Collagen I Increases Palmitate-Induced Lipotoxicity in HepG2 Cells via Integrin-Mediated Death
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA UK 336221
Grant Agency of the Charles University
SVV‑2023‑260656
Grant Agency of the Charles University
AZV NU21-07-00550
Ministry of Health of the Czech Republic
NETPHARM CZ.02.01.01/00/22_008/0004607
European Regional Development Fund (ERDF)
PubMed
39334945
PubMed Central
PMC11430893
DOI
10.3390/biom14091179
PII: biom14091179
Knihovny.cz E-zdroje
- Klíčová slova
- HepG2 cells, collagen I, in vitro NAFLD models, integrin-mediated death, lipotoxicity, palmitate, α2β1 receptors,
- MeSH
- buněčná adheze * účinky léků MeSH
- buněčná smrt účinky léků MeSH
- buňky Hep G2 MeSH
- integrin alfa2beta1 metabolismus MeSH
- integriny metabolismus genetika MeSH
- kolagen typu I * metabolismus genetika MeSH
- lidé MeSH
- nealkoholová steatóza jater metabolismus patologie MeSH
- palmitany toxicita farmakologie MeSH
- proliferace buněk * účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- viabilita buněk * účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- integrin alfa2beta1 MeSH
- integriny MeSH
- kolagen typu I * MeSH
- palmitany MeSH
- reaktivní formy kyslíku MeSH
Various strategies have been employed to improve the reliability of 2D, 3D, and co-culture in vitro models of nonalcoholic fatty liver disease, including using extracellular matrix proteins such as collagen I to promote cell adhesion. While studies have demonstrated the significant benefits of culturing cells on collagen I, its effects on the HepG2 cell line after exposure to palmitate (PA) have not been investigated. Therefore, this study aimed to assess the effects of PA-induced lipotoxicity in HepG2 cultured in the absence or presence of collagen I. HepG2 cultured in the absence or presence of collagen I was exposed to PA, followed by analyses that assessed cell proliferation, viability, adhesion, cell death, mitochondrial respiration, reactive oxygen species production, gene and protein expression, and triacylglycerol accumulation. Culturing HepG2 on collagen I was associated with increased cell proliferation, adhesion, and expression of integrin receptors, and improved cellular spreading compared to culturing them in the absence of collagen I. However, PA-induced lipotoxicity was greater in collagen I-cultured HepG2 than in those cultured in the absence of collagen I and was associated with increased α2β1 receptors. In summary, the present study demonstrated for the first time that collagen I-cultured HepG2 exhibited exacerbated cell death following exposure to PA through integrin-mediated death. The findings from this study may serve as a caution to those using 2D models or 3D scaffold-based models of HepG2 in the presence of collagen I.
Zobrazit více v PubMed
Ramos M.J., Bandiera L., Menolascina F., Fallowfield J.A. In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience. 2022;25:103549. doi: 10.1016/j.isci.2021.103549. PubMed DOI PMC
Maurice J., Manousou P. Non-alcoholic fatty liver disease. Clin. Med. 2018;18:245–250. doi: 10.7861/clinmedicine.18-3-245. PubMed DOI PMC
Aasadollahei N., Rezaei N., Golroo R., Agarwal T., Vosough M., Piryaei A. Bioengineering liver microtissues for modeling non-alcoholic fatty liver disease. EXCLI J. 2023;22:367–391. PubMed PMC
