A General Entry to Ganoderma Meroterpenoids: Synthesis of Applanatumol E, H, and I, Lingzhilactone B, Meroapplanin B, and Lingzhiol
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39392896
PubMed Central
PMC7616716
DOI
10.1021/acs.orglett.4c03192
Knihovny.cz E-resources
- MeSH
- Biological Products chemistry chemical synthesis MeSH
- Ganoderma * chemistry MeSH
- Lactones chemistry chemical synthesis MeSH
- Molecular Structure MeSH
- Oxidation-Reduction MeSH
- Terpenes * chemistry chemical synthesis MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biological Products MeSH
- Lactones MeSH
- Terpenes * MeSH
Ganoderma meroterpenoids are fungal derived hybrid natural product class containing a 1,2,4-trisubstituted benzene ring and a polycyclic terpenoid part. The representatives applanatumol E, H and I, lingzhilactone B, and meroapplanin B share the same bicyclic lactone moiety connected to the arene. Employing photo-Fries rearrangements as the key step enabled a general entry to these natural products. For the synthesis of the tetracyclic framework of lingzhiol, we made use of a powerful photoredox oxidative decarboxylation/Friedel-Crafts sequence.
See more in PubMed
Jong S. C.; Birmingham J. M. Medicinal Benefits of the Mushroom Ganoderma. Advances in Applied Microbiology 1992, 37, 101–134. 10.1016/S0065-2164(08)70253-3. PubMed DOI
Kim H. W.; Shim M. J.; Choi E. C.; Kim B. K. Inhibition of Cytopathic Effect of Human Immunodeficiency Virus-1 by Water-Soluble Extract ofGanoderma Lucidum. Arch. Pharm. Res. 1997, 20 (5), 425–431. 10.1007/BF02973934. PubMed DOI
Food Phytochemicals for Cancer Prevention II: Teas, Spices, and Herbs; Ho C.-T., Osawa T., Huang M.-T., Rosen R. T., Eds.; American Chemical Society: 1994; ACS Symposium Series Vol. 547. 10.1021/bk-1994-0547. DOI
Luo Q.; Di L.; Yang X.-H.; Cheng Y.-X. Applanatumols A and B, Meroterpenoids with Unprecedented Skeletons from Ganoderma Applanatum. RSC Adv. 2016, 6 (51), 45963–45967. 10.1039/C6RA05148K. DOI
Luo Q.; Yang X.-H.; Yang Z.-L.; Tu Z.-C.; Cheng Y.-X. Miscellaneous Meroterpenoids from Ganoderma Applanatum. Tetrahedron 2016, 72 (30), 4564–4574. 10.1016/j.tet.2016.06.019. DOI
Yan Y.-M.; Wang X.-L.; Zhou L.-L.; Zhou F.-J.; Li R.; Tian Y.; Zuo Z.-L.; Fang P.; Chung A. C. K.; Hou F.-F.; Cheng Y.-X. Lingzhilactones from Ganoderma Lingzhi Ameliorate Adriamycin-Induced Nephropathy in Mice. Journal of Ethnopharmacology 2015, 176, 385–393. 10.1016/j.jep.2015.11.024. PubMed DOI
Peng X.-R.; Shi Q.-Q.; Yang J.; Su H.-G.; Zhou L.; Qiu M.-H. Meroapplanins A–E: Five Meroterpenoids with a 2,3,4,5-Tetrahydropyridine Motif from Ganoderma Applanatum. J. Org. Chem. 2020, 85 (11), 7446–7451. 10.1021/acs.joc.0c00842. PubMed DOI
