Role of total polyphenol content in seed germination characteristics of spring barley varieties amidst climate change
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QL24010109
MZE-RO1923, Ministry of Agriculture of the Czech Republic
PubMed
39394377
PubMed Central
PMC11470085
DOI
10.1038/s41598-024-74795-6
PII: 10.1038/s41598-024-74795-6
Knihovny.cz E-zdroje
- Klíčová slova
- Drought conditions, Environment, Genotype, Seed germination characteristics, Spring barley, TPC,
- MeSH
- ječmen (rod) * růst a vývoj fyziologie MeSH
- klíčení * fyziologie MeSH
- klimatické změny * MeSH
- období sucha MeSH
- polyfenoly * analýza metabolismus MeSH
- roční období MeSH
- semena rostlinná * růst a vývoj MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polyfenoly * MeSH
The amount of total polyphenol content (TPC) in the grain could provide insights into the conditions during maturation and might also serve as an indicator of the grain's ability to germinate in the malting process or as seeds in the field. Varieties with higher natural TPC content might exhibit better germination parameters both in the field and in the malt house. This study investigates the relationship between TPC and seed germination characteristics i.e. seed vigour in four spring barley varieties over two years, considering diverse environmental conditions and exposure to drought conditions. The evaluation of seed germination characteristics in barley, with a focus on the root length and average diameter under drought conditions (-0.5 MPa) and suboptimal temperature (10 °C), was conducted. Drought conditions were induced using polyethylene glycol (PEG 6000). After durations of seven and fourteen days, the germinated seeds from the Petri dishes were scanned and subjected to analysis using WinRHIZO software following the metrics: Len 7, Len 14 (root length after seven and fourteen days in cm) and AvgD 7, AvgD 14 (root diameter after seven and fourteen days in mm). The findings support our initial hypothesis, indicating a variety-specific relationship between seed germination characteristics and increased TPC, where higher germination parameters might be associated with elevated TPC levels in some barley varieties.
Zobrazit více v PubMed
Reed, R. C., Bradford, K. J. & Khanday, I. Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity. 128, 450–459 (2022). PubMed PMC
Středa, T., Středová, H., Chuchma, F., Kučera, J. & Rožnovský, J. Smart method of agricultural drought regionalization: a winter wheat case study. Contrib. Geophys. Geod. 49, 25–36 (2019).
Wing, I. S., De Cian, E. & Mistry, M. N. Global vulnerability of crop yields to climate change. J. Environ. Econ. Manag. 109, 102462 (2021).
Finch-Savage, W. E. & Bassel, G. W. Seed vigour and crop establishment: extending performance beyond adaptation. J. Exp. Bot. 67, 567–591 (2016). PubMed
Wen, D. et al. Rapid evaluation of seed vigor by the absolute content of protein in seed within the same crop. Sci. Rep. 8, 5569 (2018). PubMed PMC
Baik, B. K. & Ullrich, S. E. Barley for food: characteristics, improvement, and renewed interest. J. Cereal Sci. 48, 233–242 (2008).
Arigò, A., Česla, P., Šilarová, P., Calabrò, M. L. & Česlová, L. Development of extraction method for characterization of free and bonded polyphenols in barley (Hordeum vulgare L.) grown in Czech Republic using liquid chromatography-tandem mass spectrometry. Food Chem. 245, 829–837 (2018). PubMed
Rodríguez, M. V., Barrero, J. M., Corbineau, F., Gubler, F. & Benech-Arnold, R. L. Dormancy in cereals (not too much, not so little): about the mechanisms behind this trait. Seed Sci. Res. 25, 99–119 (2015).
Gan, R. Y. et al. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: an updated review. Trends Food Sci. Technol. 59, 1–14 (2017).
Burguieres, E., McCue, P., Kwon, Y. I. & Shetty, K. Effect of vitamin C and folic acid on seed vigour response and phenolic-linked antioxidant activity. Bioresour Technol. 98, 1393–1404 (2007). PubMed
Chloupek, O. et al. Better bread from vigorous grain? Czech J. Food Sci. 26, 402–412 (2008).
Basařová, G. et al. Sladařství: Teorie a Praxe výroby Sladu (Havlíček Brain Team, 2015).
Piasecka, A. et al. Drought-related secondary metabolites of barley (Hordeum vulgare L.) leaves and their metabolomic quantitative trait loci. Plant. J. 89, 898–913 (2017). PubMed
Mikyška, A., Dušek, M. & Čejka, P. Influence of barley variety and growing locality on the profile of flavonoid polyphenols in malt. Kvas Prum. 65, 149–157 (2019).
Mikyška, A. & Jurková, M. Study on the effect of malt and decoction mashing on polyphenols and antiradical power of wort. Kvas Prum. 70, 846–854 (2024).
Fayez, K. A. & Bazaid, S. A. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J. Saudi Soc. Agric. Sci. 13, 45–55 (2014).
