Evaluating Bacterial Viability in Faecal Microbiota Transplantation: A Comparative Analysis of In Vitro Cultivation and Membrane Integrity Methods
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
IN 00023001
Institute for Clinical and Experimental medicine - IKEM
Institutional Support of FNKV University Hospital
VAT No 0907206
Donatio Intensivistam Endowement fund
Cooperation Intensive Care Medicine Programme of Charles University
PubMed
39360586
PubMed Central
PMC11520942
DOI
10.1002/jcla.25105
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial viability, cultivation, faecal microbiota transplantation, membrane integrity,
- MeSH
- Bacteria izolace a purifikace MeSH
- feces * mikrobiologie MeSH
- fekální transplantace * metody MeSH
- lidé MeSH
- mikrobiální viabilita * MeSH
- myši MeSH
- průtoková cytometrie * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
BACKGROUND: Faecal microbiota transplantation (FMT) is a developing therapy for disorders related to gut dysbiosis. Despite its growing application, standardised protocols for FMT filtrate preparation and quality assessment remain undeveloped. The viability of bacteria in the filtrate is crucial for FMT's efficacy and for validating protocol execution. We compared two methods-in vitro cultivation and membrane integrity assessment-for their accuracy, reproducibility and clinical applicability in measuring bacterial viability in frozen FMT stool filtrate. METHODS: Bacterial viability in stool filtrate was evaluated using (i) membrane integrity through fluorescent DNA staining with SYTO9 and propidium iodide, followed by flow cytometry and (ii) culturable bacteria counts (colony-forming units, CFU) under aerobic or anaerobic conditions. RESULTS: Using different types of samples (pure bacterial culture, stool of germ-free and conventionally bred mice, native and heat-treated human stool), we refined the bacterial DNA staining protocol integrated with flow cytometry for assessment of bacterial viability in frozen human stool samples. Both the membrane integrity-based and cultivation-based methods exhibited significant variability in bacterial viability across different FMT filtrates, without correlation. The cultivation-based method showed a mean coefficient of variance of 30.3%, ranging from 7.4% to 60.1%. Conversely, the membrane integrity approach yielded more reproducible results, with a mean coefficient of variance for viable cells of 6.4% ranging from 0.2% to 18.2%. CONCLUSION: Bacterial viability assessment in stool filtrate using the membrane integrity method offers robust and precise data, making it a suitable option for faecal material evaluation in FMT. In contrast, the cultivation-dependent methods produce inconsistent outcomes.
Department of Microbiology Kralovske Vinohrady University Hospital Prague Czech Republic
The 3rd Faculty of Medicine Charles University Prague Czech Republic
Zobrazit více v PubMed
Ott S. J., Musfeldt M., Wenderoth D. F., et al., “Reduction in Diversity of the Colonic Mucosa Associated Bacterial Microflora in Patients With Active Inflammatory Bowel Disease,” Gut 53, no. 5 (2004): 685–693. PubMed PMC
Varga A., Makszin L., Bufa A., et al., “Efficacy of Lyophilised Bacteria‐Rich Faecal Sediment and Supernatant With Reduced Bacterial Count for Treating Patients With Clostridioides difficile Infection—A Novel Method for Capsule Faecal Microbiota Transfer,” Frontiers in Cellular and Infection Microbiology 13 (2023): 1041384. PubMed PMC
Thabit A. K., Alsolami M. H., Baghlaf N. A., et al., “Comparison of Three Current Clostridioides difficile Infection Guidelines: IDSA/SHEA, ESCMID, and ACG Guidelines,” Infection 47 (2019): 899–909. PubMed
Kelly C. R., Fischer M., Allegretti J. R., et al., “ACG Clinical Guidelines: Prevention, Diagnosis, and Treatment of Clostridioides difficile Infections,” American Journal of Gastroenterology 116, no. 6 (2021): 1124–1147. PubMed
Baunwall S. M., Terveer E. M., Dahlerup J. F., et al., “The use of Faecal Microbiota Transplantation (FMT) in Europe: A Europe‐Wide Survey,” Lancet Regional Health. Europe 9 (2021): 100181, 10.1016/j.lanepe.2021.100181. PubMed DOI PMC
Keller J. J., Ooijevaar R. E., Hvas C. L., et al., “A Standardised Model for Stool Banking for Faecal Microbiota Transplantation: A Consensus Report From a Multidisciplinary UEG Working Group,” United European Gastroenterology Journal 9, no. 2 (2021): 229–247. PubMed PMC
Wilson B. C., Vatanen T., Cutfield W. S., and O'Sullivan J. M., “The Super‐Donor Phenomenon in Fecal Microbiota Transplantation,” Frontiers in Cellular and Infection Microbiology 9 (2019): 00002. PubMed PMC
Baunwall S. M. D., Terveer E. M., Dahlerup J. F., et al., “The Use of Faecal Microbiota Transplantation (FMT) in Europe: A Europe‐Wide Survey,” Lancet Regional Health—Europe 9 (2021): 100181. PubMed PMC
ClinicalTrails , https://clinicaltrials.gov/search?cond=FMT&viewType=Table.
