Belowground impacts of alpine woody encroachment are determined by plant traits, local climate, and soil conditions

. 2020 Dec ; 26 (12) : 7112-7127. [epub] 20201008

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32902066

Grantová podpora
CGL2016-80783-R Ministerio de Economía y Competitividad
ANR-16-CE03-0009 Agence Nationale de la Recherche
730938 EU-H2020 H2020 European Research Council
RVO 67985939 Akademie Věd České Republiky
CONACYT-2 73659 Consejo Nacional de Ciencia y Tecnología
CA-R-PPA-5062-H National Institute of Food and Agriculture
SyG-2013-610028 FP7 Ideas: European Research Council
DEB-1701979 NSF CEP - Centrální evidence projektů
DEB-1637686 NSF CEP - Centrální evidence projektů
UC President's Dissertation Year Fellowship
UCR Graduate Dean's Dissertation Research Grant
Fulbright Grant
Royal Thai Government Fellowship
Javeriana University

Global climate and land use change are causing woody plant encroachment in arctic, alpine, and arid/semi-arid ecosystems around the world, yet our understanding of the belowground impacts of this phenomenon is limited. We conducted a globally distributed field study of 13 alpine sites across four continents undergoing woody plant encroachment and sampled soils from both woody encroached and nearby herbaceous plant community types. We found that woody plant encroachment influenced soil microbial richness and community composition across sites based on multiple factors including woody plant traits, site level climate, and abiotic soil conditions. In particular, root symbiont type was a key determinant of belowground effects, as Nitrogen-fixing woody plants had higher soil fungal richness, while Ecto/Ericoid mycorrhizal species had higher soil bacterial richness and symbiont types had distinct soil microbial community composition. Woody plant leaf traits indirectly influenced soil microbes through their impact on soil abiotic conditions, primarily soil pH and C:N ratios. Finally, site-level climate affected the overall magnitude and direction of woody plant influence, as soil fungal and bacterial richness were either higher or lower in woody encroached versus herbaceous soils depending on mean annual temperature and precipitation. All together, these results document global impacts of woody plant encroachment on soil microbial communities, but highlight that multiple biotic and abiotic pathways must be considered to scale up globally from site- and species-level patterns. Considering both the aboveground and belowground effects of woody encroachment will be critical to predict future changes in alpine ecosystem structure and function and subsequent feedbacks to the global climate system.

Zobrazit více v PubMed

Acharya, B. S., Kharel, G., Zou, C. B., Wilcox, B. P., & Halihan, T. (2018). Woody plant encroachment impacts on groundwater recharge: A review. Water, 10(1466), 1-26. https://doi.org/10.3390/w10101466

Anthelme, F., Villaret, J.-C., & Brun, J.-J. (2007). Shrub encroachment in the Alps gives rise to the convergence of sub-alpine communities on a regional scale. Journal of Vegetation Science, 18(3), 355. https://doi.org/10.1658/1100-9233(2007)18[355:SEITAG]2.0.CO;2

Awada, T., El-hage, R., Geha, M., Wedin, D. A., Huddle, J. A., Zhou, X., … Brandle, J. R. (2013). Intra-annual variability and environmental controls over transpiration in a 58-year-old even-aged stand of invasive woody Juniperus virginiana L. in the Nebraska Sandhills, USA. Ecohydrology, 6, 731-740. https://doi.org/10.1002/eco.1294

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01

Bending, G. D., Aspray, T. J., & Whipps, J. M. (2006). Significance of microbial interactions in the mycorrhizosphere. Advances in Applied Microbiology, 60(06), 97-132. https://doi.org/10.1016/S0065-2164(06)60004-X

Bengtson, P., Barker, J., & Grayston, S. J. (2012). Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecology and Evolution, 2(8), 1843-1852. https://doi.org/10.1002/ece3.311

Bjork, R. G., Bjorkman, M. P., Andersson, M. X., & Klemedtsson, L. (2008). Temporal variation in soil microbial communities in Alpine tundra. Soil Biology and Biochemistry, 40, 266-268. https://doi.org/10.1016/j.soilbio.2007.07.017

