023;166:115295. doi: 10.1016/j.biopha.2023.115295. PubMed DOI

Kuznetsov A.V., Margreiter R., Ausserlechner M.J., Hagenbuchner J. The Complex Interplay between Mitochondria, ROS and Entire Cellular Metabolism. Antioxidants. 2022;11:1995. doi: 10.3390/antiox11101995. PubMed DOI PMC

Stupack D.G., Puente X.S., Boutsaboualoy S., Storgard C.M., Cheresh D.A. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell Biol. 2001;155:459–470. doi: 10.1083/jcb.200106070. PubMed DOI PMC

Tang D., Lahti J.M., Kidd V.J. Caspase-8 Activation and Bid Cleavage Contribute to MCF7 Cellular Execution in a Caspase-3-dependent Manner during Staurosporine-mediated Apoptosis. J. Biol. Chem. 2000;275:9303–9307. doi: 10.1074/jbc.275.13.9303. PubMed DOI

Ding Q., Grammer J.R., Nelson M.A., Guan J.-L., Stewart J.E., Gladson C.L. p27Kip1 and Cyclin D1 Are Necessary for Focal Adhesion Kinase Regulation of Cell Cycle Progression in Glioblastoma Cells Propagated in Vitro and in Vivo in the Scid Mouse Brain. J. Biol. Chem. 2005;280:6802–6815. doi: 10.1074/jbc.M409180200. PubMed DOI

Amorim R., Simões I.C., Veloso C., Carvalho A., Simões R.F., Pereira F.B., Thiel T., Normann A., Morais C., Jurado A.S., et al. Exploratory Data Analysis of Cell and Mitochondrial High-Fat, High-Sugar Toxicity on Human HepG2 Cells. Nutrients. 2021;13:1723. doi: 10.3390/nu13051723. PubMed DOI PMC

Zhang L., Seitz L.C., Abramczyk A.M., Chan C. Synergistic effect of cAMP and palmitate in promoting altered mitochondrial function and cell death in HepG2 cells. Exp. Cell Res. 2010;316:716–727. doi: 10.1016/j.yexcr.2009.12.008. PubMed DOI PMC

Malhi H., Bronk S.F., Werneburg N.W., Gores G.J. Free Fatty Acids Induce JNK-dependent Hepatocyte Lipoapoptosis. J. Biol. Chem. 2006;281:12093–12101. doi: 10.1074/jbc.M510660200. PubMed DOI

Dunn J.C.Y., Tompkins R.G., Yarmush M.L. Long-Term in Vitro Function of Adult Hepatocytes in a Collagen Sandwich Configuration. Biotechnol. Prog. 1991;7:237–245. doi: 10.1021/bp00009a007. PubMed DOI

Ishida-Ishihara S., Takada R., Furusawa K., Ishihara S., Haga H. Improvement of the cell viability of hepatocytes cultured in three-dimensional collagen gels using pump-free perfusion driven by water level difference. Sci. Rep. 2022;12:20269. doi: 10.1038/s41598-022-24423-y. PubMed DOI PMC

Luckert C., Schulz C., Lehmann N., Thomas M., Hofmann U., Hammad S., Hengstler J.G., Braeuning A., Lampen A., Hessel S. Comparative analysis of 3D culture methods on human HepG2 cells. Arch. Toxicol. 2017;91:393–406. doi: 10.1007/s00204-016-1677-z. PubMed DOI

Swapna Sasi U.S., Sindhu G., Raghu K.G. Fructose-palmitate based high calorie induce steatosis in HepG2 cells via mitochondrial dysfunction: An in vitro approach. Toxicol. Vitr. 2020;68:104952. doi: 10.1016/j.tiv.2020.104952. PubMed DOI

Fianco G., Contadini C., Ferri A., Cirotti C., Stagni V., Barilà D. Caspase-8: A Novel Target to Overcome Resistance to Chemotherapy in Glioblastoma. Int. J. Mol. Sci. 2018;19:3798. doi: 10.3390/ijms19123798. PubMed DOI PMC

Golubovskaya V.M., Cance W. Focal adhesion kinase and p53 signal transduction pathways in cancer. Front. Biosci. 2010;15:901–912. doi: 10.2741/3653. PubMed DOI PMC

Kamranvar S.A., Rani B., Johansson S. Cell Cycle Regulation by Integrin-Mediated Adhesion. Cells. 2022;11:2521. doi: 10.3390/cells11162521. PubMed DOI PMC

Lu Q., Rounds S. Focal adhesion kinase and endothelial cell apoptosis. Microvasc. Res. 2012;83:56–63. doi: 10.1016/j.mvr.2011.05.003. PubMed DOI PMC

Wang Y., Shi C., Guo J., Zhang Y., Gong Z. Distinct Types of Cell Death and Implications in Liver Diseases: An Overview of Mechanisms and Application. J. Clin. Transl. Hepatol. 2023;11:1413–1424. doi: 10.14218/JCTH.2023.00132. PubMed DOI PMC

Slack R.J., Macdonald S.J.F., Roper J.A., Jenkins R.G., Hatley R.J.D. Emerging therapeutic opportunities for integrin inhibitors. Nat. Rev. Drug Discov. 2022;21:60–78. doi: 10.1038/s41573-021-00284-4. PubMed DOI PMC

Mattson N.M., Chan A.K., Miyashita K., Mukhaleva E., Chang W.H., Yang L., Ma N., Wang Y., Pokharel S.P., Li M., et al. A novel class of inhibitors that disrupts the stability of integrin heterodimers identified by CRISPR-tiling-instructed genetic screens. Nat. Struct. Mol. Biol. 2024;31:465–475. doi: 10.1038/s41594-024-01211-y. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...