New strategies to enhance antimicrobial photo-sonodynamic therapy based on nanosensitizers against bacterial infections

. 2025 Feb ; 70 (1) : 55-70. [epub] 20241005

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39367131
Odkazy

PubMed 39367131
DOI 10.1007/s12223-024-01206-8
PII: 10.1007/s12223-024-01206-8
Knihovny.cz E-zdroje

The rapid evolution and spread of multidrug resistance among bacterial pathogens has significantly outpaced the development of new antibiotics, underscoring the urgent need for alternative therapies. Antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy have emerged as promising treatments. Antimicrobial photodynamic therapy relies on the interaction between light and a photosensitizer to produce reactive oxygen species, which are highly cytotoxic to microorganisms, leading to their destruction without fostering resistance. Antimicrobial sonodynamic therapy, a novel variation, substitutes ultrasound for light to activate the sonosensitizers, expanding the therapeutic reach. To increase the efficiency of antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy, the combination of these two methods, known as antimicrobial photo-sonodynamic therapy, is currently being explored and considered a promising approach. Recent advances, particularly in the application of nanomaterials, have further enhanced the efficacy of these therapies. Nanosensitizers, due to their improved reactive oxygen species generation and targeted delivery, offer significant advantages in overcoming the limitations of conventional sensitizers. These breakthroughs provide new avenues for treating bacterial infections, especially multidrug-resistant strains and biofilm-associated infections. Continued research, including comprehensive clinical studies, is crucial to optimizing nanomaterial-based antimicrobial photo-sonodynamic therapy for clinical use, ensuring their effectiveness in real-world applications.

Zobrazit více v PubMed

Abrahamse H, Hamblin MR (2016) New photosensitizers for photodynamic therapy. Biochem J 473(4):347–364. https://doi.org/10.1042/BJ20150942 PubMed DOI

Alves F, Gomes Guimarães G, Mayumi Inada N, Pratavieira S, Salvador Bagnato V, Kurachi C (2021) Strategies to improve the antimicrobial efficacy of photodynamic, sonodynamic, and sonophotodynamic therapies. Lasers Surg Med 53(8):1113–1121. https://doi.org/10.1002/lsm.23383 PubMed DOI

Babu B, Mack J, Nyokong T (2020) Sn(IV) N-confused porphyrins as photosensitizer dyes for photodynamic therapy in the near IR region. Dalton Trans 49(43):15180–15183. https://doi.org/10.1039/d0dt03296d PubMed DOI

Chen M, Long Z, Dong R, Wang L, Zhang J, Li S, Zhao X, Hou X, Shao H, Jiang X (2020) Titanium incorporation into Zr-porphyrinic metal-organic frameworks with enhanced antibacterial activity against multidrug-resistant pathogens. Small 16(7):e1906240. https://doi.org/10.1002/smll.201906240 PubMed DOI

Chilakamarthi U, Giribabu L (2017) Photodynamic therapy: past, present and future. Chem Rec 17(8):775–802. https://doi.org/10.1002/tcr.201600121 PubMed DOI

Cieplik F, Deng D, Crielaard W, Buchalla W, Hellwig E, Al-Ahmad A, Maisch T (2018) Antimicrobial photodynamic therapy - what we know and what we don’t. Crit Rev Microbiol 44(5):571–589. https://doi.org/10.1080/1040841X.2018.1467876 PubMed DOI

Dascalu Rusu LM, Moldovan M, Prodan D, Ciotlaus I, Popescu V, Baldea I, Carpa R, Sava S, Chifor R, Badea ME (2020) Assessment and characterization of some new photosensitizers for antimicrobial photodynamic therapy (aPDT). Materials (Basel) 13(13):3012. https://doi.org/10.3390/ma13133012 PubMed DOI

Demidova TN, Hamblin MR (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 49(6):2329–35. https://doi.org/10.1128/AAC.49.6.2329-2335.2005 PubMed DOI PMC

Dharmaraja AT (2017) Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem 60(8):3221–3240. https://doi.org/10.1021/acs.jmedchem.6b01243 PubMed DOI

Fan L, Idris Muhammad A, Bilyaminu Ismail B, Liu D (2021) Sonodynamic antimicrobial chemotherapy: an emerging alternative strategy for microbial inactivation. Ultrason Sonochem 75:105591. https://doi.org/10.1016/j.ultsonch.2021.105591 PubMed DOI PMC