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C., Al-Ghalith, G. A., … Caporaso, J. G. (2018). QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints, 6, e27295v1. https://doi.org/10.7287/peerj.preprints.27295v1

Brabcová, V., Nováková, M., Davidová, A., & Baldrian, P. (2016). Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytologist, 210(4), 1369-1381. https://doi.org/10.1111/nph.13849

Brandt, J. S., Haynes, M. A., Kuemmerle, T., Waller, D. M., & Radeloff, V. C. (2013). Regime shift on the roof of the world: Alpine meadows converting to shrublands in the southern Himalayas. Biological Conservation, 158, 116-127. https://doi.org/10.1016/j.biocon.2012.07.026

Bürkner, P.-C. (2017). brms : An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1). https://doi.org/10.18637/jss.v080.i01

Cable, J. M., Ogle, K., Tyler, A. P., Pavao-Zuckerman, M. A., & Huxman, T. E. (2009). Woody plant encroachment impacts on soil carbon and microbial processes: Results from a hierarchical Bayesian analysis of soil incubation data. Plant and Soil, 320(1-2), 153-167. https://doi.org/10.1007/s11104-008-9880-1

Cahoon, S. M. P., Sullivan, P. F., Shaver, G. R., Welker, J. M., & Post, E. (2012). Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets. Ecology Letters, 15(12), 1415-1422. https://doi.org/10.1111/j.1461-0248.2012.01865.x

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). Dada2: High resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869.DADA2

Cannone, N., Sergio, S., & Guglielmin, M. (2007). Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and the Environment, 1953, 360-364. https://doi.org/10.1890/1540-9295(2007)5[360:UIOCCO]2.0.CO;2

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. https://doi.org/10.1038/nmeth.f.303

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., … Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl. 1), 4516-4522. https://doi.org/10.1073/pnas.1000080107

Caviezel, C., Hunziker, M., Schaffner, M., & Kuhn, N. J. (2014). Soil-vegetation interaction on slopes with bush encroachment in the central Alps - adapting slope stability measurements to shifting process domains. Earth Surface Processes and Landforms, 39(4), 509-521. https://doi.org/10.1002/esp.3513

Chapman, S. K., & Newman, G. S. (2010). Biodiversity at the plant-soil interface: Microbial abundance and community structure respond to litter mixing. Oecologia, 162(3), 763-769. https://doi.org/10.1007/s00442-009-1498-3

Cheeke, T. E., Phillips, R. P., Brzostek, E. R., Rosling, A., Bever, J. D., & Fransson, P. (2017). Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytologist, 214(1), 432-442. https://doi.org/10.1111/nph.14343

Chen, I., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species of climate warming. Science, 333(August), 1024-1026. https://doi.org/10.1126/science.1206432

Churchland, C., & Grayston, S. J. (2014). Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Frontiers in Microbiology, 5(June), 1-20. https://doi.org/10.3389/fmicb.2014.00261

Classen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J. A. M., Cregger, M. A., … Patterson, C. M. (2015). Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere, 6(8), art130. https://doi.org/10.1890/ES15-00217.1

Collins, C. G., Carey, C. J., Aronson, E. L., Kopp, C. W., & Diez, J. M. (2016). Direct and indirect effects of native range expansion on soil microbial community structure and function. Journal of Ecology, 104(5), 1271-1283. https://doi.org/10.1111/1365-2745.12616

Colman, R. E., Schupp, J. M., Hicks, N. D., Smith, D. E., Buchhagen, J. L., Valafar, F., … Engelthaler, D. M. (2015). Detection of low-level mixed-population drug resistance in Mycobacterium tuberculosis using high fidelity amplicon sequencing. PLoS One, 10(5), 1-18. https://doi.org/10.1371/journal.pone.0126626

Cornelissen, J., Aerts, R., Cerabolini, B., Werger, M., & van der Heijden, M. (2001). Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia, 129(4), 611-619. https://doi.org/10.1007/s004420100752

