Bilberry Expansion in the Changing Subalpine Belt
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39339606
PubMed Central
PMC11434830
DOI
10.3390/plants13182633
PII: plants13182633
Knihovny.cz E-zdroje
- Klíčová slova
- Vaccinium myrtillus, habitat, mountains, plant traits, shrubification bilberry, subalpine,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Bilberry (Vaccinium myrtillus L.) expansion in subalpine and alpine ecosystems is increasing due to climate change and reduced land management. This review examines bilberry traits, environmental responses, and ecosystem impacts. As a stress-tolerant chamaephyte, bilberry thrives in acidic, nutrient-poor soils across various habitats. It propagates effectively through rhizomes and demonstrates a phalanx growth form. Bilberry's growth and distribution are influenced by elevation, soil structure, pH, water availability, and nitrogen content. Mycorrhizal associations play a crucial role in nutrient uptake. The species modifies the microclimate, facilitates litter accumulation, and influences soil microbial communities, affecting nutrient turnover and biodiversity. Bilberry shows moderate tolerance to herbivory and frost, with the ability to recover through rapid emergence of new ramets. However, severe or repeated disturbances can significantly impact its abundance and reproductive success. Climate warming and atmospheric nitrogen deposition have accelerated bilberry growth in treeline ecotones. The management of bilberry expansion requires a nuanced approach, considering its resilience, historical land-use changes, and environmental factors. The goal should be to limit, not eliminate, bilberry, as it is a natural part of subalpine communities. Long-term comparative monitoring and experimental manipulation are necessary for effective management strategies.
Zobrazit více v PubMed
Myers-Smith I.H., Elmendorf S.C., Beck P.S., Wilmking M., Hallinger M., Blok D., Tape K.D., Rayback S., Macias-Fauria M., Forbes B.C., et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change. 2015;5:887–891. doi: 10.1038/nclimate2697. DOI
Bjorkman A.D., Myers-Smith I.H., Elmendorf S.C., Normand S., Rüger N., Beck P.S.A., Blach-Overgaard A., Blok D., Cornelissen J.H.C., Forbes B.C., et al. Plant functional trait change across a warming tundra biome. Nature. 2018;562:57–62. doi: 10.1038/s41586-018-0563-7. PubMed DOI
Tasser E., Tappeiner U. Impact of land use changes on mountain vegetation. Appl. Veg. Sci. 2002;5:173–184. doi: 10.1111/j.1654-109X.2002.tb00547.x. DOI
Dullinger S., Dirnböck T., Grabherr G. Patterns of shrub invasion into high mountain grasslands of the northern calcareous Alps, Austria. Arct. Antarct. Alp. Res. 2003;35:434–441. doi: 10.1657/1523-0430(2003)035[0434:POSIIH]2.0.CO;2. DOI
Myers-Smith I.H., Hik D.S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 2018;106:547–560. doi: 10.1111/1365-2745.12817. DOI
Vowles T., Björk R.G. Implications of evergreen shrub expansion in the Arctic. J. Ecol. 2019;107:650–655. doi: 10.1111/1365-2745.13081. DOI
Walker M.D., Wahren C.H., Hollister R.D., Henry G.H.R., Ahlquist L.E., Alatalo J.M., Bret-Harte M.S., Calef M.P., Callaghan T.V., Carroll A.B., et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl. Acad. Sci. USA. 2006;103:1342–1346. doi: 10.1073/pnas.0503198103. PubMed DOI PMC
Cannone N., Sgorbati S., Guglielmin M. Unexpected impacts of climate change on alpine vegetation. Front. Ecol. Environ. 2007;5:360–364. doi: 10.1890/1540-9295(2007)5[360:UIOCCO]2.0.CO;2. DOI
Sturm M., Schimel J., Michaelson G., Welker J.M., Oberbauer S.F., Liston G.E., Fahnestock J., Romanovsky V.E. Winter biological processes could help convert Arctic tundra to Shrubland. Bioscience. 2005;55:17–26. doi: 10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2. DOI
Sweet S.K., Gough L., Grffin K.L., Boelman N.T. Tall deciduous shrubs offset delayed start of growing season through rapid leaf development in the Alaskan Arctic tundra. Arct. Antarct. Alp. Res. 2014;46:682–697. doi: 10.1657/1938-4246-46.3.682. DOI