Soret P.-A., Magusto J., Housset C., Gautheron J. In Vitro and In Vivo Models of Non-Alcoholic Fatty Liver Disease: A Critical Appraisal. J. Clin. Med. 2021;10:36. doi: 10.3390/jcm10010036. PubMed DOI PMC
Dong C., Lv Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers. 2016;8:42. doi: 10.3390/polym8020042. PubMed DOI PMC
Elango J., Hou C., Bao B., Wang S., Maté Sánchez de Val J.E., Wenhui W. The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers. 2022;14:876. doi: 10.3390/polym14050876. PubMed DOI PMC
Chua P., Lim W.K. The strategic uses of collagen in adherent cell cultures. Cell Biol. Int. 2023;47:367–373. doi: 10.1002/cbin.11966. PubMed DOI PMC
Müller F.A., Sturla S.J. Human in vitro models of nonalcoholic fatty liver disease. Curr. Opin. Toxicol. 2019;16:9–16. doi: 10.1016/j.cotox.2019.03.001. DOI
Pelechá M., Villanueva-Bádenas E., Timor-López E., Donato M.T., Tolosa L. Cell Models and Omics Techniques for the Study of Nonalcoholic Fatty Liver Disease: Focusing on Stem Cell-Derived Cell Models. Antioxidants. 2022;11:86. doi: 10.3390/antiox11010086. PubMed DOI PMC
Wiriyakulsit N., Keawsomnuk P., Thongin S., Ketsawatsomkron P., Muta K. A model of hepatic steatosis with declined viability and function in a liver-organ-on-a-chip. Sci. Rep. 2023;13:17019. doi: 10.1038/s41598-023-44198-0. PubMed DOI PMC
Donato M.T., Tolosa L., Gómez-Lechón M.J. Culture and Functional Characterization of Human Hepatoma HepG2 Cells. Methods Mol. Biol. 2015;1250:77–93. PubMed
Koliaki C., Szendroedi J., Kaul K., Jelenik T., Nowotny P., Jankowiak F., Herder C., Carstensen M., Krausch M., Knoefel W.T., et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 2015;21:739–746. doi: 10.1016/j.cmet.2015.04.004. PubMed DOI
Pérez-Carreras M., Del Hoyo P., Martín M.A., Rubio J.C., Martín A., Castellano G., Colina F., Arenas J., Solis-Herruzo J.A. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology. 2003;38:999–1007. doi: 10.1002/hep.1840380426. PubMed DOI
Garcia-Ruiz I., Solis-Munoz P., Fernandez-Moreira D., Munoz-Yague T., Solis-Herruzo J.A. In vitro treatment of HepG2 cells with saturated fatty acids reproduces mitochondrial dysfunction found in nonalcoholic steatohepatitis. Dis. Models Mech. 2015;8:183–191. PubMed PMC
Maseko T.E., Elkalaf M., Peterová E., Lotková H., Staňková P., Melek J., Dušek J., Žádníková P., Čížková D., Bezrouk A., et al. Comparison of HepaRG and HepG2 cell lines to model mitochondrial respiratory adaptations in non-alcoholic fatty liver disease. Int. J. Mol. Med. 2024;53:18. doi: 10.3892/ijmm.2023.5342. PubMed DOI PMC
Chethikkattuveli Salih A.R., Hyun K., Asif A., Soomro A.M., Farooqi H.M.U., Kim Y.S., Kim K.H., Lee J.W., Huh D., Choi K.H. Extracellular Matrix Optimization for Enhanced Physiological Relevance in Hepatic Tissue-Chips. Polymers. 2021;13:3016. doi: 10.3390/polym13173016. PubMed DOI PMC
Amirrah I.N., Lokanathan Y., Zulkiflee I., Wee M.F.M.R., Motta A., Fauzi M.B. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines. 2022;10:2307. doi: 10.3390/biomedicines10092307. PubMed DOI PMC
Boraschi-Diaz I., Wang J., Mort J.S., Komarova S.V. Collagen Type I as a Ligand for Receptor-Mediated Signaling. Front. Phys. 2017;5:12. doi: 10.3389/fphy.2017.00012. DOI
Zheng X., Liu W., Xiang J., Liu P., Ke M., Wang B., Wu R., Lv Y. Collagen I promotes hepatocellular carcinoma cell proliferation by regulating integrin β1/FAK signaling pathway in nonalcoholic fatty liver. Oncotarget. 2017;8:95586–95595. doi: 10.18632/oncotarget.21525. PubMed DOI PMC