Cornelissen, J. H. C., van Bodegom, P. M., Aerts, R., Callaghan, T. V., van Logtestijn, R. S. P., Alatalo, J., … Zhao, X. (2007). Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters, 10(7), 619-627. https://doi.org/10.1111/j.1461-0248.2007.01051.x

Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., … Westoby, M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10), 1065-1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x

De Cáceres, M., Legendre, P., Wiser, S. K., & Brotons, L. (2012). Using species combinations in indicator value analyses. Methods in Ecology and Evolution, 3(6), 973-982. https://doi.org/10.1111/j.2041-210X.2012.00246.x

De Mesquita, C. P. B., Tillmann, L. S., Bernard, C. D., Rosemond, K. C., Molotch, N. P., & Suding, K. N. (2018). Topographic heterogeneity explains patterns of vegetation response to climate change (1972-2008) across a mountain landscape, Niwot Ridge, Colorado. Arctic, Antarctic, and Alpine Research, 50(1), 1972-2008. https://doi.org/10.1080/15230430.2018.1504492

Demarco, J., Mack, M. C., & Bret-Harte, M. S. (2014). Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology, 95(7), 1861-1875. https://doi.org/10.1890/13-2221.1

Dhillion, S. S. (1994). Ectomycorrhizae, arbuscular mycorrhizae, and Rhizoctonia sp. of alpine and boreal Salix spp. in Norway. Arctic, Antarctic, and Alpine Research, 26(3), 304-307.

Donhauser, J., & Frey, B. (2018). Alpine soil microbial ecology in a changing world. FEMS Microbiology Ecology, 94(9), 1-31. https://doi.org/10.1093/femsec/fiy099

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460-2461. https://doi.org/10.1093/bioinformatics/btq461

Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10), 996-998. https://doi.org/10.1038/nmeth.2604

Edgar, R. C., & Flyvbjerg, H. (2015). Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics, 31(21), 3476-3482. https://doi.org/10.1093/bioinformatics/btv401

Eldridge, D. J., Bowker, M. A., Maestre, F. T., Roger, E., Reynolds, J. F., & Whitford, W. G. (2011). Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters, 14(7), 709-722. https://doi.org/10.1111/j.1461-0248.2011.01630.x

Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Boulanger-Lapointe, N., Cooper, E. J., … Wipf, S. (2012). Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2(6), 453-457. https://doi.org/10.1038/nclimate1465

Eskelinen, A., Stark, S., & Männistö, M. (2009). Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia, 161(1), 113-123. https://doi.org/10.1007/s00442-009-1362-5

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086

Fierer, N. (2017). Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15, 579-590. https://doi.org/10.1038/nrmicro.2017.87

Formica, A., Farrer, E. C., Ashton, I. W., & Suding, K. N. (2014). Shrub expansion over the past 62 Years in Rocky Mountain Alpine tundra: Possible causes and consequences. Arctic, Antarctic, and Alpine Research, 46(3), 616-631. https://doi.org/10.1657/1938-4246-46.3.616

Frey-Klett, P., Garbaye, J., & Tarkka, M. (2007). The mycorrhiza helper bacteria revisited. New Phytologist, 176, 22-36. https://doi.org/10.1111/j.1469-8137.2007.02191.x

Gavazov, K. S. (2010). Dynamics of alpine plant litter decomposition in a changing climate. Plant and Soil, 337(1), 19-32. https://doi.org/10.1007/s11104-010-0477-0

Gerz, M., Guillermo Bueno, C., Ozinga, W. A., Zobel, M., & Moora, M. (2018). Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. Journal of Ecology, 106(1), 254-264. https://doi.org/10.1111/1365-2745.12873

Gómez-Aparicio, L., Gómez, J. M., Zamora, R., & Boettinger, J. L. (2005). Canopy vs. soil effects of shrubs facilitating tree seedlings in Mediterranean montane ecosystems. Journal of Vegetation Science, 16(2), 191-198. https://doi.org/10.1658/1100-9233(2005)016[0191:CVSEOS]2.0.CO;2