Allegretti J. R., Elliott R. J., Ladha A., et al., “Stool Processing Speed and Storage Duration Do Not Impact the Clinical Effectiveness of Fecal Microbiota Transplantation,” Gut Microbes 11 (2020): 1806–1808. PubMed PMC
Costello S. P., Conlon M. A., Vuaran M. S., Roberts‐Thomson I. C., and Andrews J. M., “Faecal Microbiota Transplant for Recurrent Clostridium difficile Infection Using Long‐Term Frozen Stool Is Effective: Clinical Efficacy and Bacterial Viability Data,” Alimentary Pharmacology & Therapeutics 42, no. 8 (2015): 1011–1018. PubMed
Bellali S., Lagier J. C., Raoult D., and Khalil J. B., “Among Live and Dead Bacteria, the Optimization of Sample Collection and Processing Remains Essential in Recovering Gut Microbiota Components,” Frontiers in Microbiology 10 (2019): 1606. PubMed PMC
Widjaja F. and Rietjens I. M. C. M., “From‐Toilet‐to‐Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes,” Biomedicine 11 (2023): 2658. PubMed PMC
Papanicolas L. E., Choo J. M., Wang Y., et al., “Bacterial Viability in Faecal Transplants: Which Bacteria Survive?,” EBioMedicine 1, no. 41 (2019): 509–516. PubMed PMC
Chu N. D., Smith M. B., Perrotta A. R., Kassam Z., and Alm E. J., “Profiling Living Bacteria Informs Preparation of Fecal Microbiota Transplantations,” PLoS One 12, no. 1 (2017): e0170922. PubMed PMC
Mullish B. H., Quraishi M. N., Segal J. P., et al., “The Use of Faecal Microbiota Transplant as Treatment for Recurrent or Refractory Clostridium difficile Infection and Other Potential Indications: Joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) Guidelines,” Gut 67, no. 11 (2018): 1920–1941. PubMed
Cammarota G., Ianiro G., Kelly C. R., et al., “International Consensus Conference on Stool Banking for Faecal Microbiota Transplantation in Clinical Practice,” Gut 68, no. 12 (2019): 2111–2121. PubMed PMC
Porcari S., Benech N., Valles‐Colomer M., et al., “Key Determinants of Success in Fecal Microbiota Transplantation: From Microbiome to Clinic,” Cell Host & Microbe 31 (2023): 712–733. PubMed
Singh A., Mahajan R., Kahlon B. K., et al., “Early Fecal Microbiome Transfer After Donor Defecation Determines Response in Patients With Moderate to Severe Ulcerative Colitis,” Indian Journal of Gastroenterology 41, no. 4 (2022): 389–396. PubMed
Řehořová V., Cibulková I., Soukupová H., and Duška F., “Multi‐Donor Fecal Microbial Transplantation for Critically Ill Patients: Rationale and Standard Operating Procedure,” (2021), www.preprints.org. PubMed PMC
Thermo Fisher Scientific , “LIVE/DEAD® BacLight™ Bacterial Viability Kits,” (2015), https://www.thermofisher.com/document‐connect/document‐connect.html?url=https://assets.thermofisher.com/TFS‐Assets%2FLSG%2Fmanuals%2Fmp07007.pdf.