Franco TPM, Dos Santos APP, Canabarro A (2019) The effects of repeated applications of antimicrobial photodynamic therapy in the treatment of residual periodontal pockets: a systematic review. Lasers Med Sci 34(5):855–863. https://doi.org/10.1007/s10103-018-02703-2 PubMed DOI

Frickmann H, Hahn A, Berlec S, Ulrich J, Jansson M, Schwarz NG, Warnke P, Podbielski A (2019) On the etiological relevance of Escherichia coli and Staphylococcus aureus in superficial and deep infections - a hypothesis-forming, retrospective assessment. Eur J Microbiol Immunol (Bp) 9(4):124–130. https://doi.org/10.1556/1886.2019.00021 PubMed DOI

Gao Y, Lin H, Luo Y, Li J, Gong C, Chen H, Gong R (2023) Nanomaterial-based photodynamic therapy for antibacterial applications: a comprehensive review. Front Mater Sci 10:1260887. https://doi.org/10.3389/fmats.2023.1260887 DOI

Geng X, Chen Y, Chen Z, Wei X, Dai Y, Yuan Z (2022) Oxygen-carrying biomimetic nanoplatform for sonodynamic killing of bacteria and treatment of infection diseases. Ultrason Sonochem 84:105972. https://doi.org/10.1016/j.ultsonch.2022.105972 PubMed DOI PMC

Ghate VS, Zhou W, Yuk HG (2019) Perspectives and trends in the application of photodynamic inactivation for microbiological food safety. Compr Rev Food Sci Food Saf 18(2):402–424. https://doi.org/10.1111/1541-4337.12418 PubMed DOI

Gholami L, Shahabi S, Jazaeri M, Hadilou M, Fekrazad R (2023) Clinical applications of antimicrobial photodynamic therapy in dentistry. Front Microbiol 13:1020995. https://doi.org/10.3389/fmicb.2022.1020995 PubMed DOI PMC

Ghorbani J, Rahban D, Aghamiri S, Teymouri A, Bahador A (2018) Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Ther 27(4):293–302. https://doi.org/10.5978/islsm.27_18-RA-01 PubMed DOI PMC

Glowacka-Sobotta AA, Ziental BD, Sobotta CL (2021) Porphyrinoids used for photodynamic inactivation against bacteria. J Porphyr Phthalocyanines 352–404. https://doi.org/10.1039/9781839164149-00352

Goodarzi NN, Fereshteh S, Sabzi S, Shahbazi S, Badmasti F (2021) Construction of a chimeric FliC including epitopes of OmpA and OmpK36 as a multi-epitope vaccine against Klebsiella pneumonia. Heath biotechnol biopharma 5:44–60. https://doi.org/10.22034/HBB.2020.2 DOI

Gualdesi MS, Vara J, Aiassa V, Igarzabal CA, Ortiz CS (2021) New poly (acrylamide) nanoparticles in the development of third generation photosensitizers. Dyes Pigm 184:108856. https://doi.org/10.1016/j.dyepig.2020.108856 DOI

Guo J, Xu Y, Liu M, Yu J, Yang H, Lei W, Huang C (2021) An MSN-based synergistic nanoplatform for root canal biofilm eradication via fenton-enhanced sonodynamic therapy. J Mater Chem 9(37):7686–7697. https://doi.org/10.1039/d1tb01031j DOI

Guo K, Zhang M, Cai J, Ma Z, Fang Z, Zhou H, Chen J, Gao M, Wang L (2022) Peptide-engineered AIE nanofibers with excellent and precisely adjustable antibacterial activity. Small 18(17):e2108030. https://doi.org/10.1002/smll.202108030 PubMed DOI

Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3(5):436–450. https://doi.org/10.1039/b311900a PubMed DOI PMC

Harvey EN, Loomis AL (1929) The destruction of luminous bacteria by high frequency sound waves. J Bacteriol 17(5):373–376. https://doi.org/10.1128/jb.17.5.373-376.1929 PubMed DOI PMC

He QT, Qian P, Yang XY, Kuang Q, Lin YT, Yi W, Tian T, Cai YP, Hong XJ (2024) Rational design of bacteria-targeted and photo-responsive MOF gel with antibacterial and anti-inflammatory function for infected wound healing. Chem Eng J 493:152760. https://doi.org/10.1016/j.cej.2024.152760 DOI

