Bilberry Expansion in the Changing Subalpine Belt

. 2024 Sep 20 ; 13 (18) : . [epub] 20240920

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39339606

Bilberry (Vaccinium myrtillus L.) expansion in subalpine and alpine ecosystems is increasing due to climate change and reduced land management. This review examines bilberry traits, environmental responses, and ecosystem impacts. As a stress-tolerant chamaephyte, bilberry thrives in acidic, nutrient-poor soils across various habitats. It propagates effectively through rhizomes and demonstrates a phalanx growth form. Bilberry's growth and distribution are influenced by elevation, soil structure, pH, water availability, and nitrogen content. Mycorrhizal associations play a crucial role in nutrient uptake. The species modifies the microclimate, facilitates litter accumulation, and influences soil microbial communities, affecting nutrient turnover and biodiversity. Bilberry shows moderate tolerance to herbivory and frost, with the ability to recover through rapid emergence of new ramets. However, severe or repeated disturbances can significantly impact its abundance and reproductive success. Climate warming and atmospheric nitrogen deposition have accelerated bilberry growth in treeline ecotones. The management of bilberry expansion requires a nuanced approach, considering its resilience, historical land-use changes, and environmental factors. The goal should be to limit, not eliminate, bilberry, as it is a natural part of subalpine communities. Long-term comparative monitoring and experimental manipulation are necessary for effective management strategies.

Zobrazit více v PubMed

Myers-Smith I.H., Elmendorf S.C., Beck P.S., Wilmking M., Hallinger M., Blok D., Tape K.D., Rayback S., Macias-Fauria M., Forbes B.C., et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change. 2015;5:887–891. doi: 10.1038/nclimate2697. DOI

Bjorkman A.D., Myers-Smith I.H., Elmendorf S.C., Normand S., Rüger N., Beck P.S.A., Blach-Overgaard A., Blok D., Cornelissen J.H.C., Forbes B.C., et al. Plant functional trait change across a warming tundra biome. Nature. 2018;562:57–62. doi: 10.1038/s41586-018-0563-7. PubMed DOI

Tasser E., Tappeiner U. Impact of land use changes on mountain vegetation. Appl. Veg. Sci. 2002;5:173–184. doi: 10.1111/j.1654-109X.2002.tb00547.x. DOI

Dullinger S., Dirnböck T., Grabherr G. Patterns of shrub invasion into high mountain grasslands of the northern calcareous Alps, Austria. Arct. Antarct. Alp. Res. 2003;35:434–441. doi: 10.1657/1523-0430(2003)035[0434:POSIIH]2.0.CO;2. DOI

Myers-Smith I.H., Hik D.S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 2018;106:547–560. doi: 10.1111/1365-2745.12817. DOI

Vowles T., Björk R.G. Implications of evergreen shrub expansion in the Arctic. J. Ecol. 2019;107:650–655. doi: 10.1111/1365-2745.13081. DOI

Walker M.D., Wahren C.H., Hollister R.D., Henry G.H.R., Ahlquist L.E., Alatalo J.M., Bret-Harte M.S., Calef M.P., Callaghan T.V., Carroll A.B., et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl. Acad. Sci. USA. 2006;103:1342–1346. doi: 10.1073/pnas.0503198103. PubMed DOI PMC

Cannone N., Sgorbati S., Guglielmin M. Unexpected impacts of climate change on alpine vegetation. Front. Ecol. Environ. 2007;5:360–364. doi: 10.1890/1540-9295(2007)5[360:UIOCCO]2.0.CO;2. DOI

Sturm M., Schimel J., Michaelson G., Welker J.M., Oberbauer S.F., Liston G.E., Fahnestock J., Romanovsky V.E. Winter biological processes could help convert Arctic tundra to Shrubland. Bioscience. 2005;55:17–26. doi: 10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2. DOI

Sweet S.K., Gough L., Grffin K.L., Boelman N.T. Tall deciduous shrubs offset delayed start of growing season through rapid leaf development in the Alaskan Arctic tundra. Arct. Antarct. Alp. Res. 2014;46:682–697. doi: 10.1657/1938-4246-46.3.682. DOI

Klinkovská K., Kučerová A., Pustková Š., Rohel J., Slachová K., Sobotka V., Szokala D., Danihelka J., Kočí M., Šmerdová E., et al. Subalpine vegetation changes in the Eastern Sudetes (1973–2021): Effects of abandonment, conservation management and avalanches. Appl. Veg. Sci. 2023;26:e12711. doi: 10.1111/avsc.12711. DOI

