European pollen reanalysis, 1980-2022, for alder, birch, and olive
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, dataset
Grantová podpora
101086109
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
101057131
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
101060784
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
101086109
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
318194
Academy of Finland (Suomen Akatemia)
355851
Academy of Finland (Suomen Akatemia)
329215
Academy of Finland (Suomen Akatemia)
MK252
Ministry of Education and Science, Republic of Latvia
PubMed
39362896
PubMed Central
PMC11450224
DOI
10.1038/s41597-024-03686-2
PII: 10.1038/s41597-024-03686-2
Knihovny.cz E-zdroje
- MeSH
- alergeny MeSH
- bříza * MeSH
- monitorování životního prostředí MeSH
- Olea * MeSH
- olše * MeSH
- pyl * MeSH
- roční období * MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- alergeny MeSH
The dataset presents a 43 year-long reanalysis of pollen seasons for three major allergenic genera of trees in Europe: alder (Alnus), birch (Betula), and olive (Olea). Driven by the meteorological reanalysis ERA5, the atmospheric composition model SILAM predicted the flowering period and calculated the Europe-wide dispersion pattern of pollen for the years 1980-2022. The model applied an extended 4-dimensional variational data assimilation of in-situ observations of aerobiological networks in 34 European countries to reproduce the inter-annual variability and trends of pollen production and distribution. The control variable of the assimilation procedure was the total pollen release during each flowering season, implemented as an annual correction factor to the mean pollen production. The dataset was designed as an input to studies on climate-induced and anthropogenically driven changes in the European vegetation, biodiversity monitoring, bioaerosol modelling and assessment, as well as, in combination with intra-seasonal observations, for health-related applications.
Aeroallergen Monitoring Centre AMoC Department of Immunology and Allergy Allergy Poland
Allergen Research Center Warsaw Poland
Allergology Research Laboratory Colentina Clinical Hospital București Romania
Andalusian Institute for Earth System Research University of Granada Granada Spain
Biodiversity and Environmental Management University of León León Spain
Biodiversity Unit University of Turku Turku Finland
Center of Allergy and Environment Technical University and Helmholtz Center Munich Munich Germany
Center of Allergy and Immunology Tbilisi Georgia
Clinical Department 5 Carol Davila University of Medicine Bucharest Romania
College of Natural Sciences University of Rzeszow Rzeszow Poland
Czech Hydrometeorological Institute Prague Czech Republic
Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
Department of Biology Animal Plant Biology and Ecology University of Jaén Jaén Spain
Department of Biology NTNU Trondheim Norway
Department of Botany and Plant Physiology University of Malaga Malaga Spain
Department of Botany University of Granada Granada Spain
Department of Otorhinolaryngology Medical University of Vienna Vienna Austria
Department of Pharmacy National Pirogov Memorial Medical University Vinnytsia Ukraine
Department of Pulmonology Leiden University Medical Center Leiden the Netherlands
Elkerliek Helmond Helmond Netherlands
Estonian Environmental research Institute Tartu Estonia
Faculty of Biology Moscow State University Moscow Russia
Faculty of Biology Shenzhen MSU BIT University Shenzhen China
Federal Office of Meteorology and Climatology MeteoSwiss Zurich Switzerland
Finnish Meteorological Institute Helsinki Finland
French Aerobiological Monitoring Network Brussieu France
Health air quality and UK pollen forecasting UK Met Office Exeter UK
HUS Helsingin yliopistollinen sairaala Jyväskylä Finland
Icelandic Institute of Natural History Akureyri Iceland
Institut de Ciència i Tecnologia Ambientals Universitat Autònoma de Barcelona Bellaterra Spain
Institute of Atmospheric Sciences and Climate CNR Bologna Italy
Institute of Biology College of Natural Sciences University of Rzeszow Rzeszow Poland
Inter University Institute for Earth System Research University of Cordoba Cordoba Spain
Laboratory of Aerobiology at Teaching Institute of Public Health dr Andrija Štampar Zagreb Croatia
Masaryk University Brno Czech Republic
Medical University of Lodz Lodz Poland
Mycology and Aerobiology Sciensano Brussels Belgium