Juratli M.A., Zhou H., Oppermann E., Bechstein W.O., Pascher A., Chun F.K.H., Juengel E., Rutz J., Blaheta R.A. Integrin α2 and β1 Cross-Communication with mTOR/AKT and the CDK-Cyclin Axis in Hepatocellular Carcinoma Cells. Cancers. 2022;14:2430. doi: 10.3390/cancers14102430. PubMed DOI PMC
Stupack D.G. Integrins as a distinct subtype of dependence receptors. Cell Death Differ. 2005;12:1021–1030. doi: 10.1038/sj.cdd.4401658. PubMed DOI
Kim J.E., Lee S.K., Park J., Jung M.J., An S.E., Yang H.J., Chung W.Y. Buddlejasaponin IV induces apoptotic cell death by activating the mitochondrial-dependent apoptotic pathway and reducing α2β1 integrin-mediated adhesion in HT-29 human colorectal cancer cells. Oncol. Rep. 2023;49:58. doi: 10.3892/or.2023.8495. PubMed DOI
Hanayama M., Yamamoto Y., Utsunomiya H., Yoshida O., Liu S., Mogi M., Matsuura B., Takeshita E., Ikeda Y., Hiasa Y. The mechanism of increased intestinal palmitic acid absorption and its impact on hepatic stellate cell activation in nonalcoholic steatohepatitis. Sci. Rep. 2021;11:13380. doi: 10.1038/s41598-021-92790-z. PubMed DOI PMC
Mota M., Banini B.A., Cazanave S.C., Sanyal A.J. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metab. Clin. Exp. 2016;65:1049–1061. doi: 10.1016/j.metabol.2016.02.014. PubMed DOI PMC
Moravcová A., Červinková Z., Kučera O., Mezera V., Rychtrmoc D., Lotková H. The effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat hepatocytes in primary culture. Physiol. Res. 2015;64((Suppl. S5)):S627–S636. doi: 10.33549/physiolres.933224. PubMed DOI
Geng Y., Villanueva A.H., Oun A., Buist-Homan M., Blokzijl H., Faber K.N., Dolga A., Moshage H. Protective effect of metformin against palmitate-induced hepatic cell death. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2020;1866:165621. doi: 10.1016/j.bbadis.2019.165621. PubMed DOI
Stefanowicz-Hajduk J., Ochocka J.R. Real-time cell analysis system in cytotoxicity applications: Usefulness and comparison with tetrazolium salt assays. Toxicol. Rep. 2020;7:335–344. doi: 10.1016/j.toxrep.2020.02.002. PubMed DOI PMC
Koutova D., Maafi N., Muthna D., Kralovec K., Kroustkova J., Pidany F., Timbilla A.A., Cermakova E., Cahlikova L., Rezacova M., et al. Antiproliferative activity and apoptosis-inducing mechanism of Amaryllidaceae alkaloid montanine on A549 and MOLT-4 human cancer cells. Biomed. Pharmacother. 2023;166:115295. doi: 10.1016/j.biopha.2023.115295. PubMed DOI
Kuznetsov A.V., Margreiter R., Ausserlechner M.J., Hagenbuchner J. The Complex Interplay between Mitochondria, ROS and Entire Cellular Metabolism. Antioxidants. 2022;11:1995. doi: 10.3390/antiox11101995. PubMed DOI PMC
Stupack D.G., Puente X.S., Boutsaboualoy S., Storgard C.M., Cheresh D.A. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell Biol. 2001;155:459–470. doi: 10.1083/jcb.200106070. PubMed DOI PMC
Tang D., Lahti J.M., Kidd V.J. Caspase-8 Activation and Bid Cleavage Contribute to MCF7 Cellular Execution in a Caspase-3-dependent Manner during Staurosporine-mediated Apoptosis. J. Biol. Chem. 2000;275:9303–9307. doi: 10.1074/jbc.275.13.9303. PubMed DOI
Ding Q., Grammer J.R., Nelson M.A., Guan J.-L., Stewart J.E., Gladson C.L. p27Kip1 and Cyclin D1 Are Necessary for Focal Adhesion Kinase Regulation of Cell Cycle Progression in Glioblastoma Cells Propagated in Vitro and in Vivo in the Scid Mouse Brain. J. Biol. Chem. 2005;280:6802–6815. doi: 10.1074/jbc.M409180200. PubMed DOI