Zeidler M., Husek V., Banaš M. Homogenization and species compositional shifts in subalpine vegetation during the 60-Year Period. Acta Soc. Bot. Pol. 2023;92:1–10. doi: 10.5586/asbp/171689. DOI

Rixen C., Schwoerer C., Wipf S. Winter climate change at different temporal scales in Vaccinium myrtillus, an Arctic and alpine dwarf shrub. Polar Res. 2010;29:85–94. doi: 10.1111/j.1751-8369.2010.00155.x. DOI

Treml V., Wild J., Chuman T., Potůčková M. Assessing the change in cover of non-indigenous dwarf-pine using aerial photographs, a case study from the Hrubý Jeseník Mts., the Sudetes. J. Landsc. Ecol. 2010;4:90–104. doi: 10.2478/v10285-012-0029-9. DOI

Dawes M.A., Hagedorn F., Zumbrunn T., Handa I.T., Hättenschwiler S., Wipf S., Rixen C. Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytol. 2011;191:806–818. doi: 10.1111/j.1469-8137.2011.03722.x. PubMed DOI

Boscutti F., Casolo V., Beraldo P., Braidot E., Zancani M., Rixen C. Shrub growth and plant diversity along an elevation gradient: Evidence of indirect effects of climate on alpine ecosystems. PLoS ONE. 2018;13:e0196653. doi: 10.1371/journal.pone.0196653. PubMed DOI PMC

Maestre F.T., Eldridge D.J., Soliveres S. A multifaceted view on the impacts of shrub encroachment. Appl. Veg. Sci. 2016;19:369–370. doi: 10.1111/avsc.12254. PubMed DOI PMC

Collins C.G., Spasojevic M.J., Alados C.L., Aronson E.L., Benavides J.C., Cannone N., Caviezel C., Grau O., Guo H., Kudo G., et al. Belowground impacts of alpine woody encroachment are determined by plant traits, local climate, and soil conditions. Glob. Change Biol. 2020;26:7112–7127. doi: 10.1111/gcb.15340. PubMed DOI

Bühlmann T., Hiltbrunner E., Körner C. Alnus viridis expansion contributes to excess reactive nitrogen release, reduces biodiversity and constrains forest succession in the Alps. Alp. Bot. 2014;124:187–191. doi: 10.1007/s00035-014-0134-y. DOI

Carrer M., Pellizzari E., Prendin A.L., Pividori M., Brunetti M. Winter precipitation-not summer temperature-is still the main driver for alpine shrub growth. Sci. Total Environ. 2019;682:171–179. doi: 10.1016/j.scitotenv.2019.05.152. PubMed DOI

Francon L., Corona C., Till-Bottraud I., Choler P., Carlson B.Z., Charrier G., Améglio T., Morin S., Eckert N., Roussel E., et al. Assessing the effects of earlier snow melt-out on alpine shrub growth: The sooner the better? Ecol. Indic. 2020;115:106455. doi: 10.1016/j.ecolind.2020.106455. DOI

Anadon-Rosell A., Palacio S., Nogués S., Ninot J.M. Vaccinium myrtillus stands show similar structure and functioning under different scenarios of coexistence at the Pyrenean treeline. Plant Ecol. 2016;217:1115–1128. doi: 10.1007/s11258-016-0637-2. DOI

Durak T., Żywiec M., Kapusta P., Holeksa J. Impact of land use and climate changes on expansion of woody species on subalpine meadows in the eastern Carpathians. For. Ecol. Manag. 2015;339:127–135. doi: 10.1016/j.foreco.2014.12.014. DOI

Palaj A., Kollár J. Expansion of phanerophytes above the timberline in the Western Carpathians. Biologia. 2021;76:1991–2003. doi: 10.1007/s11756-021-00782-1. DOI

Kullman L. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J. Ecol. 2002;90:68–77. doi: 10.1046/j.0022-0477.2001.00630.x. DOI

Coudun C., Gégout J.-C. Quantitative prediction of the distribution and abundance of Vaccinium myrtillus with climatic and edaphic factors. J. Veg. Sci. 2007;18:517–524. doi: 10.1111/j.1654-1103.2007.tb02566.x. DOI

Woodward F.I. Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range. Oecologia. 1986;70:580–586. doi: 10.1007/BF00379908. PubMed DOI

Soukupová J., Kociánová M., Jeník J., Sekyra J. Arctic-alpine tundra in the Krkonoše, the Sudetes. Opera Corcon. 1995;32:5–88.