Bilinski J., Dziurzynski M., Grzesiowski P., et al., “Multimodal Approach to Assessment of Fecal Microbiota Donors Based on Three Complementary Methods,” Journal of Clinical Medicine 9, no. 7 (2020): 1–17. PubMed PMC
Bilinski J., Dziurzynski M., Grzesiowski P., et al., “Fresh Versus Frozen Stool for Fecal Microbiota Transplantation—Assessment by Multimethod Approach Combining Culturing, Flow Cytometry, and Next‐Generation Sequencing,” Frontiers in Microbiology 13 (2022): 872735. PubMed PMC
McDonald L. C., Gerding D. N., Johnson S., et al., “Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA),” Clinical Infectious Diseases 66 (2018): e1–e48. PubMed PMC
Ramai D., Zakhia K., Fields P. J., et al., “Fecal Microbiota Transplantation (FMT) With Colonoscopy Is Superior to Enema and Nasogastric Tube While Comparable to Capsule for the Treatment of Recurrent Clostridioides Difficile Infection: A Systematic Review and Meta‐Analysis,” Digestive Diseases and Sciences 66 (2021): 369–380. PubMed
Ramai D., Zakhia K., Ofosu A., Ofori E., and Reddy M., “Fecal Microbiota Transplantation: Donor Relation, Fresh or Frozen, Delivery Methods, Cost‐Effectiveness,” Annals of Gastroenterology. Hellenic Society of Gastroenterology 32 (2019): 30–38. PubMed PMC
Lee C. H., Steiner T., Petrof E. O., et al., “Frozen Versus Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent Clostridium difficile Infection a Randomized Clinical Trial,” JAMA: Journal of the American Medical Association 315, no. 2 (2016): 142–149. PubMed
Jiang Z. D., Ajami N. J., Petrosino J. F., et al., “Randomised Clinical Trial: Faecal Microbiota Transplantation for Recurrent Clostridum Difficile Infection—Fresh, or Frozen, or Lyophilised Microbiota From a Small Pool of Healthy Donors Delivered by Colonoscopy,” Alimentary Pharmacology & Therapeutics 45, no. 7 (2017): 899–908. PubMed
Vigvári S., Sipos D., Solt J., et al., “Faecal Microbiota Transplantation for Clostridium difficile Infection Using a Lyophilized Inoculum From Non‐Related Donors: A Case Series Involving 19 Patients,” Acta Microbiologica et Immunologica Hungarica 66, no. 1 (2019): 69–78. PubMed
Cibulková I., Řehořová V., Hajer J., and Duška F., “Fecal Microbial Transplantation in Critically Ill Patients—Structured Review and Perspectives,” Biomolecules 11, no. 10 (2021): 1459. PubMed PMC
Vendrik K. E. W., Ooijevaar R. E., de Jong P. R. C., et al., “Fecal Microbiota Transplantation in Neurological Disorders,” Frontiers in Cellular and Infection Microbiology 10 (2020): 98. PubMed PMC
Xu F., Li N., Wang C., Xing H., Chen D., and Wei Y., “Clinical Efficacy of Fecal Microbiota Transplantation for Patients With Small Intestinal Bacterial Overgrowth: A Randomized, Placebo‐Controlled Clinic Study,” BMC Gastroenterology 21, no. 1 (2021): 54. PubMed PMC
Ott S. J., Waetzig G. H., Rehman A., et al., “Efficacy of Sterile Fecal Filtrate Transfer for Treating Patients With Clostridium difficile Infection,” Gastroenterology 152, no. 4 (2017): 799–811.e7. PubMed
Paramsothy S., Nielsen S., Kamm M. A., et al., “Specific Bacteria and Metabolites Associated With Response to Fecal Microbiota Transplantation in Patients With Ulcerative Colitis,” Gastroenterology 156, no. 5 (2019): 1440–1454.e2. PubMed
Segal J. P., Mullish B. H., Quraishi M. N., Iqbal T., Marchesi J. R., and Sokol H., “Mechanisms Underpinning the Efficacy of Faecal Microbiota Transplantation in Treating Gastrointestinal Disease,” Therapeutic Advances in Gastroenterology 13 (2020): 175628482094690. PubMed PMC
Vaughn B. P., Vatanen T., Allegretti J. R., et al., “Increased Intestinal Microbial Diversity Following Fecal Microbiota Transplant for Active Crohn's Disease,” Inflammatory Bowel Diseases 22, no. 9 (2016): 2182–2190. PubMed PMC
He R., Li P., Wang J., Cui B., Zhang F., and Zhao F., “The Interplay of Gut Microbiota Between Donors and Recipients Determines the Efficacy of Fecal Microbiota Transplantation,” Gut Microbes 14, no. 1 (2022): 2100197. PubMed PMC