Singh, S., Gupta, A. K. & Kaur, N. Influence of drought and sowing time on protein composition, antinutrients, and mineral contents of wheat. Sci. World J. 485751 (2012). (2012). PubMed PMC
Vaughan, M. M. et al. Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant. Cell. Environ. 38, 2195–2207 (2015). PubMed
Yahyazadeh, M., Meinen, R., Hänsch, R., Abouzeid, S. & Selmar, D. Impact of drought and salt stress on the biosynthesis of alkaloids in Chelidonium majus L. Phytochemistry. 152, 204–212 (2018). PubMed
Kızılgeçi, F., Tazebay, N., Namlı, M., Albayrak, Ö. & Yıldırım, M. The drought effect on seed germination and seedling growth in bread wheat (Triticum Aestivum L). Int. J. Agric. Environ. Food Sci. 1, 33–37 (2017).
Samarah, N. H., Mullen, R. E. & Anderson, I. Soluble sugar contents, germination, and vigor of soybean seeds in response to drought stress. J. New. Seeds. 10, 63–73 (2009).
Wijewardana, C., Reddy, K. R., Krutz, L. J., Gao, W. & Bellaloui, N. Drought stress has transgenerational effects on soybean seed germination and seedling vigor. PLoS One. 14, e0214977 (2019). PubMed PMC
Tuladhar, P., Sasidharan, S. & Saudagar, P. Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses. in Biocontrol Agents and Secondary Metabolites: Applications and Immunization for Plant Growth and Protection (ed Jogaiah) 419–441 (Woodhead Publishing, (2021).
Li, F. et al. Novel insights into the effect of drought stress on the development of root and caryopsis in barley. PeerJ. 8, e8469 (2020). PubMed PMC
Abdelghany, A. M., Lamlom, S. F. & Naser, M. Dissecting the resilience of barley genotypes under multiple adverse environmental conditions. BMC Plant. Biol. 24, 16 (2024). PubMed PMC
Alfaro, S. et al. Influence of genotype and harvest year on polyphenol content and antioxidant activity in murtilla (Ugni molinae Turcz) fruit. J. Soil. Sci. Plant. Nutr. 13, 67–78 (2013).
Han, Z. et al. Association mapping for total polyphenol content, total flavonoid content and antioxidant activity in barley. BMC Genom. 19, 81 (2018). PubMed PMC
Yang, X. J., Dang, B. & Fan, M. T. Free and bound phenolic compound content and antioxidant activity of different cultivated blue highland barley varieties from the Qinghai-Tibet Plateau. Molecules. 23, 879 (2018). PubMed PMC
Heimler, D., Romani, A. & Ieri, F. Plant polyphenol content, soil fertilization and agricultural management: a review. Eur. Food Res. Technol. 243, 1107–1115 (2017).
Pérez-Ochoa, M. L. et al. Effects of annual growth conditions on phenolic compounds and antioxidant activity in the roots of Eryngium montanum. Plants. 12, 3192 (2023). PubMed PMC
Kołton, A., Długosz-Grochowska, O., Wojciechowska, R. & Czaja, M. Biosynthesis regulation of folates and phenols in plants. Sci. Hortic. (Amsterdam). 291, 110561 (2022).
Fan, D., Zhao, Z., Wang, Y., Ma, J. & Wang, X. Crop-type-driven changes in polyphenols regulate soil nutrient availability and soil microbiota. Front. Microbiol. 13, 964039 (2022). PubMed PMC
Brahmi, F. et al. Impact of growth sites on the phenolic contents and antioxidant activities of three Algerian Mentha species (M. Pulegium L., M. Rotundifolia (L.) Huds., and M. Spicata L). Front. Pharmacol. 13, 886337 (2022). PubMed PMC
Commission Regulation. Publication of an application pursuant to article 6(2) of Council Regulation (EC) 510/2006 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs. Off J. Eur. Union. 85, 13–16 (2008).
FAO. World Reference base for soil Resources (Food and Agriculture Organization of the United Nations (FAO), 2015).
Horáková, V., Dvořáčková, O. & Nečas, M. Seznam doporučených odrůd - Obilniny (Ústřední kontrolní a zkušební ústav zemědělský, 2022).
Analytica, E. B. C. Sieving test of barley method 3.11.1. (2010).
Ullmannová, K., Středa, T. & Chloupek, O. Use of barley seed vigour to discriminate drought and cold tolerance in crop years with high seed vigour and low trait variation. Plant. Breed. 132, 295–298 (2013).
Michel, B. E. & Kaufmann, M. R. The osmotic potential of polyethylene glycol 6000. Plant. Physiol. 51, 914–916 (1973). PubMed PMC
Analytica, E. B. C. Total polyphenols in beer by spectrophotometry (IM) method 9.11. (2010).
Kruskal, W. H. & Wallis, W. A. Use of ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).
McDonald, J. H. Handbook of Biological Statistics: One-way ANOVA (Sparky House Publishing, 2014).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods. 17, 261–272 (2020). PubMed PMC