Grau, O., Saravesi, K., Ninot, J. M., Geml, J., Markkola, A., Ahonen, S. H., & Peñuelas, J. (2019). Encroachment of shrubs into subalpine grasslands in the Pyrenees modifies the structure of soil fungal communities and soil properties. FEMS Microbiology Ecology, 95(4), 1-16. https://doi.org/10.1093/femsec/fiz028

Griffin, D. W., Shaefer, F. L., Bowling, C., Mattorano, D., Nichols, T., & Silvestri, E. (2014). USGS/EPA collection protocol for bacterial pathogens in soil (1.0). Retrieved from http://pubs.er.usgs.gov/publication/70169892

Hagedorn, F., Gavazov, K., & Alexander, J. M. (2019). Above- and belowground linkages shape responses of mountain vegetation to climate change. Science, 1123(September), 1119-1123. https://doi.org/10.1126/science.aax4737

Hallinger, M., Manthey, M., & Wilmking, M. (2010). Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytologist, 186, 890-899. https://doi.org/10.1111/j.1469-8137.2010.03223.x

Hollister, E. B., Schadt, C. W., Palumbo, A. V., James Ansley, R., & Boutton, T. W. (2010). Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains. Soil Biology and Biochemistry, 42(10), 1816-1824. https://doi.org/10.1016/j.soilbio.2010.06.022

Jobbagyl, E. G., & Jackson, R. B. (2003). Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry, 64(2), 205-229.

Kardol, P., Cregger, M. A., Campany, C. E., & Classen, A. T. (2010). Soil ecosystem functioning under climate change: Plant species and community effects. Ecology, 91(3), 767-781. https://doi.org/10.1890/09-0135.1

Katoh, K., & Standley, D. M. (2013). MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010

Klein, J. A., Harte, J., & Zhao, X. Q. (2007). Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecological Applications, 17(2), 541-557. https://doi.org/10.1890/05-0685

Komac, B., Alados, C., & Camarero, J. (2011). Influence of topography on the colonization of subalpine grasslands by the thorny cushion dwarf Echinospartum horridum. Arctic, Antarctic, and Alpine Research, 43(4), 601-611. https://doi.org/10.1657/1938-4246-43.4.601

Kopp, C. W., & Cleland, E. E. (2014). Shifts in plant species elevational range limits and abundances observed over nearly five decades in a western North America mountain range. Journal of Vegetation Science, 25, 135-146. https://doi.org/10.1111/jvs.12072

Körner, C. (2003). Alpine plant life: Functional plant ecology of high mountain ecosystems. Berlin, Heidelberg, New York: Springer-Verlag.

Kudo, G., Amagai, Y., Hoshino, B., & Kaneko, M. (2011). Invasion of dwarf bamboo into alpine snow-meadows in northern Japan: Pattern of expansion and impact on species diversity. Ecology and Evolution, 1(1), 85-96. https://doi.org/10.1002/ece3.9

Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75(15), 5111-5120. https://doi.org/10.1128/AEM.00335-09

Lazzaro, A., Hilfiker, D., & Zeyer, J. (2015). Structures of microbial communities in alpine soils: Seasonal and elevational effects. Frontiers in Microbiology, 6(NOV), 1-13. https://doi.org/10.3389/fmicb.2015.01330

Liang, C., Schimel, J. P., & Jastrow, J. D. (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2(8), 1-6. https://doi.org/10.1038/nmicrobiol.2017.105

Liao, J. D., & Boutton, T. W. (2008). Soil microbial biomass response to woody plant invasion of grassland. Soil Biology and Biochemistry, 40(5), 1207-1216. https://doi.org/10.1016/j.soilbio.2007.12.018

Lipson, D. A., & Schmidt, S. K. (2004). Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Applied and Environmental Microbiology, 70(5), 2867-2879. https://doi.org/10.1128/AEM.70.5.2867