Klinkovská K., Kučerová A., Pustková Š., Rohel J., Slachová K., Sobotka V., Szokala D., Danihelka J., Kočí M., Šmerdová E., et al. Subalpine vegetation changes in the Eastern Sudetes (1973–2021): Effects of abandonment, conservation management and avalanches. Appl. Veg. Sci. 2023;26:e12711. doi: 10.1111/avsc.12711. DOI
Zeidler M., Husek V., Banaš M. Homogenization and species compositional shifts in subalpine vegetation during the 60-Year Period. Acta Soc. Bot. Pol. 2023;92:1–10. doi: 10.5586/asbp/171689. DOI
Rixen C., Schwoerer C., Wipf S. Winter climate change at different temporal scales in Vaccinium myrtillus, an Arctic and alpine dwarf shrub. Polar Res. 2010;29:85–94. doi: 10.1111/j.1751-8369.2010.00155.x. DOI
Treml V., Wild J., Chuman T., Potůčková M. Assessing the change in cover of non-indigenous dwarf-pine using aerial photographs, a case study from the Hrubý Jeseník Mts., the Sudetes. J. Landsc. Ecol. 2010;4:90–104. doi: 10.2478/v10285-012-0029-9. DOI
Dawes M.A., Hagedorn F., Zumbrunn T., Handa I.T., Hättenschwiler S., Wipf S., Rixen C. Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytol. 2011;191:806–818. doi: 10.1111/j.1469-8137.2011.03722.x. PubMed DOI
Boscutti F., Casolo V., Beraldo P., Braidot E., Zancani M., Rixen C. Shrub growth and plant diversity along an elevation gradient: Evidence of indirect effects of climate on alpine ecosystems. PLoS ONE. 2018;13:e0196653. doi: 10.1371/journal.pone.0196653. PubMed DOI PMC
Maestre F.T., Eldridge D.J., Soliveres S. A multifaceted view on the impacts of shrub encroachment. Appl. Veg. Sci. 2016;19:369–370. doi: 10.1111/avsc.12254. PubMed DOI PMC
Collins C.G., Spasojevic M.J., Alados C.L., Aronson E.L., Benavides J.C., Cannone N., Caviezel C., Grau O., Guo H., Kudo G., et al. Belowground impacts of alpine woody encroachment are determined by plant traits, local climate, and soil conditions. Glob. Change Biol. 2020;26:7112–7127. doi: 10.1111/gcb.15340. PubMed DOI
Bühlmann T., Hiltbrunner E., Körner C. Alnus viridis expansion contributes to excess reactive nitrogen release, reduces biodiversity and constrains forest succession in the Alps. Alp. Bot. 2014;124:187–191. doi: 10.1007/s00035-014-0134-y. DOI
Carrer M., Pellizzari E., Prendin A.L., Pividori M., Brunetti M. Winter precipitation-not summer temperature-is still the main driver for alpine shrub growth. Sci. Total Environ. 2019;682:171–179. doi: 10.1016/j.scitotenv.2019.05.152. PubMed DOI
Francon L., Corona C., Till-Bottraud I., Choler P., Carlson B.Z., Charrier G., Améglio T., Morin S., Eckert N., Roussel E., et al. Assessing the effects of earlier snow melt-out on alpine shrub growth: The sooner the better? Ecol. Indic. 2020;115:106455. doi: 10.1016/j.ecolind.2020.106455. DOI
Anadon-Rosell A., Palacio S., Nogués S., Ninot J.M. Vaccinium myrtillus stands show similar structure and functioning under different scenarios of coexistence at the Pyrenean treeline. Plant Ecol. 2016;217:1115–1128. doi: 10.1007/s11258-016-0637-2. DOI
Durak T., Żywiec M., Kapusta P., Holeksa J. Impact of land use and climate changes on expansion of woody species on subalpine meadows in the eastern Carpathians. For. Ecol. Manag. 2015;339:127–135. doi: 10.1016/j.foreco.2014.12.014. DOI
Palaj A., Kollár J. Expansion of phanerophytes above the timberline in the Western Carpathians. Biologia. 2021;76:1991–2003. doi: 10.1007/s11756-021-00782-1. DOI
Kullman L. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J. Ecol. 2002;90:68–77. doi: 10.1046/j.0022-0477.2001.00630.x. DOI
Coudun C., Gégout J.-C. Quantitative prediction of the distribution and abundance of Vaccinium myrtillus with climatic and edaphic factors. J. Veg. Sci. 2007;18:517–524. doi: 10.1111/j.1654-1103.2007.tb02566.x. DOI
Woodward F.I. Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range. Oecologia. 1986;70:580–586. doi: 10.1007/BF00379908. PubMed DOI
Soukupová J., Kociánová M., Jeník J., Sekyra J. Arctic-alpine tundra in the Krkonoše, the Sudetes. Opera Corcon. 1995;32:5–88.