Zeidler M., Duchoslav M., Banaš M. How alpine heathlands response to the snow cover change on the ski slope? Long-lasting ski slope impact case study from the Hrubý Jeseník mts (Central Europe) Acta Soc. Bot. Pol. 2016;85:9–11. doi: 10.5586/asbp.3504. DOI

Ögren E. Premature dehardening in Vaccinium myrtillus during a mild winter: A cause for winter dieback? Funct. Ecol. 1996;10:724–732. doi: 10.2307/2390507. DOI

Taulavuori K., Laine K., Taulavuori E., Pakonen T., Saari E. Accelerated dehardening in bilberry (Vaccinium myrtillus L.) induced by a small elevation in air temperature. Environ. Pollut. 1997;98:91–95. doi: 10.1016/S0269-7491(97)00115-2. PubMed DOI

Tahkokorpi M., Taulavuori K., Laine K., Taulavuori E. After-Effects of drought-related winter stress in previous and current year stems of Vaccinium myrtillus L. Environ. Exp. Bot. 2007;61:85–93. doi: 10.1016/j.envexpbot.2007.03.003. DOI

Ritchie A.J.C. Vaccinium myrtillus L. J. Ecol. 1956;44:291–299. doi: 10.2307/2257181. DOI

Timoshok E.E. The ecology of bilberry (Vaccinium myrtillus L.) and cowberry (Vaccinium vitis-idaea L.) in Western Siberia. Russ. J. Ecol. 2000;31:8–13. doi: 10.1007/BF02799719. DOI

Gerdol R., Siffi C., Iacumin P., Gualmini M., Tomaselli M. Advanced snowmelt affects vegetative growth and sexual reproduction of Vaccinium myrtillus in a sub-alpine heath. J. Veg. Sci. 2013;24:569–579. doi: 10.1111/j.1654-1103.2012.01472.x. DOI

Nestby R., Percival D., Martinussen I., Opstad N., Rohloff J. The European blueberry (Vaccinium myrtillus L.) and the potential for cultivation: A Review. Eur. J. Plant Sci. Biotechnol. 2011;5:5–16.

Chytrý M. In: Vegetation of the Czech Republic. 1. Grassland and Heathland Vegetation. 1st ed. Chytrý M., editor. Academia; Prague, Czech Republic: 2010.

Čvančara A., Vacciniaceae S.F. Gray. In: Hejný S., Slavík B., editors. Květena České Republiky 2. Academia; Prague, Czech Republic: 1990. pp. 503–507.

Taulavuori K., Laine K., Taulavuori E. Experimental studies on Vaccinium myrtillus and Vaccinium vitis-idaea in relation to air pollution and global change at northern high latitudes: A Review. Environ. Exp. Bot. 2013;87:191–196. doi: 10.1016/j.envexpbot.2012.10.002. DOI

Ellenberg H. Vegetation Ecology of Central Europe. Cambridge University Press; Cambridge, UK: 2009.

Kočí M. Subalpine tall-forb and deciduous-shrub vegetation. In: Chytrý M., editor. Vegetation of the Czech Republic 1. Grassland and Heathland Vegetation. Academia; Prague, Czech Republic: 2007. pp. 91–131.

Palmroth S., Holm Bach L., Nordin A., Palmqvist K. Nitrogen-Addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs. Oecologia. 2014;175:457–470. doi: 10.1007/s00442-014-2923-9. PubMed DOI

Nielsen A., Totland Ø., Ohlson M. The effect of forest management operations on population performance of Vaccinium myrtillus on a landscape-scale. Basic Appl. Ecol. 2007;8:231–241. doi: 10.1016/j.baae.2006.05.009. DOI

Jeník J. Alpinská Vegetace Krkonoš, Králického Sněžníku a Hrubého Jeseníku [Alpine Vegetation des Riesengebirges, des Glatzer Schneeberges und des Gesenkes] Academia; Prague, Czech Republic: 1961.

Klimeš L., Klimešová J. Alpine tundra in the Hruby Jesenik mts., the Sudeten, and its tentative development in the 20th century. Preslia. 1991;63:245–268.