Lorenzo, P., Pereira, C. S., & Rodríguez-Echeverría, S. (2013). Differential impact on soil microbes of allelopathic compounds released by the invasive Acacia dealbata Link. Soil Biology and Biochemistry, 57, 156-163. https://doi.org/10.1016/j.soilbio.2012.08.018

Lorenzo, P., Rodríguez-Echeverría, S., González, L., & Freitas, H. (2010). Effect of invasive Acacia dealbata Link on soil microorganisms as determined by PCR-DGGE. Applied Soil Ecology, 44(3), 245-251. https://doi.org/10.1016/j.apsoil.2010.01.001

Lozupone, C., & Knight, R. (2005). UniFrac : A wew phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71(12), 8228-8235. https://doi.org/10.1128/AEM.71.12.8228

Matson, E., & Bart, D. (2013). Interactions among fire legacies, grazing and topography predict shrub encroachment in post-agricultural paramo. Landscape Ecology, 1829-1840. https://doi.org/10.1007/s10980-013-9926-5

McCarthy-Neumann, S., & Ibáñez, I. (2012). Tree range expansion may be enhanced by escape from negative plant-soil feedbacks. Ecology, 93(12), 2637-2649. https://doi.org/10.1890/11-2281.1

McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z., Probst, A., … Hugenholtz, P. (2012). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME Journal, 6(3), 610-618. https://doi.org/10.1038/ismej.2011.139

McGuire, K. L., Zak, D. R., Edwards, I. P., Blackwood, C. B., & Upchurch, R. (2010). Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest. Oecologia, 164(3), 785-795. https://doi.org/10.1007/s00442-010-1686-1

Montane, F., Rovira, P., & Casals, P. (2007). Shrub encroachment into mesic mountain grasslands in the Iberian peninsula: Effects of plant quality and temperature on soil C and N stocks. Global Biogeochemical Cycles, 21, 1-10. https://doi.org/10.1029/2006GB002853

Moreno-Gutiérrez, C., Dawson, T. E., Nicolás, E., & Querejeta, J. I. (2012). Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytologist, 196(2), 489-496. https://doi.org/10.1111/j.1469-8137.2012.04276.x

Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., … Hik, D. S. (2011). Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters, 6(4), 045509. https://doi.org/10.1088/1748-9326/6/4/045509

Myers-Smith, I. H., & Hik, D. S. (2013). Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow-shrub interactions. Ecology and Evolution, 3(11), 3683-3700. https://doi.org/10.1002/ece3.710

Myers-Smith, I. H., & Hik, D. S. (2018). Climate warming as a driver of tundra shrubline advance. Journal of Ecology, 106(2), 547-560. https://doi.org/10.1111/1365-2745.12817

Nilsson, R. H., Larsson, K.-H., Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S., Schigel, D., … Abarenkov, K. (2019). The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47(D1), D259-D264. https://doi.org/10.1093/nar/gky1022

Nuñez, M. A., Horton, T. R., & Simberloff, D. (2009). Lack of belowground mutualisms hinders Pinaceae invasions. Ecology, 90(9), 2352-2359. https://doi.org/10.1890/08-2139.1

Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., & O’Hara, R. (2016). Vegan: Community ecology package. R Package 2.3-3. Retrieved from http://cran.r-project.org/package=vegan

Palmer, J. M., Jusino, M. A., Banik, M. T., & Lindner, D. L. (2018). Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. BioRxiv. https://doi.org/10.1101/213470

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37(1), 637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 - Approximately maximum-likelihood trees for large alignments. PLoS One, 5(3), e9490. https://doi.org/10.1371/journal.pone.0009490

R Core Team. (2019). R: A language and environment for statistical computing. Retrieved from https://www.r-project.org/

Ramírez-Amezcua, Y., Steinmann, V. W., Ruiz-Sanchez, E., & Rojas-Soto, O. R. (2016). Mexican alpine plants in the face of global warming: Potential extinction within a specialized assemblage of narrow endemics. Biodiversity and Conservation, 25(5), 865-885. https://doi.org/10.1007/s10531-016-1094-x