Yan Y.-M.; Ai J.; Zhou L.; Chung A. C. K.; Li R.; Nie J.; Fang P.; Wang X.-L.; Luo J.; Hu Q.; Hou F.-F.; Cheng Y.-X. Lingzhiols, Unprecedented Rotary Door-Shaped Meroterpenoids as Potent and Selective Inhibitors of p-Smad3 from Ganoderma Lucidum. Org. Lett. 2013, 15 (21), 5488–5491. 10.1021/ol4026364. PubMed DOI
Li L.; Li H.; Peng X.-R.; Hou B.; Yu M.-Y.; Dong J.-R.; Li X.-N.; Zhou L.; Yang J.; Qiu M.-H. (±)-Ganoapplanin, a Pair of Polycyclic Meroterpenoid Enantiomers from Ganoderma Applanatum. Org. Lett. 2016, 18 (23), 6078–6081. 10.1021/acs.orglett.6b03064. PubMed DOI
Zaichick S. V.; McGrath K. M.; Caraveo G. The Role of Ca2+ Signaling in Parkinson’s Disease. Disease Models & Mechanisms 2017, 10 (5), 519–535. 10.1242/dmm.028738. PubMed DOI PMC
Rajakulendran S.; Hanna M. G. The Role of Calcium Channels in Epilepsy. Cold Spring Harb Perspect Med. 2016, 6 (1), a022723.10.1101/cshperspect.a022723. PubMed DOI PMC
Shao W.; Huang J.; Guo K.; Gong J.; Yang Z. Total Synthesis of Sinensilactam A. Org. Lett. 2018, 20 (7), 1857–1860. 10.1021/acs.orglett.8b00380. PubMed DOI
Long R.; Huang J.; Shao W.; Liu S.; Lan Y.; Gong J.; Yang Z. Asymmetric Total Synthesis of (−)-Lingzhiol via a Rh-Catalysed [3 + 2] Cycloaddition. Nat. Commun. 2014, 5 (1), 5707.10.1038/ncomms6707. PubMed DOI
Chen D.; Liu H.-M.; Li M.-M.; Yan Y.-M.; Xu W.-D.; Li X.-N.; Cheng Y.-X.; Qin H.-B. Concise Synthesis of (±)-Lingzhiol via Epoxy-Arene Cyclization. Chem. Commun. 2015, 51 (78), 14594–14596. 10.1039/C5CC05680B. PubMed DOI
Li X.; Liu X.; Jiao X.; Yang H.; Yao Y.; Xie P. An Approach to (±)-Lingzhiol. Org. Lett. 2016, 18 (8), 1944–1946. 10.1021/acs.orglett.6b00542. PubMed DOI
Sharmah Gautam K.; Birman V. B. Biogenetically Inspired Synthesis of Lingzhiol. Org. Lett. 2016, 18 (7), 1499–1501. 10.1021/acs.orglett.5b03212. PubMed DOI
Mehl L.-M.; Maier M. E. A Radical-Based Synthesis of Lingzhiol. J. Org. Chem. 2017, 82 (18), 9844–9850. 10.1021/acs.joc.7b01416. PubMed DOI
Riehl P. S.; Richardson A. D.; Sakamoto T.; Schindler C. S. Eight-Step Enantiodivergent Synthesis of (+)- and (−)-Lingzhiol. Org. Lett. 2020, 22 (1), 290–294. 10.1021/acs.orglett.9b04322. PubMed DOI
Müller N.; Kováč O.; Rode A.; Atzl D.; Magauer T. Total Synthesis of Ganoapplanin Enabled by a Radical Addition/Aldol Reaction Cascade. J. Am. Chem. Soc. 2024, 146, 22937.10.1021/jacs.4c08291. PubMed DOI PMC
Magauer T.; Rode A.; Wurst K. A.. General Entry to Ganoderma Meroterpenoids: Synthesis of Lingzhiol via Photoredox Catalysis. ChemRxiv 2022. 10.26434/chemrxiv-2022-svqft. PubMed DOI PMC
Wollnitzke P.; Essig S.; Gölz J. P.; Von Schwarzenberg K.; Menche D. Total Synthesis of Ajudazol A by a Modular Oxazole Diversification Strategy. Org. Lett. 2020, 22 (16), 6344–6348. 10.1021/acs.orglett.0c02188. PubMed DOI
Riaz M. T.; Pohorilets I.; Hernandez J. J.; Rios J.; Totah N. I. Preparation of 2-(Trimethylsilyl)Methyl-2-Propen-1-Ol Derivatives by Cobalt Catalyzed Sp2-Sp3 Coupling. Tetrahedron Lett. 2018, 59 (29), 2809–2812. 10.1016/j.tetlet.2018.06.018. DOI