Vermeire S., Joossens M., Verbeke K., et al., “Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease,” Journal of Crohn's & Colitis 10, no. 4 (2016): 387–394. PubMed PMC
Kump P., Wurm P., Gröchenig H. P., et al., “The Taxonomic Composition of the Donor Intestinal Microbiota Is a Major Factor Influencing the Efficacy of Faecal Microbiota Transplantation in Therapy Refractory Ulcerative Colitis,” Alimentary Pharmacology & Therapeutics 47, no. 1 (2018): 67–77. PubMed PMC
Rees N. P., Shaheen W., Quince C., et al., “Systematic Review of Donor and Recipient Predictive Biomarkers of Response to Faecal Microbiota Transplantation in Patients With Ulcerative Colitis,” EBioMedicine 81 (2022): 104088. PubMed PMC
Emerson J. B., Adams R. I., Román C. M. B., et al., “Schrödinger's Microbes: Tools for Distinguishing the Living From the Dead in Microbial Ecosystems,” Microbiome 5 (2017): 86. PubMed PMC
Apajalaht J. H. A., Kettunen A., Nurminen P. H., Jatila H., and Holben W. E., “Selective Plating Underestimates Abundance and Shows Differential Recovery of Bifidobacterial Species From Human Feces,” Applied and Environmental Microbiology 69, no. 9 (2003): 5731–5735. PubMed PMC
Ben‐Amor K., Heilig H., Smidt H., Vaughan E. E., Abee T., and De Vos W. M., “Genetic Diversity of Viable, Injured, and Dead Fecal Bacteria Assessed by Fluorescence‐Activated Cell Sorting and 16S RRNA Gene Analysis,” Applied and Environmental Microbiology 71, no. 8 (2005): 4679–4689. PubMed PMC
Fouhy F., Deane J., Rea M. C., et al., “The Effects of Freezing on Faecal Microbiota as Determined Using Miseq Sequencing and Culture‐Based Investigations,” PLoS One 10, no. 3 (2015): e0119355. PubMed PMC
Hammes F., Berney M., and Egli T., “Cultivation‐Independent Assessment of Bacterial Viability,” Advances in Biochemical Engineering/Biotechnology 124 (2011): 123–150. PubMed
Stewart E. J., “Growing Unculturable Bacteria,” Journal of Bacteriology 194 (2012): 4151–4160. PubMed PMC
Varga A., Kocsis B., Sipos D., et al., “How to Apply FMT More Effectively, Conveniently and Flexible—A Comparison of FMT Methods,” Frontiers in Cellular and Infection Microbiology 11 (2021): 657320. PubMed PMC
Adak A. and Khan M. R., “An Insight Into Gut Microbiota and Its Functionalities,” Cellular and Molecular Life Sciences 76 (2019): 473–493. PubMed PMC
Belotserkovsky I., Stabryla L. M., Hunter M., et al., “Standards for Fecal Microbiota Transplant: Tools and Therapeutic Advances,” Biologicals 86 (2024): 101758. PubMed
Stiefel P., Schmidt‐Emrich S., Maniura‐Weber K., and Ren Q., “Critical Aspects of Using Bacterial Cell Viability Assays With the Fluorophores SYTO9 and Propidium Iodide,” BMC Microbiology 15 (2015): 36. PubMed PMC
Stocks S. M., “Mechanism and Use of the Commercially Available Viability Stain,” Cytometry. Part A: Journal of the International Society for Analytical Cytology 61, no. 2 (2004): 189–195. PubMed
Berney M., Hammes F., Bosshard F., Weilenmann H. U., and Egli T., “Assessment and Interpretation of Bacterial Viability by Using the LIVE/DEAD BacLight Kit in Combination With Flow Cytometry,” Applied and Environmental Microbiology 73, no. 10 (2007): 3283–3290. PubMed PMC
Burz S. D., Abraham A. L., Fonseca F., et al., “A Guide for Ex Vivo Handling and Storage of Stool Samples Intended for Fecal Microbiota Transplantation,” Scientific Reports 9, no. 1 (2019): 8897. PubMed PMC
Galazzo G., van Best N., Benedikter B. J., et al., “How to Count Our Microbes? The Effect of Different Quantitative Microbiome Profiling Approaches,” Frontiers in Cellular and Infection Microbiology 10 (2020): 403. PubMed PMC
Shimizu H., Arai K., Asahara T., et al., “Stool Preparation Under Anaerobic Conditions Contributes to Retention of Obligate Anaerobes: Potential Improvement for Fecal Microbiota Transplantation,” BMC Microbiology 21, no. 1 (2021): 275. PubMed PMC
Bénard M. V., Arretxe I., Wortelboer K., et al., “Anaerobic Feces Processing for Fecal Microbiota Transplantation Improves Viability of Obligate Anaerobes,” Microorganisms 11, no. 9 (2023): 2238. PubMed PMC