Hu H, Zhao J, Ma K, Wang J, Wang X, Mao T, Xiang C, Luo H, Cheng Y, Yu M, Qin Y, Yang K, Li Q, Sun Y, Wang S (2023) Sonodynamic therapy combined with phototherapy: novel synergistic strategy with superior efficacy for antitumor and antiinfection therapy. J Control Release 359:188–205. https://doi.org/10.1016/j.jconrel.2023.05.041 PubMed DOI

Huang B, Wang L, Tang K, Chen S, Xu Y, Liao H, Niu C (2022) IR780 based sonotherapeutic nanoparticles to combat multidrug-resistant bacterial infections. Front Chem 10:840598. https://doi.org/10.3389/fchem.2022.840598 PubMed DOI PMC

Huang L, Xuan Y, Koide Y, Zhiyentayev T, Tanaka M, Hamblin MR (2012) Type I and type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria. Lasers Surg Med 44(6):490–499. https://doi.org/10.1002/lsm.22045 PubMed DOI PMC

Jiang Z, Xiao W, Fu Q (2023) Stimuli responsive nanosonosensitizers for sonodynamic therapy. J Control Release 361:547–567. https://doi.org/10.1016/j.jconrel.2023.08.003 PubMed DOI

Katete RS, Kalonga G, Ganashi M, Silavwe N, Mwenya R (2022) Photodynamic therapy for the diagnosis and treatment of cancer. Adv Biochem 10(3):81–93. https://doi.org/10.11648/j.ab.20221003.11 DOI

Kesharwani P (2023) Nanomaterials for photodynamic therapy. Woodhead Publishing. https://doi.org/10.1016/C2020-0-02259-0 DOI

Krumova K, Cosa G (2016) Overview of reactive oxygen species 1–21. https://doi.org/10.1039/9781782622208-00001

Lan M, Zhao S, Liu W, Lee CS, Zhang W, Wang P (2019) Photosensitizers for photodynamic therapy. Adv Healthc 8(13):1900132. https://doi.org/10.1002/adhm.201900132 DOI

Li Y, Xiu W, Yang K, Wen Q, Yuwen L, Luo Z, Liu X, Yang D, Xie X, Wang L (2021) A multifunctional fenton nanoagent for microenvironment-selective anti-biofilm and anti-inflammatory therapy. Mater Horiz 8(4):1264–1271. https://doi.org/10.1039/d0mh01921f PubMed DOI

Liu H, Jiang Y, Wang Z, Zhao L, Yin Q, Liu M (2022) Nanomaterials as carriers to improve the photodynamic antibacterial therapy. Front Chem 10:1044627. https://doi.org/10.3389/fchem.2022.1044627 PubMed DOI PMC

Liu Y, Qin R, Zaat SAJ, Breukink E, Heger M (2015) Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. J Clin Transl Res 1(3):140–167 PubMed PMC

Ma D, Green AM, Willsey GG, Marshall JS, Wargo MJ, Wu J (2015) Effects of acoustic streaming from moderate-intensity pulsed ultrasound for enhancing biofilm mitigation effectiveness of drug-loaded liposomes. J Acoust Soc Am 138(2):1043–1051. https://doi.org/10.1121/1.4927413 PubMed DOI

Mahmoudi H, Bahador A, Pourhajibagher M, Alikhani MY (2018) Antimicrobial photodynamic therapy: an effective alternative approach to control bacterial infections. J Lasers Med Sci 9(3):154–160. https://doi.org/10.15171/jlms.2018.29 PubMed DOI PMC

Maisch T (2015) Resistance in antimicrobial photodynamic inactivation of bacteria. Photochem Photobiol Sci 14:1518–1526. https://doi.org/10.1039/c5pp00037h PubMed DOI

Mao C, Xiang Y, Liu X, Cui Z, Yang X, Li Z, Zhu S, Zheng Y, Yeung KWK, Wu S (2018) Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS Nano 12(2):1747–1759. https://doi.org/10.1021/acsnano.7b08500 PubMed DOI