Frak E., Ponge J.F. The influence of altitude on the distribution of subterranean organs and humus components in Vaccinium myrtillus carpets. J. Veg. Sci. 2002;13:17–26. doi: 10.1658/1100-9233(2002)013[0017:TIOAOT]2.0.CO;2. DOI

Lähdesmäki P., Pakonen T., Saari E., Laine K., Tasanen L., Havas P. Changes in total nitrogen, protein, amino acids and NH4+ in tissues of bilberry, Vaccinium myrtillus, during the growing season. Ecography. 1990;13:31–38. doi: 10.1111/j.1600-0587.1990.tb00586.x. DOI

Körner C. Alpine Plant Life: Functional Plant Ecology of High Mountain. Springer; Berlin/Heidelberg, Germany: 2003.

Albert T., Raspé O., Jacquemart A.L. Clonal diversity and genetic structure in Vaccinium myrtillus populations from different habitats. Belg. J. Bot. 2004;137:155–162.

Maubon M., Ponge J., André J. Dynamics of Vaccinium myrtillus patches in mountain spruce forest. J. Veg. Sci. 1995;6:343–348. doi: 10.2307/3236233. DOI

Frolov P., Shanin V., Zubkova E., Salemaa M., Mäkipää R., Grabarnik P. Predicting biomass of bilberry (Vaccinium myrtillus) using rank distribution and root-to-shoot ratio models. Plant Ecol. 2022;223:131–140. doi: 10.1007/s11258-021-01199-1. DOI

Albert T., Raspé O., Jacquemart A.L. Influence of clonal growth on selfing rate in Vaccinium myrtillus L. Plant Biol. 2008;10:643–649. doi: 10.1111/j.1438-8677.2008.00067.x. PubMed DOI

Manninen O.H., Tolvanen A. Sexual reproduction of clonal dwarf shrubs in a forest–tundra ecotone. Plant Ecol. 2017;218:635–645. doi: 10.1007/s11258-017-0717-y. DOI

Hill N.M., Vander Kloet S.P. Longevity of experimentally buried seed in Vaccinium: Relationship to climate, reproductive factors and natural seed banks. J. Ecol. 2005;93:1167–1176. doi: 10.1111/j.1365-2745.2005.01034.x. DOI

Pato J., Obeso J.R. Growth and reproductive performance in bilberry (Vaccinium myrtillus) along an elevation gradient. Écoscience. 2012;19:59–68. doi: 10.2980/19-1-3407. DOI

Pato J., Obeso J.R. Fruit mass variability in Vaccinium myrtillus as a response to altitude, simulated herbivory and nutrient availability. Basic Appl. Ecol. 2012;13:338–346. doi: 10.1016/j.baae.2012.05.003. DOI

Olsen S.L., Evju M., Åström J., Løkken J.O., Dahle S., Andresen J.L., Eide N.E. Climate influence on plant-pollinator interactions in the keystone species Vaccinium myrtillus. Ecol. Evol. 2022;12:8910. doi: 10.1002/ece3.8910. PubMed DOI PMC

Selås V., Sønsteby A., Heide O.M., Opstad N. Climatic and seasonal control of annual growth rhythm and flower formation in Vaccinium myrtillus (Ericaceae), and the impact on annual variation in berry production. Plant Ecol. Evol. 2015;148:350–360. doi: 10.5091/plecevo.2015.1110. DOI

Pudas E., Tolvanen A., Poikolainen J., Sukuvaara T., Kubin E. Timing of plant phenophases in finnish lapland in 1997–2006. Boreal Environ. Res. 2008;13:31–43.

Huelber K., Gottfried M., Pauli H., Reiter K., Winkler M., Grabherr G. Phenological responses of snowbed species to snow removal dates in the central Alps: Implications for climate warming. Arct. Antarct. Alp. Res. 2006;38:99–103. doi: 10.1657/1523-0430(2006)038[0099:PROSST]2.0.CO;2. DOI

Tolvanen A. Recovery of the bilberry (Vaccinium myritillus L.) from artificial spring and summer frost. Plant Ecol. 1997;130:35–39. doi: 10.1023/A:1009776200866. DOI

Tolvanen A., Taulavuori K. Timing of deacclimation affects the ability to recover from simulated winter herbivory. Plant Ecol. 1998;135:9–12. doi: 10.1023/A:1009784917648. DOI

Körner C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 2007;22:569–574. doi: 10.1016/j.tree.2007.09.006. PubMed DOI

Fernández-Calvo I.C., Obeso J.R. Growth, nutrient content, fruit production and herbivory in bilberry Vaccinium myrtillus L. along an altitudinal gradient. Forestry. 2004;77:213–223. doi: 10.1093/forestry/77.3.213. DOI