National Center for Public Health and Pharmacy Budapest Hungary
National Laboratory of Health Environment and Food Maribor Slovenia
Palynological Laboratory Swedish Museum of Natural History Stockholm Sweden
Regional Public Health Office department of medical microbiology bratislava Slovakia
Retired from Faculty of Pharmacy of the Belarusian State Medical University Minsk Belarus
Sciences Faculty University of Vigo Ourense 32002 Spain
Serbian Environmental Protection Agency Belgrade Serbia
South Karelia Allergy and Environment Institute Imatra Finland
Stiftelsen NILU Stiftelsen Norwegian Institute for Air Research Kjeller Norway
The Asthma and Allergy Association Roskilde Denmark
Unit of Immunology Allergology Centre Hospitalier de Luxembourg Luxembourg
University Hospital Brno Brno Czech Republic
University Institute of research in Olive Groves and Olive Oils University of Jaén Jaén Spain
University of Castilla La Mancha Institute of Environmental Sciences Toledo Spain
University of Innsbruck Department of Botany Innsbruck Austria
University of Latvia Riga Latvia
University of Navarra Biodiversity and Environment Institute Pamplona Spain
University of Worcester School of Science and Environment Worcester UK
Vilnius University Siauliai Academy Siauliai Lithuania
Zabludovicz Center for Autoimmune Diseases Sheba Medical Center Ramat Gan Israel
Zobrazit více v PubMed
D’Amato, G. et al. Thunderstorm allergy and asthma: state of the art. Multidis Res Med16 (2021). PubMed PMC
D’Amato, G. et al. Allergenic pollen and pollen allergy in Europe. Allergy 976–990, 10.1111/j.1398-9995.2007.01393.x (2007). PubMed
de Weger, L. et al. Impact of pollen. in Allergenic pollen. A review of the production, release, distribution and health impacts (eds. Sofiev, M. & Bergmann, K.-C. x + 247, 10.1007/978-94007-4881-1 (Springer Netherlands, Dordrecht, 2013).
Allergenic Pollen. A Review of Production, Release, Distribution and Health Impact. (Springer-Verlag Berlin, Heidelberg, 2013).
Beggs, P. J. Thunderstorm Asthma and Climate Change. JAMA331, 878 (2024). PubMed
WHO. Phenology and Human Health: Allergic Disorders. 55 (2003).
Dahl, R., Andersen, P. S., Chivato, T., Valovirta, E. & De Monchy, J. National prevalence of respiratory allergic disorders. Respiratory Medicine98, 398–403 (2004). PubMed
Pawankar, R., Canonica, G. W., Holgate, S. T., Lockey, R. F. & Blasis, M. S. WAO White Book on Allergy: Update 2013. (World Allergy Organization, Milwaukee, Wisconsin, USA, 2013).
Savouré, M. et al. Worldwide prevalence of rhinitis in adults: A review of definitions and temporal evolution. Clinical & Translational All12 (2022). PubMed PMC
Thien, F. et al. The Melbourne epidemic thunderstorm asthma event 2016: an investigation of environmental triggers, effect on health services, and patient risk factors. The Lancet Planetary Health2, e255–e263 (2018). PubMed
Strachan, D. P. Hay fever, hygiene, and household size. BMJ299, 1259–1260 (1989). PubMed PMC
Van Tilburg Bernardes, E. & Arrieta, M.-C. Hygiene Hypothesis in Asthma Development: Is Hygiene to Blame? Archives of Medical Research48, 717–726 (2017). PubMed
Akdis, C. A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol21, 739–751 (2021). PubMed
Idrose, N. S. et al. A Review of the Respiratory Health Burden Attributable to Short-Term Exposure to Pollen. IJERPH19, 7541 (2022). PubMed PMC
Jaakkola, J. J. K. et al. Airborne pollen concentrations and daily mortality from respiratory and cardiovascular causes. European Journal of Public Health31, 722–724 (2021). PubMed PMC
Littlefair, J. E. et al. Air-quality networks collect environmental DNA with the potential to measure biodiversity at continental scales. Current Biology33, R426–R428 (2023). PubMed
Smith, M. et al. Geographic and temporal variations in pollen exposure across Europe. Allergy69, 913–23 (2014). PubMed
Ziska, L. H. et al. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: a retrospective data analysis. The Lancet Planetary Health3, e124–e131 (2019). PubMed
Valipour Shokouhi, B., De Hoogh, K., Gehrig, R. & Eeftens, M. Estimation of historical daily airborne pollen concentrations across Switzerland using a spatio temporal random forest model. Science of The Total Environment906, 167286 (2024). PubMed
Sofiev, M. On impact of transport conditions on variability of the seasonal pollen index. Aerobiologia33, 167–179 (2016). PubMed PMC
Bocquet, M. et al. Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models. Atmospheric Chemistry and Physics15 (2015).