Zeidler M., Duchoslav M., Banaš M. How alpine heathlands response to the snow cover change on the ski slope? Long-lasting ski slope impact case study from the Hrubý Jeseník mts (Central Europe) Acta Soc. Bot. Pol. 2016;85:9–11. doi: 10.5586/asbp.3504. DOI
Ögren E. Premature dehardening in Vaccinium myrtillus during a mild winter: A cause for winter dieback? Funct. Ecol. 1996;10:724–732. doi: 10.2307/2390507. DOI
Taulavuori K., Laine K., Taulavuori E., Pakonen T., Saari E. Accelerated dehardening in bilberry (Vaccinium myrtillus L.) induced by a small elevation in air temperature. Environ. Pollut. 1997;98:91–95. doi: 10.1016/S0269-7491(97)00115-2. PubMed DOI
Tahkokorpi M., Taulavuori K., Laine K., Taulavuori E. After-Effects of drought-related winter stress in previous and current year stems of Vaccinium myrtillus L. Environ. Exp. Bot. 2007;61:85–93. doi: 10.1016/j.envexpbot.2007.03.003. DOI
Ritchie A.J.C. Vaccinium myrtillus L. J. Ecol. 1956;44:291–299. doi: 10.2307/2257181. DOI
Timoshok E.E. The ecology of bilberry (Vaccinium myrtillus L.) and cowberry (Vaccinium vitis-idaea L.) in Western Siberia. Russ. J. Ecol. 2000;31:8–13. doi: 10.1007/BF02799719. DOI
Gerdol R., Siffi C., Iacumin P., Gualmini M., Tomaselli M. Advanced snowmelt affects vegetative growth and sexual reproduction of Vaccinium myrtillus in a sub-alpine heath. J. Veg. Sci. 2013;24:569–579. doi: 10.1111/j.1654-1103.2012.01472.x. DOI
Nestby R., Percival D., Martinussen I., Opstad N., Rohloff J. The European blueberry (Vaccinium myrtillus L.) and the potential for cultivation: A Review. Eur. J. Plant Sci. Biotechnol. 2011;5:5–16.
Chytrý M. In: Vegetation of the Czech Republic. 1. Grassland and Heathland Vegetation. 1st ed. Chytrý M., editor. Academia; Prague, Czech Republic: 2010.
Čvančara A., Vacciniaceae S.F. Gray. In: Hejný S., Slavík B., editors. Květena České Republiky 2. Academia; Prague, Czech Republic: 1990. pp. 503–507.
Taulavuori K., Laine K., Taulavuori E. Experimental studies on Vaccinium myrtillus and Vaccinium vitis-idaea in relation to air pollution and global change at northern high latitudes: A Review. Environ. Exp. Bot. 2013;87:191–196. doi: 10.1016/j.envexpbot.2012.10.002. DOI
Ellenberg H. Vegetation Ecology of Central Europe. Cambridge University Press; Cambridge, UK: 2009.
Kočí M. Subalpine tall-forb and deciduous-shrub vegetation. In: Chytrý M., editor. Vegetation of the Czech Republic 1. Grassland and Heathland Vegetation. Academia; Prague, Czech Republic: 2007. pp. 91–131.
Palmroth S., Holm Bach L., Nordin A., Palmqvist K. Nitrogen-Addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs. Oecologia. 2014;175:457–470. doi: 10.1007/s00442-014-2923-9. PubMed DOI
Nielsen A., Totland Ø., Ohlson M. The effect of forest management operations on population performance of Vaccinium myrtillus on a landscape-scale. Basic Appl. Ecol. 2007;8:231–241. doi: 10.1016/j.baae.2006.05.009. DOI
Jeník J. Alpinská Vegetace Krkonoš, Králického Sněžníku a Hrubého Jeseníku [Alpine Vegetation des Riesengebirges, des Glatzer Schneeberges und des Gesenkes] Academia; Prague, Czech Republic: 1961.
Klimeš L., Klimešová J. Alpine tundra in the Hruby Jesenik mts., the Sudeten, and its tentative development in the 20th century. Preslia. 1991;63:245–268.