McHale AP, Callan JF, Nomikou N, Fowley C, Callan B (2016) Sonodynamic therapy: concept, mechanism and application to cancer treatment. Adv Exp Med Biol 880:429–450. https://doi.org/10.1007/978-3-319-22536-4_22 PubMed DOI

Miao Y, Zhang X, Li J, Yang W, Huang X, Lv J (2022) Preparation and photodynamic antibacterial/anticancer effects of ultralong-lifetime room-temperature phosphorescent N-doped carbon dots. RSC Adv 12(32):20481–20491. https://doi.org/10.1039/d2ra02251f PubMed DOI PMC

O'Neill J (2016) Tackling drug-resistant infections globally: final report and recommendations. London review on antimicrobial resistance. Chaired by Jim O’Neill; Wellcome Trust; HM Government: London, UK.

Pang X, Li D, Zhu J, Cheng J, Liu G (2020) Beyond antibiotics: photo/sonodynamic approaches for bacterial theranostics. Nanomicro Lett 12(1):144. https://doi.org/10.1007/s40820-020-00485-3 PubMed DOI PMC

Pang X, Liu X, Cheng Y, Zhang C, Ren E, Liu C, Zhang Y, Zhu J, Chen X, Liu G (2019) Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections. Adv Mater 31(35):e1902530. https://doi.org/10.1002/adma.201902530 PubMed DOI

Parvaei M, Habibi M, Shahbazi S, Babaluei M, Farokhi M, Asadi Karam MR (2024) Immunostimulatory chimeric protein encapsulated in gelatin nanoparticles elicits protective immunity against Pseudomonas aeruginosa respiratory tract infection. Int J Biol Macromol 277(Pt 1):133964. https://doi.org/10.1016/j.ijbiomac.2024.133964 PubMed DOI

Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K (2023) The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 52(5):1697–1722. https://doi.org/10.1039/d0cs01051k PubMed DOI

Polat E, Kang K (2021) Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines 9(6):584. https://doi.org/10.3390/biomedicines9060584 PubMed DOI PMC

Pourhajibagher M, Bahador A (2020) In vitro application of sonodynamic antimicrobial chemotherapy as a sonobactericidal therapeutic approach for bacterial infections: a systematic review and meta-analysis. Lasers Med Sci 11(Suppl 1):S1-7. https://doi.org/10.34172/jlms.2020.S1 DOI

Pourhajibagher M, Bahador A (2021a) Attenuation of Aggregatibacter actinomycetemcomitans virulence using curcumin-decorated nanophytosomes-mediated photo-sonoantimicrobial chemotherapy. Sci Rep 11(1):6012. https://doi.org/10.1038/s41598-021-85437-6 PubMed DOI PMC

Pourhajibagher M, Bahador A (2021b) Synergistic biocidal effects of metal oxide nanoparticles-assisted ultrasound irradiation: antimicrobial sonodynamic therapy against Streptococcus mutans biofilms. Photodiagnosis Photodyn Ther 35:102432. https://doi.org/10.1016/j.pdpdt.2021.102432 PubMed DOI

Pourhajibagher M, Chiniforush N, Shahabi S, Sobhani S, Monzavi MM, Monzavi A, Bahador A (2017) Monitoring gene expression of rcpA from Aggregatibacter actinomycetemcomitans versus antimicrobial photodynamic therapy by relative quantitative real-time PCR. Photodiagnosis Photodyn Ther 19:51–55. https://doi.org/10.1016/j.pdpdt.2017.04.011 PubMed DOI

Pourhajibagher M, Rahimi Esboei B, Hodjat M, Bahador A (2020a) Sonodynamic excitation of nanomicelle curcumin for eradication of Streptococcus mutans under sonodynamic antimicrobial chemotherapy: Enhanced anti-caries activity of nanomicelle curcumin. Photodiagnosis Photodyn Ther 30:101780. https://doi.org/10.1016/j.pdpdt.2020.101780 PubMed DOI

Pourhajibagher M, Pourakbari B, Bahador A (2022) Contribution of antimicrobial photo-sonodynamic therapy in wound healing: an in vivo effect of curcumin-nisin-based poly (L-lactic acid) nanoparticle on Acinetobacter baumannii biofilms. BMC Microbiol 22(1):28. https://doi.org/10.1186/s12866-022-02438-9 PubMed DOI PMC