Amorim R., Simões I.C., Veloso C., Carvalho A., Simões R.F., Pereira F.B., Thiel T., Normann A., Morais C., Jurado A.S., et al. Exploratory Data Analysis of Cell and Mitochondrial High-Fat, High-Sugar Toxicity on Human HepG2 Cells. Nutrients. 2021;13:1723. doi: 10.3390/nu13051723. PubMed DOI PMC
Zhang L., Seitz L.C., Abramczyk A.M., Chan C. Synergistic effect of cAMP and palmitate in promoting altered mitochondrial function and cell death in HepG2 cells. Exp. Cell Res. 2010;316:716–727. doi: 10.1016/j.yexcr.2009.12.008. PubMed DOI PMC
Malhi H., Bronk S.F., Werneburg N.W., Gores G.J. Free Fatty Acids Induce JNK-dependent Hepatocyte Lipoapoptosis. J. Biol. Chem. 2006;281:12093–12101. doi: 10.1074/jbc.M510660200. PubMed DOI
Dunn J.C.Y., Tompkins R.G., Yarmush M.L. Long-Term in Vitro Function of Adult Hepatocytes in a Collagen Sandwich Configuration. Biotechnol. Prog. 1991;7:237–245. doi: 10.1021/bp00009a007. PubMed DOI
Ishida-Ishihara S., Takada R., Furusawa K., Ishihara S., Haga H. Improvement of the cell viability of hepatocytes cultured in three-dimensional collagen gels using pump-free perfusion driven by water level difference. Sci. Rep. 2022;12:20269. doi: 10.1038/s41598-022-24423-y. PubMed DOI PMC
Luckert C., Schulz C., Lehmann N., Thomas M., Hofmann U., Hammad S., Hengstler J.G., Braeuning A., Lampen A., Hessel S. Comparative analysis of 3D culture methods on human HepG2 cells. Arch. Toxicol. 2017;91:393–406. doi: 10.1007/s00204-016-1677-z. PubMed DOI
Swapna Sasi U.S., Sindhu G., Raghu K.G. Fructose-palmitate based high calorie induce steatosis in HepG2 cells via mitochondrial dysfunction: An in vitro approach. Toxicol. Vitr. 2020;68:104952. doi: 10.1016/j.tiv.2020.104952. PubMed DOI
Fianco G., Contadini C., Ferri A., Cirotti C., Stagni V., Barilà D. Caspase-8: A Novel Target to Overcome Resistance to Chemotherapy in Glioblastoma. Int. J. Mol. Sci. 2018;19:3798. doi: 10.3390/ijms19123798. PubMed DOI PMC
Golubovskaya V.M., Cance W. Focal adhesion kinase and p53 signal transduction pathways in cancer. Front. Biosci. 2010;15:901–912. doi: 10.2741/3653. PubMed DOI PMC
Kamranvar S.A., Rani B., Johansson S. Cell Cycle Regulation by Integrin-Mediated Adhesion. Cells. 2022;11:2521. doi: 10.3390/cells11162521. PubMed DOI PMC
Lu Q., Rounds S. Focal adhesion kinase and endothelial cell apoptosis. Microvasc. Res. 2012;83:56–63. doi: 10.1016/j.mvr.2011.05.003. PubMed DOI PMC
Wang Y., Shi C., Guo J., Zhang Y., Gong Z. Distinct Types of Cell Death and Implications in Liver Diseases: An Overview of Mechanisms and Application. J. Clin. Transl. Hepatol. 2023;11:1413–1424. doi: 10.14218/JCTH.2023.00132. PubMed DOI PMC
Slack R.J., Macdonald S.J.F., Roper J.A., Jenkins R.G., Hatley R.J.D. Emerging therapeutic opportunities for integrin inhibitors. Nat. Rev. Drug Discov. 2022;21:60–78. doi: 10.1038/s41573-021-00284-4. PubMed DOI PMC
Mattson N.M., Chan A.K., Miyashita K., Mukhaleva E., Chang W.H., Yang L., Ma N., Wang Y., Pokharel S.P., Li M., et al. A novel class of inhibitors that disrupts the stability of integrin heterodimers identified by CRISPR-tiling-instructed genetic screens. Nat. Struct. Mol. Biol. 2024;31:465–475. doi: 10.1038/s41594-024-01211-y. PubMed DOI PMC