Frak E., Ponge J.F. The influence of altitude on the distribution of subterranean organs and humus components in Vaccinium myrtillus carpets. J. Veg. Sci. 2002;13:17–26. doi: 10.1658/1100-9233(2002)013[0017:TIOAOT]2.0.CO;2. DOI
Lähdesmäki P., Pakonen T., Saari E., Laine K., Tasanen L., Havas P. Changes in total nitrogen, protein, amino acids and NH4+ in tissues of bilberry, Vaccinium myrtillus, during the growing season. Ecography. 1990;13:31–38. doi: 10.1111/j.1600-0587.1990.tb00586.x. DOI
Körner C. Alpine Plant Life: Functional Plant Ecology of High Mountain. Springer; Berlin/Heidelberg, Germany: 2003.
Albert T., Raspé O., Jacquemart A.L. Clonal diversity and genetic structure in Vaccinium myrtillus populations from different habitats. Belg. J. Bot. 2004;137:155–162.
Maubon M., Ponge J., André J. Dynamics of Vaccinium myrtillus patches in mountain spruce forest. J. Veg. Sci. 1995;6:343–348. doi: 10.2307/3236233. DOI
Frolov P., Shanin V., Zubkova E., Salemaa M., Mäkipää R., Grabarnik P. Predicting biomass of bilberry (Vaccinium myrtillus) using rank distribution and root-to-shoot ratio models. Plant Ecol. 2022;223:131–140. doi: 10.1007/s11258-021-01199-1. DOI
Albert T., Raspé O., Jacquemart A.L. Influence of clonal growth on selfing rate in Vaccinium myrtillus L. Plant Biol. 2008;10:643–649. doi: 10.1111/j.1438-8677.2008.00067.x. PubMed DOI
Manninen O.H., Tolvanen A. Sexual reproduction of clonal dwarf shrubs in a forest–tundra ecotone. Plant Ecol. 2017;218:635–645. doi: 10.1007/s11258-017-0717-y. DOI
Hill N.M., Vander Kloet S.P. Longevity of experimentally buried seed in Vaccinium: Relationship to climate, reproductive factors and natural seed banks. J. Ecol. 2005;93:1167–1176. doi: 10.1111/j.1365-2745.2005.01034.x. DOI
Pato J., Obeso J.R. Growth and reproductive performance in bilberry (Vaccinium myrtillus) along an elevation gradient. Écoscience. 2012;19:59–68. doi: 10.2980/19-1-3407. DOI
Pato J., Obeso J.R. Fruit mass variability in Vaccinium myrtillus as a response to altitude, simulated herbivory and nutrient availability. Basic Appl. Ecol. 2012;13:338–346. doi: 10.1016/j.baae.2012.05.003. DOI
Olsen S.L., Evju M., Åström J., Løkken J.O., Dahle S., Andresen J.L., Eide N.E. Climate influence on plant-pollinator interactions in the keystone species Vaccinium myrtillus. Ecol. Evol. 2022;12:8910. doi: 10.1002/ece3.8910. PubMed DOI PMC
Selås V., Sønsteby A., Heide O.M., Opstad N. Climatic and seasonal control of annual growth rhythm and flower formation in Vaccinium myrtillus (Ericaceae), and the impact on annual variation in berry production. Plant Ecol. Evol. 2015;148:350–360. doi: 10.5091/plecevo.2015.1110. DOI
Pudas E., Tolvanen A., Poikolainen J., Sukuvaara T., Kubin E. Timing of plant phenophases in finnish lapland in 1997–2006. Boreal Environ. Res. 2008;13:31–43.