Rammig, A., Jonas, T., Zimmermann, N. E., & Rixen, C. (2010). Changes in alpine plant growth under future climate conditions. Biogeosciences, 7(6), 2013-2024. https://doi.org/10.5194/bg-7-2013-2010

Read, D. J. (2003). Mycorrhizas and nutrient cycling in ecosystems - A journey towards. New Phytologist, 157, 475-492. https://doi.org/10.1046/j.1469-8137.2003.00704.x

Richardson, D. M., Allsopp, N., D'antonio, C. M., Milton, S. J., & Rejmánek, M. (2000). Plant invasions - The role of mutualisms. Biological Reviews, 75(1), 65-93. https://doi.org/10.1111/j.1469-185X.1999.tb00041.x

Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4, e2584. https://doi.org/10.7717/peerj.2584

Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., … Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4(10), 1340-1351. https://doi.org/10.1038/ismej.2010.58

Rousk, K., Michelsen, A., & Rousk, J. (2016). Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments. Global Change Biology, 22(12), 4150-4161. https://doi.org/10.1111/gcb.13296

Rundqvist, S., Hedenås, H., Sandström, A., Emanuelsson, U., Eriksson, H., Jonasson, C., & Callaghan, T. V. (2011). Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden. Ambio, 40(6), 683-692. https://doi.org/10.1007/s13280-011-0174-0

Santonja, M., Rancon, A., Fromin, N., Baldy, V., Hättenschwiler, S., Fernandez, C., … Mirleau, P. (2017). Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland. Soil Biology and Biochemistry, 111, 124-134. https://doi.org/10.1016/j.soilbio.2017.04.006

Schimel, J. P., & Bennett, J. (2004). Nitrogen mineralization: Challenges of a changing paradigm. Ecology, 85, 591-602. https://doi.org/10.1890/03-8002

Schimel, J. P., Bilbrough, C., & Welker, J. M. (2004). Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biology and Biochemistry, 36(2), 217-227. https://doi.org/10.1016/j.soilbio.2003.09.008

Smith, S. E., & Read, D. J. (Eds.). (1997a). Genetic, cellular and molecular interactions in the establishment of VA mycorrhizas. In Mycorrhizal symbiosis (pp. 81-104). https://doi.org/10.1016/B978-012652840-4/50004-8

Smith, S. E., & Read, D. J. (Eds.). (1997b). Growth and carbon economy in ectomycorrhizal plants. In Mycorrhizal symbiosis (pp. 233-254). https://doi.org/10.1016/B978-012652840-4/50008-5

Smith, S. E., & Read, D. J. (Eds.). (1997c). Growth and carbon economy of VA mycorrhizal plants. In Mycorrhizal symbiosis (pp. 105-111). https://doi.org/10.1016/B978-012652840-4/50005-X

Soukupová, L., Kociánová, M., Jeník, J., & Sekyra, J. (1995). Arctic-alpine tundra in the Krkonoše, the Sudetes. Opera Corcontica, 32, 5-88.

Sturm, M., Schimell, J., Michaelson, G., Welker, J. M., Oberbauer, S. F., Liston, G. E., … Romanovsky, V. E. (2005). Winter biological processes could help convert arctic tundra to shrubland. BioScience, 55, 17. https://doi.org/10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2

Taylor, D. L., Walters, W. A., Lennon, N. J., Bochicchio, J., Krohn, A., Caporaso, J. G., & Pennanen, T. (2016). Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Applied and Environmental Microbiology, 82(24), 7217-7226. https://doi.org/10.1128/AEM.02576-16

Taylor, M. K., Lankau, R. A., & Wurzburger, N. (2016). Mycorrhizal associations of trees have different indirect effects on organic matter decomposition. Journal of Ecology, 104(6), 1576-1584. https://doi.org/10.1111/1365-2745.12629