Elbern, H., Strunk, A., Schmidt, H. & Talagrand, O. Emission rate and chemical state estimation by 4-dimensional variational inversion. Atmospheric Chemistry and Physics7, 3749–3769 (2007).
Elbern, H., Schmidt, H., Talagrand, O. & Ebel, A. 4D-variational data assimilation with an adjoint air quality model for emission analysis. Environmental Modelling & Software15, 539–548 (2000).
Gaubert, B. et al. Regional scale ozone data assimilation using an ensemble Kalman filter and the CHIMERE chemical transport model. Geoscience Model Development7, 283–302 (2014).
Schwinger, J. & Elbern, H. Chemical state estimation for the middle atmosphere by four-dimensional variational data assimilation: A posteriori validation of error statistics in observation space. Journal of Geophysical Research115 (2010).
Vira, J., Carboni, E., Grainger, R. G. & Sofiev, M. Variational assimilation of IASI SO2 plume height and total column retrievals in the 2010 eruption of Eyjafjallajökull using the SILAM v5.3 chemistry transport model. Geoscientific Model Development10 (2017).
Vira, J. & Sofiev, M. On variational data assimilation for estimating the model initial conditions and emission fluxes for short-term forecasting of SOx concentrations. Atmospheric Environment46, 318–328 (2012).
Sofiev, M. On possibilities of assimilation of near-real-time pollen data by atmospheric composition models. Aerobiologia1 (2019).
Gurney, K. R. et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature415, 626–630 (2002). PubMed
Nathan, B. J. et al. Source Sector Attribution of CO 2 Emissions Using an Urban CO/CO 2 Bayesian Inversion System. JGR Atmospheres123 (2018).
Super, I., Dellaert, S. N. C., Visschedijk, A. J. H. & van der Gon, H. A. C. D. Uncertainty analysis of a European high-resolution emission inventory of CO2 and CO to support inverse modelling and network design. Atmos. Chem. Phys.20, 1795–1816 (2020).
Tans, P. P., Fung, I. Y. & Takahashi, T. Observational Contrains on the Global Atmospheric Co 2 Budget. Science247, 1431–1438 (1990). PubMed
Chandra, N. et al. Estimated regional CO 2 flux and uncertainty based on an ensemble of atmospheric CO 2 inversions. Atmos. Chem. Phys.22, 9215–9243 (2022).
Lian, J. et al. Can we use atmospheric CO 2 measurements to verify emission trends reported by cities? Lessons from a 6-year atmospheric inversion over Paris. Atmos. Chem. Phys.23, 8823–8835 (2023).
Nalini, K. et al. High‐Resolution Lagrangian Inverse Modeling of CO 2 Emissions Over the Paris Region During the First 2020 Lockdown Period. JGR Atmospheres127, e2021JD036032 (2022).
Pauling, A., Clot, B., Menzel, A. & Jung, S. Pollen forecasts in complex topography: two case studies from the Alps using the numerical pollen forecast model COSMO-ART. Aerobiologia36, 25–30 (2020).
Siljamo, P. et al. A numerical model of birch pollen emission and dispersion in the atmosphere. Model evaluation and sensitivity analysis. International journal of biometeorologye-pub (2012). PubMed PMC
Sofiev, M. et al. Multi-model ensemble simulations of olive pollen distribution in Europe in 2014. Atmospheric Chemistry and Physics Discussions 1–32, 10.5194/acp-2016-1189 (2017).
Sofiev, M. et al. A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. International journal of biometeorology57, 54–58 (2012). PubMed PMC
Zink, K. et al. EMPOL 1. 0: a new parameterization of pollen emission in numerical weather prediction models. Geoscience Model Development6, 1961–1975 (2013).
Linkosalo, T. et al. A double-threshold temperature sum model for predicting the flowering duration and relative intensity of Betula pendula and B. pubescens. Agricultural and Forest Meteorology150 (2010).
Sofiev, M., Siljamo, P., Ranta, H. & Rantio-Lehtim?ki, A. Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology50 (2006). PubMed
Galán, C. et al. Recommended terminology for aerobiological studies. Aerobiologia33, 293–295 (2017).