Nestby R., Martinussen I., Krogstad T., Uleberg E. Effect of fertilization, tiller cutting and environment on plant growth and yield of European blueberry (Vaccinium myrtillus L.) in Norwegian Forest Fields. J. Berry Res. 2014;4:79–95. doi: 10.3233/JBR-140070. DOI

Hejcman M., Dvorak I.J., Kocianova M., Pavlu V., Nezerkova P., Vitek O., Rauch O., Jenik J. Snow depth and vegetation pattern in a late-melting snowbed analyzed by GPS and GIS in the Giant Mountains, Czech Republic. Arct. Antarct. Alp. Res. 2006;38:90–98. doi: 10.1657/1523-0430(2006)038[0090:SDAVPI]2.0.CO;2. DOI

Johansson M. Biomass, decomposition and nutrient release of Vaccinium myrtillus leaf Litter in four forest stands. Scand. J. For. Res. 1993;8:466–479. doi: 10.1080/02827589309382793. DOI

Broadbent A.A.D., Bahn M., Pritchard W.J., Newbold L.K., Goodall T., Guinta A., Snell H.S.K., Cordero I., Michas A., Grant H.K., et al. Shrub expansion modulates belowground impacts of changing snow conditions in alpine grasslands. Ecol. Lett. 2022;25:52–64. doi: 10.1111/ele.13903. PubMed DOI

Ingestad T. Mineral nutrient requirements of Vaccinium vitis-idaea and V. myrtillus. Physiol. Plant. 1973;29:239–246. doi: 10.1111/j.1399-3054.1973.tb03099.x. DOI

Ernakovich J.G., Hopping K.A., Berdanier A.B., Simpson R.T., Kachergis E.J., Steltzer H., Wallenstein M.D. Predicted responses of arctic and alpine ecosystems to altered seasonality under slimate change. Glob. Chang. Biol. 2014;20:3256–3269. doi: 10.1111/gcb.12568. PubMed DOI

Ganthaler A., Mayr S. Dwarf shrub hydraulics: Two Vaccinium species (Vaccinium myrtillus, Vaccinium vitis-idaea) of the European Alps compared. Physiol. Plant. 2015;155:424–434. doi: 10.1111/ppl.12333. PubMed DOI PMC

Glass V.M., Percival D.C., Proctor J.T.A. Tolerance of lowbush blueberries (Vaccinium angustifolium Ait.) to drought stress. II. Leaf gas exchange, stem water potential and dry matter partitioning. Can. J. Plant Sci. 2005;85:919–927. doi: 10.4141/P03-028. DOI

Taulavuori E., Tahkokorpi M., Laine K., Taulavuori K. Drought tolerance of juvenile and mature leaves of a deciduous dwarf shrub Vaccinium myrtillus L. in a boreal environment. Protoplasma. 2010;241:19–27. doi: 10.1007/s00709-009-0096-x. PubMed DOI

Llorens L., Penuelas J., Emmerett B. Developmental instability and gas exchange responses of a heathland shrub to experimental drought and warming. Int. J. Plant Sci. 2015;163:959–967. doi: 10.1086/342713. DOI

Hartley A.E., Neill C., Melillo J.M., Crabtree R., Bowles F.P. Plant performance and soil nitrogen mineralization in response to simulated climate change in subarctic dwarf shrub heath. Oikos. 1999;86:331. doi: 10.2307/3546450. DOI

Bokhorst S., Bjerke J.W., Davey M.P., Taulavuori K., Taulavuori E., Laine K., Callaghan T.V., Phoenix G.K. Impacts of extreme winter warming events on plant physiology in a sub-arctic heath community. Physiol. Plant. 2010;140:128–140. doi: 10.1111/j.1399-3054.2010.01386.x. PubMed DOI

Nestby R., Krogstad T., Joner E., Vohník M. The effect of NP fertilization on European blueberry (Vaccinium myrtillus L.) development on cultivated land in Mid-Norway. J. Berry Res. 2014;4:147–157. doi: 10.3233/JBR-140077. DOI

Mäkipää R. Response patterns of Vaccinium myrtillus and V. vitis-idaea along nutrient gradients in boreal forest. J. Veg. Sci. 1999;10:17–26. doi: 10.2307/3237156. DOI

Gobiet A., Kotlarski S., Beniston M., Heinrich G., Rajczak J., Stoffel M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014;493:1138–1151. doi: 10.1016/j.scitotenv.2013.07.050. PubMed DOI