Pourhajibagher M, Rahimi-Esboei B, Ahmadi H, Bahador A (2021) The anti-biofilm capability of nano-emodin-mediated sonodynamic therapy on multi-species biofilms produced by burn wound bacterial strains. Photodiagnosis Photodyn Ther 34:102288. https://doi.org/10.1016/j.pdpdt.2021.102288 PubMed DOI

Pourhajibagher M, Rokn AR, Barikani HR, Bahador A (2020b) Photo-sonodynamic antimicrobial chemotherapy via chitosan nanoparticles-indocyanine green against polymicrobial periopathogenic biofilms: ex vivo study on dental implants. Photodiagnosis Photodyn Ther 31:101834. https://doi.org/10.1016/j.pdpdt.2020.101834 PubMed DOI

Prazmo EJ, Godlewska RA, Mielczarek AB (2017) Effectiveness of repeated photodynamic therapy in the elimination of intracanal Enterococcus faecalis biofilm: an in vitro study. Lasers Med Sci 32(3):655–661. https://doi.org/10.1007/s10103-017-2164-3 PubMed DOI PMC

Rahimzadeh M, Shahbazi S, Sabzi S, Habibi M, Asadi Karam MR (2023) Antibiotic resistance and genetic diversity among Pseudomonas aeruginosa isolated from urinary tract infections in Iran. Future Microbiol 18:1171–1183. https://doi.org/10.2217/fmb-2023-0118 PubMed DOI

Romero MP, Marangoni VS, de Faria CG, Leite IS, Silva CCCE, Maroneze CM, Pereira-da-Silva MA, Bagnato VS, Inada NM (2020) Graphene oxide mediated broad-spectrum antibacterial based on bimodal action of photodynamic and photothermal effects. Front Microbiol 10:2995. https://doi.org/10.3389/fmicb.2019.02995 PubMed DOI PMC

Rosenthal I, Sostaric JZ, Riesz P (2004) Sonodynamic therapy–a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem 11(6):349–363. https://doi.org/10.1016/j.ultsonch.2004.03.004 PubMed DOI

Rout B, Liu CH, Wu WC (2017) Photosensitizer in lipid nanoparticle: a nano-scaled approach to antibacterial function. Sci Rep 7(1):7892. https://doi.org/10.1038/s41598-017-07444-w PubMed DOI PMC

Sabzi S, Habibi M, Badmasti F, Shahbazi S, Asadi Karam MR, Farokhi M (2024) Polydopamine-based nano adjuvant as a promising vaccine carrier induces significant immune responses against Acinetobacter baumannii-associated pneumonia. Int J Pharm 654:123961. https://doi.org/10.1016/j.ijpharm.2024.123961 PubMed DOI

Sabzi S, Shahbazi S, Noori Goodarzi N, Haririzadeh Jouriani F, Habibi M, Bolourchi N, Mirzaie A, Badmasti F (2023) Genome-wide subtraction analysis and reverse vaccinology to detect novel drug targets and potential vaccine candidates against Ehrlichia chaffeensis. Appl Biochem Biotechnol 195(1):107–124. https://doi.org/10.1007/s12010-022-04116-y PubMed DOI

Sen A, Imlay JA (2021) How microbes defend themselves from incoming hydrogen peroxide. Front Immunol 12:667343. https://doi.org/10.3389/fimmu.2021.667343 PubMed DOI PMC

Serpe L, Giuntini F (2015) Sonodynamic antimicrobial chemotherapy: first steps towards a sound approach for microbe inactivation. J Photochem Photobiol B 150:44–49. https://doi.org/10.1016/j.jphotobiol.2015.05.012 PubMed DOI

Shahbazi R, Alebouyeh M, Shahkolahi S, Shahbazi S, Hossainpour H, Salmanzadeh-Ahrabi S (2023a) Molecular study on virulence and resistance genes of ST131 clone (uropathogenic/enteropathogenic Escherichia coli) hybrids in children. Future Microbiol 18:1353–1361. https://doi.org/10.2217/fmb-2023-0142 PubMed DOI

Shahbazi S, Badmasti F, Habibi M, Sabzi S, NooriGoodarzi N, Farokhi M, AsadiKaram MR (2024) In silico and in vivo investigations of the immunoreactivity of Klebsiella pneumoniae OmpA protein as a vaccine candidate. Iran Biomed J 28(4):156–67. https://doi.org/10.61186/ibj.4023 PubMed DOI PMC