Ritenberga, O. et al. A statistical model for predicting the inter-annual variability of birch pollen abundance in Northern and North-Eastern Europe. Science of total environment615, in press (2017). PubMed
Rojo, J. et al. Effects of future climate change on birch abundance and their pollen load. Global Change Biology27, 5934–5949 (2021). PubMed
Adamov, S. & Pauling, A. A real-time calibration method for the numerical pollen forecast model COSMO-ART. Aerobiologia39, 327–344 (2023).
Sofiev, M. et al. Construction of an Eulerian atmospheric dispersion model based on the advection algorithm of M. Galperin: dynamic cores v.4 and 5 of SILAM v.5.5. Geoscientific Model Development8, 3497–3522 (2015).
Hersbach, H. et al. The ERA5 global reanalysis. Q.J.R. Meteorol. Soc.146, 1999–2049 (2020).
Kouznetsov, R., Sofiev, M., Vira, J. & Stiller, G. Simulating age of air and the distribution of SF6 in the stratosphere with the SILAM model. Atmos. Chem. Phys.20, 5837–5859 (2020).
Sofiev, M., Genikhovich, E., Keronen, P. & Vesala, T. Diagnosing the Surface Layer Parameters for Dispersion Models within the Meteorological-to-Dispersion Modeling Interface. Journal of Applied Meteorology and Climatology49, 221–233 (2010).
de Rigo, D., Caudullo, G., Houston Durrant, T. & San-Miguel-Ayanz, J. The European Atlas of Forest Tree Species: Modelling, Data and Information on Forest Tree Species. e01aa69+, https://w3id.org/mtv/FISE-Comm/v01/e01aa69 (2016).
Champeaux, J. L., Masson, V. & Chauvin, F. ECOCLIMAP: a global database of land surface parameters at I km resolution. Meteorological Applications 29–32 (2005).
Prank, M. et al. An operational model for forecasting ragweed pollen release and dispersion in Europe. Agricultural and Forest Meteorology182–183, 43–53 (2013).
Hirst, J. M. An automatic volumetric spore trap. Annals of Applied Biology39, 257–265 (1952).
Jäger, S. et al. News. Aerobiologia11, 69–70 (1995).
Galán, C. et al. Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia30, 385–395 (2014).
CEN. Ambient Air - Sampling and Analysis of Airborne Pollen Grains and Fungal Spores for Networks Related to Allergy—Volumetric Hirst Method, 2019. (2019).
Adamov, S. et al. On the measurement uncertainty of Hirst-type volumetric pollen and spore samplers. Aerobiologia10.1007/s10453-021-09724-5 (2021).
Oteros, J. et al. Errors in determining the flow rate of Hirst-type pollen traps. Aerobiologia33, 201–210 (2017).
Oteros, J. et al. Building an automatic pollen monitoring network (ePIN): Selection of optimal sites by clustering pollen stations. Science of The Total Environment688, 1263–1274 (2019). PubMed
Oteros, J. et al. Automatic and online pollen monitoring. International Archives of Allergy and Immunology167, 158–166 (2015). PubMed
Oteros, J. et al. An operational robotic pollen monitoring network based on automatic image recognition. Environmental Research191, 110031 (2020). PubMed
Maya-Manzano, J. M. et al. Towards European automatic bioaerosol monitoring: Comparison of 9 automatic pollen observational instruments with classic Hirst-type traps. Science of The Total Environment866, 161220 (2023). PubMed
Sofiev, M., Siljamo, P., Valkama, I., Ilvonen, M. & Kukkonen, J. A dispersion modelling system SILAM and its evaluation against ETEX data. Atmospheric Environment40, 674–685 (2006).
Meinander, O., Kontu, A., Kouznetsov, R. & Sofiev, M. Snow Samples Combined With Long-Range Transport Modeling to Reveal the Origin and Temporal Variability of Black Carbon in Seasonal Snow in Sodankylä (67°N). Frontiers in Earth Science8, 1–11 (2020).
Sofiev, M. et al. Bioaerosols in the atmosphere at two sites in Northern Europe in spring 2021: Outline of an experimental campaign. Environmental Research214, 113798 (2022). PubMed
Sofiev, M. et al. MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe. Atmospheric Chemistry and Physics15 (2015).
Kouznetsov, R. & Sofiev, M. A methodology for evaluation of vertical dispersion and dry deposition of atmospheric aerosols. Journal of Geophysical Research117 (2012).