Inoue T.; Kitagawa O.; Oda Y.; Taguchi T. Diastereoselective Iodocarbocyclization Reaction of 2- or 3-Oxy-4-Pentenylmalonate Derivatives. J. Org. Chem. 1996, 61 (23), 8256–8263. 10.1021/jo961076+. PubMed DOI
Kitagawa O.; Inoue T.; Taguchi T. Diastereoselective Iodocarbocyclization of 4-Pentenylmalonate Derivatives: Application to Cyclosarkomycin Synthesis. Tetrahedron Lett. 1994, 35 (7), 1059–1062. 10.1016/S0040-4039(00)79965-5. DOI
Krapcho A. P.; Mundy B. P. A Stereospecific Synthesis of 2-Isopropylidene-Cis,Cis-4,8-Dimethyl-6-Keto-Cis-Decahydroazulene. Tetrahedron 1970, 26 (23), 5437–5446. 10.1016/S0040-4020(01)98754-X. DOI
Pearlman W. M. Noble Metal Hydroxides on Carbon Nonpyrophoric Dry Catalysts. Tetrahedron Lett. 1967, 8 (17), 1663–1664. 10.1016/S0040-4039(00)70335-2. DOI
Mancuso A. J.; Huang S.-L.; Swern D. Oxidation of Long-Chain and Related Alcohols to Carbonyls by Dimethyl Sulfoxide “Activated” by Oxalyl Chloride. J. Org. Chem. 1978, 43 (12), 2480–2482. 10.1021/jo00406a041. DOI
Omura K.; Swern D. Oxidation of Alcohols by “Activated” Dimethyl Sulfoxide. a Preparative, Steric and Mechanistic Study. Tetrahedron 1978, 34 (11), 1651–1660. 10.1016/0040-4020(78)80197-5. DOI
Lindgren B. O.; Nilsson T.; Husebye S.; Mikalsen Ø.; Leander K.; Swahn C.-G. Preparation of Carboxylic Acids from Aldehydes (Including Hydroxylated Benzaldehydes) by Oxidation with Chlorite. Acta Chem. Scand. 1973, 27, 888–890. 10.3891/acta.chem.scand.27-0888. DOI
Inanaga J.; Hirata K.; Saeki H.; Katsuki T.; Yamaguchi M. A Rapid Esterification by Means of Mixed Anhydride and Its Application to Large-Ring Lactonization. Bull. Chem. Soc. Jpn. 1979, 52 (7), 1989–1993. 10.1246/bcsj.52.1989. DOI
Fries K.; Finck G. Über Homologe Des Cumaranons Und Ihre Abkömmlinge. Ber. Dtsch. Chem. Ges. 1908, 41 (3), 4271–4284. 10.1002/cber.190804103146. DOI
Anderson J. C.; Reese C. B. 333. The Photochemical Fries Reaction. J. Chem. Soc. 1963, 1781, 1781.10.1039/jr9630001781. DOI
Magnus P.; Lescop C. Photo-Fries Rearrangement for the Synthesis of the Diazonamide Macrocycle. Tetrahedron Lett. 2001, 42 (41), 7193–7196. 10.1016/S0040-4039(01)01515-5. DOI
Magauer T.; Martin H. J.; Mulzer J. Total Synthesis of the Antibiotic Kendomycin by Macrocyclization Using Photo-Fries Rearrangement and Ring-Closing Metathesis. Angew. Chem. Int. Ed 2009, 48 (33), 6032–6036. 10.1002/anie.200900522. PubMed DOI
Webb E. W.; Park J. B.; Cole E. L.; Donnelly D. J.; Bonacorsi S. J.; Ewing W. R.; Doyle A. G. Nucleophilic (Radio)Fluorination of Redox-Active Esters via Radical-Polar Crossover Enabled by Photoredox Catalysis. J. Am. Chem. Soc. 2020, 142 (20), 9493–9500. 10.1021/jacs.0c03125. PubMed DOI
Natural Product Synthesis Enabled by Radical-Polar Crossover Reactions