Shahbazi S, Habibi M, Badmasti F, Sabzi S, Farokhi M, Asadi Karam MR (2023b) Design and fabrication of a vaccine candidate based on rOmpA from Klebsiella pneumoniae encapsulated in silk fibroin-sodium alginate nanoparticles against pneumonia infection. Int Immunopharmacol 125(Pt B):111171. https://doi.org/10.1016/j.intimp.2023.111171 PubMed DOI

Shahbazi S, Sabzi S, Noori Goodarzi N, Fereshteh S, Bolourchi N, Mirzaie B, Badmasti F (2022) Identification of novel putative immunogenic targets and construction of a multi-epitope vaccine against multidrug-resistant Corynebacterium jeikeium using reverse vaccinology approach. Microb Pathog 164:105425. https://doi.org/10.1016/j.micpath.2022.105425 PubMed DOI

Shekhar S, Chauhan M, Sonali YB, Dutt R, Hu L, Muthu MS, Singh RP (2022) Enhanced permeability and retention effect-focused tumor-targeted nanomedicines: latest trends, obstacles and future perspective. Nanomedicine (Lond) 17(18):1213–1216. https://doi.org/10.2217/nnm-2022-0065 PubMed DOI

Shevchenko SN, Burkhardt M, Sheval EV, Natashina UA, Grosse C, Nikolaev AL, Gopin AV, Neugebauer U, Kudryavtsev AA, Sivakov V, Osminkina LA (2017) Antimicrobial effect of biocompatible silicon nanoparticles activated using therapeutic ultrasound. Langmuir 33(10):2603–2609. https://doi.org/10.1021/acs.langmuir.6b04303 PubMed DOI

Shitomi K, Miyaji H, Miyata S, Sugaya T, Ushijima N, Akasaka T, Kawasaki H (2020) Photodynamic inactivation of oral bacteria with silver nanoclusters/rose bengal nanocomposite. Photodiagnosis Photodyn Ther 30:101647. https://doi.org/10.1016/j.pdpdt.2019.101647 PubMed DOI

Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414. https://doi.org/10.1101/cshperspect.a000414 PubMed DOI PMC

Sobotta L, Ziental D, Sniechowska J, Dlugaszewska J, Potrzebowski MJ (2019) Lipid vesicle-loaded meso-substituted chlorins of high in vitro antimicrobial photodynamic activity. Photochem Photobiol Sci 18(1):213–223. https://doi.org/10.1039/c8pp00258d PubMed DOI

Sowa A, Voskuhl J (2020) Host-guest complexes - boosting the performance of photosensitizers. Int J Pharm 586:119595. https://doi.org/10.1016/j.ijpharm.2020.119595 PubMed DOI

Stolarska M, Glowacka-Sobotta A, Ziental D, Dlugaszewska J, Falkowski M, Goslinski T, Sobotta L (2021) Photochemical properties and promising activity against staphylococci of sulfanyl porphyrazines with dendrimeric moieties. Inorganica Chim Acta 521:120321. https://doi.org/10.1016/j.ica.2021.120321 DOI

Sun D, Pang X, Cheng Y, Ming J, Xiang S, Zhang C, Lv P, Chu C, Chen X, Liu G, Zheng N (2020) Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection. ACS Nano 14(2):2063–2076. https://doi.org/10.1021/acsnano.9b08667 PubMed DOI

Szeimies RM, Karrer S (2021) Photodynamische therapie-trends und neue entwicklungen [Photodynamic therapy-trends and new developments]. Hautarzt 72(1):27–33. German. https://doi.org/10.1007/s00105-020-04737-6

Szymczak J, Sobotta L, Dlugaszewska J, Kryjewski M, Mielcarek J (2021) Menthol modified zinc (II) phthalocyanine regioisomers and their photoinduced antimicrobial activity against Staphylococcus aureus. Dyes Pigm 193:109410. https://doi.org/10.1016/j.dyepig.2021.109410 DOI

Taati Moghadam M, Mirzaei M, Fazel Tehrani Moghaddam M, Babakhani S, Yeganeh O, Asgharzadeh S, Farahani HE, Shahbazi S (2021) The challenge of global emergence of novel colistin-resistant Escherichia coli ST131. Microb Drug Resist 27(11):1513–1524. https://doi.org/10.1089/mdr.2020.0505 PubMed DOI