Tedersoo, L., Bahram, M., Polme, S., Koljalg, U., Yorou, S., Wardle, D. A., & Lindahl, B. D. (2014). Disentangling global soil fungal diversity. Science, 346(6213), 1052-1053. https://doi.org/10.1126/science.aaa1185

Teste, F. P., Jones, M. D., & Dickie, I. A. (2019). Dual-mycorrhizal plants: Their ecology and relevance. New Phytologist. https://doi.org/10.1111/nph.16190

Thomas, P. A., El-Bargathi, M., & Polwart, A. (2007). Biological flora of the British isles: Juniperus communis L. Journal of Ecology, 95(248), 1404-1440. https://doi.org/10.1111/j.1365-2745.2007.01308.x

Tomiolo, S., & Ward, D. (2018). Species migrations and range shifts: A synthesis of causes and consequences. Perspectives in Plant Ecology, Evolution and Systematics, 33(July), 62-77. https://doi.org/10.1016/j.ppees.2018.06.001

Urbina, I., Grau, O., Sardans, J., Ninot, J. M., & Peñuelas, J. (2020). Encroachment of shrubs into subalpine grasslands in the Pyrenees changes the plant-soil stoichiometry spectrum. Plant and Soil, 448(1-2), 37-53. https://doi.org/10.1007/s11104-019-04420-3

van Buuren, S., & Groothuis-oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3).

van der Heijden, M. G. A., Bardgett, R. D., & van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296-310. https://doi.org/10.1111/j.1461-0248.2007.01139.x

Walker, M. D., Wahren, C. H., Hollister, R. D., Henry, G. H. R., Ahlquist, L. E., Alatalo, J. M., … Wookey, P. A. (2006). Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1342-1346. https://doi.org/10.1073/pnas.0503198103

Wallenstein, M. D., McMahon, S., & Schimel, J. (2007). Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiology Ecology, 59(2), 428-435. https://doi.org/10.1111/j.1574-6941.2006.00260.x

Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., … Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389-395. https://doi.org/10.1038/416389a

Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304(5677), 1629-1633. https://doi.org/10.1126/science.1094875

Weintraub, M. N., & Schimel, J. P. (2005). Nitrogen cycling and the spread of shrubs control changes in the carbon balance of Arctic tundra ecosystems. BioScience, 55(5), 408. https://doi.org/10.1641/0006-3568(2005)055[0408:NCATSO]2.0.CO;2

Wilson, S. D., & Nilsson, C. (2009). Arctic alpine vegetation change over 20 years. Global Change Biology, 15(7), 1676-1684. https://doi.org/10.1111/j.1365-2486.2009.01896.x

Wookey, P. A., Aerts, R., Bardgett, R. D., Baptist, F., Bråthen, K. A., Cornelissen, J. H. C., … Shaver, G. R. (2009). Ecosystem feedbacks and cascade processes: Understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Global Change Biology, 15(5), 1153-1172. https://doi.org/10.1111/j.1365-2486.2008.01801.x

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., … Villar, R. (2004). The worldwide leaf economics spectrum. Science, 12, 821-827.

Xu, Q. F., Liang, C. F., Chen, J. H., Li, Y. C., Qin, H., & Fuhrmann, J. J. (2020). Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes +. Global Ecology and Conservation, 21, e00787. https://doi.org/10.1016/j.gecco.2019.e00787

Yannarell, A. C., Menning, S. E., & Beck, A. M. (2014). Influence of shrub encroachment on the soil microbial community composition of remnant hill prairies. Microbial Ecology, 67(4), 897-906. https://doi.org/10.1007/s00248-014-0369-6

Zinger, L., Shahnavaz, B., Baptist, F., Geremia, R. A., & Choler, P. (2009). Microbial diversity in alpine tundra soils correlates with snow cover dynamics. The ISME Journal, 3(7), 850-859. https://doi.org/10.1038/ismej.2009.20

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bilberry Expansion in the Changing Subalpine Belt

. 2024 Sep 20 ; 13 (18) : . [epub] 20240920

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...