Huelber K., Gottfried M., Pauli H., Reiter K., Winkler M., Grabherr G. Phenological responses of snowbed species to snow removal dates in the central Alps: Implications for climate warming. Arct. Antarct. Alp. Res. 2006;38:99–103. doi: 10.1657/1523-0430(2006)038[0099:PROSST]2.0.CO;2. DOI
Tolvanen A. Recovery of the bilberry (Vaccinium myritillus L.) from artificial spring and summer frost. Plant Ecol. 1997;130:35–39. doi: 10.1023/A:1009776200866. DOI
Tolvanen A., Taulavuori K. Timing of deacclimation affects the ability to recover from simulated winter herbivory. Plant Ecol. 1998;135:9–12. doi: 10.1023/A:1009784917648. DOI
Körner C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 2007;22:569–574. doi: 10.1016/j.tree.2007.09.006. PubMed DOI
Fernández-Calvo I.C., Obeso J.R. Growth, nutrient content, fruit production and herbivory in bilberry Vaccinium myrtillus L. along an altitudinal gradient. Forestry. 2004;77:213–223. doi: 10.1093/forestry/77.3.213. DOI
Nestby R., Martinussen I., Krogstad T., Uleberg E. Effect of fertilization, tiller cutting and environment on plant growth and yield of European blueberry (Vaccinium myrtillus L.) in Norwegian Forest Fields. J. Berry Res. 2014;4:79–95. doi: 10.3233/JBR-140070. DOI
Hejcman M., Dvorak I.J., Kocianova M., Pavlu V., Nezerkova P., Vitek O., Rauch O., Jenik J. Snow depth and vegetation pattern in a late-melting snowbed analyzed by GPS and GIS in the Giant Mountains, Czech Republic. Arct. Antarct. Alp. Res. 2006;38:90–98. doi: 10.1657/1523-0430(2006)038[0090:SDAVPI]2.0.CO;2. DOI
Johansson M. Biomass, decomposition and nutrient release of Vaccinium myrtillus leaf Litter in four forest stands. Scand. J. For. Res. 1993;8:466–479. doi: 10.1080/02827589309382793. DOI
Broadbent A.A.D., Bahn M., Pritchard W.J., Newbold L.K., Goodall T., Guinta A., Snell H.S.K., Cordero I., Michas A., Grant H.K., et al. Shrub expansion modulates belowground impacts of changing snow conditions in alpine grasslands. Ecol. Lett. 2022;25:52–64. doi: 10.1111/ele.13903. PubMed DOI
Ingestad T. Mineral nutrient requirements of Vaccinium vitis-idaea and V. myrtillus. Physiol. Plant. 1973;29:239–246. doi: 10.1111/j.1399-3054.1973.tb03099.x. DOI
Ernakovich J.G., Hopping K.A., Berdanier A.B., Simpson R.T., Kachergis E.J., Steltzer H., Wallenstein M.D. Predicted responses of arctic and alpine ecosystems to altered seasonality under slimate change. Glob. Chang. Biol. 2014;20:3256–3269. doi: 10.1111/gcb.12568. PubMed DOI
Ganthaler A., Mayr S. Dwarf shrub hydraulics: Two Vaccinium species (Vaccinium myrtillus, Vaccinium vitis-idaea) of the European Alps compared. Physiol. Plant. 2015;155:424–434. doi: 10.1111/ppl.12333. PubMed DOI PMC
Glass V.M., Percival D.C., Proctor J.T.A. Tolerance of lowbush blueberries (Vaccinium angustifolium Ait.) to drought stress. II. Leaf gas exchange, stem water potential and dry matter partitioning. Can. J. Plant Sci. 2005;85:919–927. doi: 10.4141/P03-028. DOI
Taulavuori E., Tahkokorpi M., Laine K., Taulavuori K. Drought tolerance of juvenile and mature leaves of a deciduous dwarf shrub Vaccinium myrtillus L. in a boreal environment. Protoplasma. 2010;241:19–27. doi: 10.1007/s00709-009-0096-x. PubMed DOI
Llorens L., Penuelas J., Emmerett B. Developmental instability and gas exchange responses of a heathland shrub to experimental drought and warming. Int. J. Plant Sci. 2015;163:959–967. doi: 10.1086/342713. DOI
Hartley A.E., Neill C., Melillo J.M., Crabtree R., Bowles F.P. Plant performance and soil nitrogen mineralization in response to simulated climate change in subarctic dwarf shrub heath. Oikos. 1999;86:331. doi: 10.2307/3546450. DOI
Bokhorst S., Bjerke J.W., Davey M.P., Taulavuori K., Taulavuori E., Laine K., Callaghan T.V., Phoenix G.K. Impacts of extreme winter warming events on plant physiology in a sub-arctic heath community. Physiol. Plant. 2010;140:128–140. doi: 10.1111/j.1399-3054.2010.01386.x. PubMed DOI
Nestby R., Krogstad T., Joner E., Vohník M. The effect of NP fertilization on European blueberry (Vaccinium myrtillus L.) development on cultivated land in Mid-Norway. J. Berry Res. 2014;4:147–157. doi: 10.3233/JBR-140077. DOI
Mäkipää R. Response patterns of Vaccinium myrtillus and V. vitis-idaea along nutrient gradients in boreal forest. J. Veg. Sci. 1999;10:17–26. doi: 10.2307/3237156. DOI
Gobiet A., Kotlarski S., Beniston M., Heinrich G., Rajczak J., Stoffel M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014;493:1138–1151. doi: 10.1016/j.scitotenv.2013.07.050. PubMed DOI
Borner A.P., Kielland K., Walker M.D. Effects of simulated climate change on plant phenology and nitrogen mineralization in Alaskan arctic tundra. Arct. Antarct. Alp. Res. 2008;40:27–38. doi: 10.1657/1523-0430(06-099)[BORNER]2.0.CO;2. DOI
Wheeler J.A., Hoch G., Cortés A.J., Sedlacek J., Wipf S., Rixen C. Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia. 2014;175:219–229. doi: 10.1007/s00442-013-2872-8. PubMed DOI
Rinnan R., Stark S., Tolvanen A. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. J. Ecol. 2009;97:788–800. doi: 10.1111/j.1365-2745.2009.01506.x. DOI
Kudo G., Suzuki S. Flowering phenology of alpine plant communities along a gradient of snowment timing. Polar Biosci. 1999;12:100–113.