Sofiev, M. Extended resistance analogy for construction of the vertical diffusion scheme for dispersion models. Journal of Geophysical Research-Atmospheres107, ACH 10-1-ACH 10-8 (2002).
Brasseur, G. P. et al. Ensemble forecasts of air quality in eastern China – Part 1: Model description and implementation of the MarcoPolo–Panda prediction system, version 1. Geosci. Model Dev.12, 33–67 (2019).
Huijnen, V. et al. Comparison of OMI NO2 tropospheric columns with an ensemble of global and European regional air quality models. Atmospheric Chemistry and Physics10, 3273–3296 (2010).
Petersen, A. K. et al. Ensemble forecasts of air quality in eastern China – Part 2: Evaluation of the MarcoPolo–Panda prediction system, version 1. Geosci. Model Dev.12, 1241–1266 (2019).
Sofiev, M., Kouznetsov, R., Hänninen, R. & Sofieva, V. F. Technical note: Intermittent reduction of the stratospheric ozone over northern Europe caused by a storm in the Atlantic Ocean. Atmos. Chem. Phys.20, 1839–1847 (2020).
Xian, P. et al. Current state of the global operational aerosol multi‐model ensemble: An update from the International Cooperative for Aerosol Prediction (ICAP). Q.J.R. Meteorol. Soc.145, 176–209 (2019). PubMed PMC
Siljamo, P., Ashbrook, K., Comont, R. F. & Skjøth, C. A. Do atmospheric events explain the arrival of an invasive ladybird (Harmonia axyridis) in the UK? PLoS ONE15, e0219335 (2020). PubMed PMC
Prank, M., Sofiev, M., Siljamo, P., Kauhaniemi, M. & European Aeroallergen Network. Increasing the Number of Allergenic Pollen Species in SILAM Forecasts. in Air Pollution Modeling and its Application XXIV, edited by D. G. Steyn and N. Chaumerliac 313–317 (Springer, 2016).
Tummon, F. et al. Towards standardisation of automatic pollen and fungal spore monitoring: best practises and guidelines. Aerobiologia10.1007/s10453-022-09755-6 (2022).
Hansen, P. C. Discrete Inverse Problems: Insight and Algorithms. 10.1137/1.9780898718836 (Society for Industrial and Applied Mathematics, 2010).
Hansen, P. C. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve. SIAM Rev.34, 561–580 (1992).
Sofiev, M. et al. European pollen reanalysis, 1980-2022, for alder, birch, and olive, v.1.1. Finnish Meteorological Institute 10.57707/FMI-B2SHARE.85841086F9DB46B882D750EAA9E42515 (2024).
Morgado, R. et al. Drivers of irrigated olive grove expansion in Mediterranean landscapes and associated biodiversity impacts. Landscape and Urban Planning225, 104429 (2022).
Veriankaitė, L., Siljamo, P., Sofiev, M., Sauliene, I. & Kukkonen, J. Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia26, 47–62 (2010).
Verstraeten, W. W. et al. Reconstructing multi-decadal airborne birch pollen levels based on NDVI data and a pollen transport model. Agricultural and Forest Meteorology320, 108942 (2022).
Verstraeten, W. W., Kouznetsov, R., Bruffaerts, N., Sofiev, M. & Delcloo, A. W. Assessing uncertainty in airborne birch pollen modelling. 10.1007/s10453-024-09818-w (2024).
Verstraeten, W. W. et al. Attributing long-term changes in airborne birch and grass pollen concentrations to climate change and vegetation dynamics. Atmospheric Environment298, 119643 (2023).
Sofiev, M., Palamarchuk, J., Kouznetsov, R., Gauss, M. & CAMS modelling teams. Annual Report on the Evaluation of the CAMS Regional Pollen Production (Daily Forecasts). January 2022-October 2022. 67, https://atmosphere.copernicus.eu/sites/default/files/custom-uploads/EQC-regional/Pollen/CAMS_pollen_eval_2022_v3.pdf (2024).
Sofiev, M. et al. Designing an automatic pollen monitoring network for direct usage of observations to reconstruct the concentration fields. Science of The Total Environment 165800, 10.1016/j.scitotenv.2023.165800 (2023). PubMed
Kouznetsov, R. Silam_v5_9 used for pollen reanalysis 2023. Zenodo10.5281/ZENODO.10351493 (2023).