Van Geel IP, Oppelaar H, Marijnissen JP, Stewart FA (1996) Influence of fractionation and fluence rate in photodynamic therapy with photofrin or mTHPC. Radiat Res 145(5):602–609. https://doi.org/10.2307/3579279 PubMed DOI

Wang N, Xu H, Sun S, Guo P, Wang Y, Qian C, Zhong Y, Yang D (2020) Wound therapy via a photo-responsively antibacterial nano-graphene quantum dots conjugate. J Photochem Photobiol B 210:111978. https://doi.org/10.1016/j.jphotobiol.2020.111978 PubMed DOI

Wang R, Liu Q, Gao A, Tang N, Zhang Q, Zhang A, Cui D (2022) Recent developments of sonodynamic therapy in antibacterial application. Nanoscale 14(36):12999–13017. https://doi.org/10.1039/d2nr01847k PubMed DOI

Wang R, Pan Q, Li F, Guo J, Huo Y, Xu C, Xiong M, Cheng Z, Liu M, Lin J (2023) Oxygen-carrying acid-responsive Cu/ZIF-8 for photodynamic antibacterial therapy against cariogenic Streptococcus mutans infection. Dalton Trans 52(44):16189–16196. https://doi.org/10.1039/d3dt02816j PubMed DOI

Wang Z, Zhao J (2017) Bodipy-anthracene dyads as triplet photosensitizers: effect of chromophore orientation on triplet-state formation efficiency and application in triplet-triplet annihilation upconversion. Org Lett 19(17):4492–4495. https://doi.org/10.1021/acs.orglett.7b02047 PubMed DOI

Wu Q, Peng R, Luo Y, Cui Q, Zhu S, Li L (2021) Antibacterial activity of porous gold nanocomposites via NIR light-triggered photothermal and photodynamic effects. ACS Appl Bio Mater 4(6):5071–5079. https://doi.org/10.1021/acsabm.1c00318 PubMed DOI

Xiao Q, Wu J, Pang X, Jiang Y, Wang P, Leung AW, Gao L, Jiang S, Xu C (2018) Discovery and development of natural products and their derivatives as photosensitizers for photodynamic therapy. Curr Med Chem 25(7):839–860. https://doi.org/10.2174/0929867324666170823143137 PubMed DOI

Xu F, Hu M, Liu C, Choi SK (2017) Yolk-structured multifunctional up-conversion nanoparticles for synergistic photodynamic-sonodynamic antibacterial resistance therapy. Biomater Sci 5(4):678–685. https://doi.org/10.1039/c7bm00030h PubMed DOI

Xu H, Zhang X, Han R, Yang P, Ma H, Song Y, Lu Z, Yin W, Wu X, Wang H (2016) Nanoparticles in sonodynamic therapy: state of the art review. RSC Adv 6(56):50697–50705. https://doi.org/10.1039/C6RA06862F DOI

Xu PY, Kumar Kankala R, Wang SB, Chen AZ (2023a) Sonodynamic therapy-based nanoplatforms for combating bacterial infections. Ultrason Sonochem 100:106617. https://doi.org/10.1016/j.ultsonch.2023.106617 PubMed DOI PMC

Xu Q, Xiu W, Li Q, Zhang Y, Li X, Ding M, Yang D, Mou Y, Dong H (2023b) Emerging nanosonosensitizers augment sonodynamic-mediated antimicrobial therapies. Mater Today Bio 19:100559. https://doi.org/10.1016/j.mtbio.2023.100559 PubMed DOI PMC

Xu Z, Wang T, Liu J (2022) Recent development of polydopamine anti-bacterial nanomaterials. Int J Mol Sci 23(13):7278. https://doi.org/10.3390/ijms23137278 PubMed DOI PMC

Yan C, Shao X, Shu Q, Teng Y, Qiao Y, Guan P, Hu X, Wang C (2021a) Chitosan modified ultra-thin hollow nanoparticles for photosensitizer loading and enhancing photodynamic antibacterial activities. Int J Biol Macromol 186:839–848. https://doi.org/10.1016/j.ijbiomac.2021.07.078 PubMed DOI