Rixen C., Stoeckli V., Ammann W. Does artificial snow production affect soil and vegetation of ski pistes? A review. Perspect. Plant Ecol. Evol. Syst. 2003;5:219–230. doi: 10.1078/1433-8319-00036. DOI
Tolvanen A., Laine K., Pakonen T., Saari E., Havas P. Responses to harvesting intensity in a clonal dwarf shrub, the bilberry (Vaccinium myrtillus L.) Vegetatio. 1994;110:163–169. doi: 10.1007/BF00033396. DOI
Persson I.-L., Julkunen-Tiitto R., Bergström R., Wallgren M., Suominen O., Danell K. Simulated moose (Alces alces L.) browsing increases accumulation of secondary metabolites in bilberry (Vaccinium myrtillus L.) along gradients of habitat productivity and solar radiation. J. Chem. Ecol. 2012;38:1225–1234. doi: 10.1007/s10886-012-0209-4. PubMed DOI
Pato J., Obeso J.R., Ploquin E.F., Jiménez-Alfaro B. Experimental evidence from Cantabrian mountain heathlands suggests new recommendations for management of Vaccinium myrtillus L. Plant Ecol. Divers. 2016;9:199–206. doi: 10.1080/17550874.2016.1176080. DOI
Hegland S.J., Jongejans E., Rydgren K. Investigating the interaction between ungulate grazing and resource effects on Vaccinium myrtillus populations with integral projection models. Oecologia. 2010;163:695–706. doi: 10.1007/s00442-010-1616-2. PubMed DOI
Strengbom J., Olofsson J., Witzell J., Dahlgren J. Effects of repeated damage and fertilization on palatability of Vaccinium myrtillus to grey sided voles, Clethrionomys rufocanus. Oikos. 2003;103:133–141. doi: 10.1034/j.1600-0706.2003.12680.x. DOI
Tolvanen A., Laine K. Effects of reproduction and artificial herbivory on vegetative growth and resource levels in deciduous and evergreen dwarf shrubs. Can. J. Bot. 1997;75:656–666. doi: 10.1139/b97-073. DOI
Preece C., Callaghan T.V., Phoenix G.K. Impacts of winter icing events on the growth, phenology and physiology of sub-arctic dwarf shrubs. Physiol. Plant. 2012;146:460–472. doi: 10.1111/j.1399-3054.2012.01640.x. PubMed DOI
Schimmel J., Granström A. Fire severity and vegetation response in the boreal Swedish forest. Ecology. 1996;77:1436–1450. doi: 10.2307/2265541. DOI
Ranwala S.M.W., Naylor R.E.L. Production, survival and germination of bilberry (Vaccinium myrtillus L.) seeds. Bot. J. Scotl. 2004;56:55–63. doi: 10.1080/03746600408685067. DOI
Marozas V., Racinskas J., Bartkevicius E. Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests. For. Ecol. Manag. 2007;250:47–55. doi: 10.1016/j.foreco.2007.03.008. DOI
Klanderud K. Species recruitment in alpine plant communities: The role of species interactions and productivity. J. Ecol. 2010;98:1128–1133. doi: 10.1111/j.1365-2745.2010.01703.x. DOI
Kreyling J., Jurasinski G., Grant K., Retzer V., Jentsch A., Beierkuhnlein C. Winter warming pulses affect the development of planted temperate grassland and dwarf-shrub heath communities. Plant Ecol. Divers. 2011;4:13–21. doi: 10.1080/17550874.2011.558125. DOI
Grime J.P. Benefits of Plant Diversity to Ecosystems: Immediate, Filter and Founder Effects. J. Ecol. 1998;86:902–910. doi: 10.1046/j.1365-2745.1998.00306.x. DOI