Borner A.P., Kielland K., Walker M.D. Effects of simulated climate change on plant phenology and nitrogen mineralization in Alaskan arctic tundra. Arct. Antarct. Alp. Res. 2008;40:27–38. doi: 10.1657/1523-0430(06-099)[BORNER]2.0.CO;2. DOI

Wheeler J.A., Hoch G., Cortés A.J., Sedlacek J., Wipf S., Rixen C. Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia. 2014;175:219–229. doi: 10.1007/s00442-013-2872-8. PubMed DOI

Rinnan R., Stark S., Tolvanen A. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. J. Ecol. 2009;97:788–800. doi: 10.1111/j.1365-2745.2009.01506.x. DOI

Kudo G., Suzuki S. Flowering phenology of alpine plant communities along a gradient of snowment timing. Polar Biosci. 1999;12:100–113.

Rixen C., Stoeckli V., Ammann W. Does artificial snow production affect soil and vegetation of ski pistes? A review. Perspect. Plant Ecol. Evol. Syst. 2003;5:219–230. doi: 10.1078/1433-8319-00036. DOI

Tolvanen A., Laine K., Pakonen T., Saari E., Havas P. Responses to harvesting intensity in a clonal dwarf shrub, the bilberry (Vaccinium myrtillus L.) Vegetatio. 1994;110:163–169. doi: 10.1007/BF00033396. DOI

Persson I.-L., Julkunen-Tiitto R., Bergström R., Wallgren M., Suominen O., Danell K. Simulated moose (Alces alces L.) browsing increases accumulation of secondary metabolites in bilberry (Vaccinium myrtillus L.) along gradients of habitat productivity and solar radiation. J. Chem. Ecol. 2012;38:1225–1234. doi: 10.1007/s10886-012-0209-4. PubMed DOI

Pato J., Obeso J.R., Ploquin E.F., Jiménez-Alfaro B. Experimental evidence from Cantabrian mountain heathlands suggests new recommendations for management of Vaccinium myrtillus L. Plant Ecol. Divers. 2016;9:199–206. doi: 10.1080/17550874.2016.1176080. DOI

Hegland S.J., Jongejans E., Rydgren K. Investigating the interaction between ungulate grazing and resource effects on Vaccinium myrtillus populations with integral projection models. Oecologia. 2010;163:695–706. doi: 10.1007/s00442-010-1616-2. PubMed DOI

Strengbom J., Olofsson J., Witzell J., Dahlgren J. Effects of repeated damage and fertilization on palatability of Vaccinium myrtillus to grey sided voles, Clethrionomys rufocanus. Oikos. 2003;103:133–141. doi: 10.1034/j.1600-0706.2003.12680.x. DOI

Tolvanen A., Laine K. Effects of reproduction and artificial herbivory on vegetative growth and resource levels in deciduous and evergreen dwarf shrubs. Can. J. Bot. 1997;75:656–666. doi: 10.1139/b97-073. DOI

Preece C., Callaghan T.V., Phoenix G.K. Impacts of winter icing events on the growth, phenology and physiology of sub-arctic dwarf shrubs. Physiol. Plant. 2012;146:460–472. doi: 10.1111/j.1399-3054.2012.01640.x. PubMed DOI

Schimmel J., Granström A. Fire severity and vegetation response in the boreal Swedish forest. Ecology. 1996;77:1436–1450. doi: 10.2307/2265541. DOI

Ranwala S.M.W., Naylor R.E.L. Production, survival and germination of bilberry (Vaccinium myrtillus L.) seeds. Bot. J. Scotl. 2004;56:55–63. doi: 10.1080/03746600408685067. DOI

Marozas V., Racinskas J., Bartkevicius E. Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests. For. Ecol. Manag. 2007;250:47–55. doi: 10.1016/j.foreco.2007.03.008. DOI

Klanderud K. Species recruitment in alpine plant communities: The role of species interactions and productivity. J. Ecol. 2010;98:1128–1133. doi: 10.1111/j.1365-2745.2010.01703.x. DOI

Kreyling J., Jurasinski G., Grant K., Retzer V., Jentsch A., Beierkuhnlein C. Winter warming pulses affect the development of planted temperate grassland and dwarf-shrub heath communities. Plant Ecol. Divers. 2011;4:13–21. doi: 10.1080/17550874.2011.558125. DOI

Grime J.P. Benefits of Plant Diversity to Ecosystems: Immediate, Filter and Founder Effects. J. Ecol. 1998;86:902–910. doi: 10.1046/j.1365-2745.1998.00306.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...