Yan H, Zhang B, Zhang Y, Su R, Li P, Su W (2021b) Fluorescent carbon dot-curcumin nanocomposites for remarkable antibacterial activity with synergistic photodynamic and photothermal abilities. ACS Appl Bio Mater 4(9):6703–6718. https://doi.org/10.1021/acsabm.1c00377 PubMed DOI

Yang B, Chen Y, Shi J (2019) Reactive oxygen species (ROS)-based nanomedicine. Chem Rev 119(8):4881–4985. https://doi.org/10.1021/acs.chemrev.8b00626 PubMed DOI

Yang Z, Yin W, Zhang S, Shah I, Zhang B, Zhang S, Li Z, Lei Z, Ma H (2020) Synthesis of AIE-active materials with their applications for antibacterial activity, specific imaging of mitochondrion and image-guided photodynamic therapy. ACS Appl Bio Mater 3(2):1187–1196. https://doi.org/10.1021/acsabm.9b01094 PubMed DOI

Yu L, Liu Z, Xu W, Jin K, Liu J, Zhu X, Zhang Y, Wu Y (2024) Towards overcoming obstacles of type II photodynamic therapy: endogenous production of light, photosensitizer, and oxygen. Acta Pharm Sin B 14(3):1111–1131. https://doi.org/10.1016/j.apsb.2023.11.007 PubMed DOI

Yu XT, Sui SY, He YX, Yu CH, Peng Q (2022) Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. Biomater Adv 135:212725. https://doi.org/10.1016/j.bioadv.2022.212725 PubMed DOI

Yu Y, Tan L, Li Z, Liu X, Zheng Y, Feng X, Liang Y, Cui Z, Zhu S, Wu S (2021) Single-atom catalysis for efficient sonodynamic therapy of methicillin-resistant Staphylococcus aureus-infected osteomyelitis. ACS Nano 15(6):10628–10639. https://doi.org/10.1021/acsnano.1c03424 PubMed DOI

Zhang H, Liang Y, Zhao H, Qi R, Chen Z, Yuan H, Liang H, Wang L (2020) Dual-mode antibacterial conjugated polymer nanoparticles for photothermal and photodynamic therapy. Macromol Biosci 20(2):e1900301. https://doi.org/10.1002/mabi.201900301 PubMed DOI

Zhang X, Liu T, Li Z, Zhang X (2014) Progress of photodynamic therapy applications in the treatment of musculoskeletal sarcoma (Review). Oncol Lett 8(4):1403–1408. https://doi.org/10.3892/ol.2014.2332 PubMed DOI PMC

Zhao Y, Chen L, Wang Y, Song X, Li K, Yan X, Yu L, He Z (2021) Nanomaterial-based strategies in antimicrobial applications: progress and perspectives. Nano Res 14:4417–4441. https://doi.org/10.1007/s12274-021-3417-4 DOI

Zhou B, Sun X, Dong B, Yu S, Cheng L, Hu S, Liu W, Xu L, Bai X, Wang L, Song H (2022) Antibacterial PDT nanoplatform capable of releasing therapeutic gas for synergistic and enhanced treatment against deep infections. Theranostics 12(6):2580–2597. https://doi.org/10.7150/thno.70277 PubMed DOI PMC

Zhu Y, Hong W, Liu X, Tan L, Wu J, Mao C, Xiang Y, Wu S, Cheung KMC, Yeung KWK (2021) Rapid bacterial elimination achieved by sonodynamic Au@Cu PubMed DOI

Ziental D, Mlynarczyk DT, Kolasinski E, Güzel E, Dlugaszewska J, Popenda Ł, Jurga S, Goslinski T, Sobotta L (2022) Zinc(II), palladium(II), and metal-free phthalocyanines bearing nipagin-functionalized substituents against Candida auris and selected multidrug-resistant microbes. Pharmaceutics 14(8):1686. https://doi.org/10.3390/pharmaceutics14081686 PubMed DOI PMC

Ziental D, Wysocki M, Michalak M, Dlugaszewska J, Güzel E, Sobotta L (2023) The dual synergy of photodynamic and sonodynamic therapy in the eradication of methicillin-resistant Staphylococcus aureus. Appl Sci 13(6):3810. https://doi.org/10.3390/app13063810 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...