In-Situ Coating of Iron with a Conducting Polymer, Polypyrrole, as a Promise for Corrosion Protection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DKRVO (RP/CPS/2024-28/005
Ministry of Education, Youth and Sports of the Czech Republic
22-25734S
Czech Science Foundation
PubMed
39410354
PubMed Central
PMC11478037
DOI
10.3390/ma17194783
PII: ma17194783
Knihovny.cz E-zdroje
- Klíčová slova
- carbonyl iron microparticles, conducting polymer, conductivity, corrosion protection, hybrid core–shell composites, iron, magnetic properties, polypyrrole, resistivity,
- Publikační typ
- časopisecké články MeSH
Iron microparticles were coated with polypyrrole in situ during the chemical oxidation of pyrrole with ammonium peroxydisulfate in aqueous medium. A series of hybrid organic/inorganic core-shell materials were prepared with 30-76 wt% iron content. Polypyrrole coating was revealed by scanning electron microscopy, and its molecular structure and completeness were proved by FTIR and Raman spectroscopies. The composites of polypyrrole/carbonyl iron were obtained as powders and characterized with respect to their electrical properties. Their resistivity was monitored by the four-point van der Pauw method under 0.01-10 MPa pressure. In an apparent paradox, the resistivity of composites increased from the units Ω cm for neat polypyrrole to thousands Ω cm for the highest iron content despite the high conductivity of iron. This means that composite conductivity is controlled by the electrical properties of the polypyrrole matrix. The change of sample size during the compression was also recorded and provides a parameter reflecting the mechanical properties of composites. In addition to conductivity, the composites displayed magnetic properties afforded by the presence of iron. The study also illustrates the feasibility of the polypyrrole coating on macroscopic objects, demonstrated by an iron nail, and offers potential application in the corrosion protection of iron. The differences in the morphology of micro- and macroscopic polypyrrole objects are described.
Central Laboratories University of Chemistry and Technology Prague 166 28 Prague 6 Czech Republic
Charles University Faculty of Mathematics and Physics 180 00 Prague 8 Czech Republic
University Institute Tomas Bata University in Zlin 760 01 Zlin Czech Republic
Zobrazit více v PubMed
Belyavskii S.G., Mingalyov P.G., Giulieri F., Combarrieau R., Lisichkin G.V. Chemical modification of the surface of a carbonyl iron powder. Prot. Met. 2006;42:244–252. doi: 10.1134/S0033173206030064. DOI
Cvek M., Mrlík M., Ilčíková M., Mosnáček J., Münster L., Pavlínek V. Synthesis of silicone elastomers containing silyl-based polymer grafted carbonyl iron particles: An efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules. 2017;50:2189–2200. doi: 10.1021/acs.macromol.6b02041. DOI
Mrlík M., Sedlačík M., Pavlínek V., Bažant P., Sáha P., Peer P., Filip P. Synthesis and magnetorheological characteristics of ribbon-like, polypyrrole-coated carbonyl iron suspensions under oscillatory shear. J. Appl. Polym. Sci. 2013;128:2977–2982. doi: 10.1002/app.38473. DOI
Mrlík M., Sedlačík M., Pavlínek V., Peer P., Filip P., Sáha P. Magnetorheology of carbonyl iron particles coated with polypyrrole ribbons: The steady shear study. J. Phys. Conf. Ser. 2013;412:12016. doi: 10.1088/1742-6596/412/1/012016. DOI
Chen Y.H., Wang J., Zhang B., Yang S., Liu S.J., Chen X. One-step preparation of sea urchin-like conducting polypyrrole-modified porous carbonyl iron powders with excellent microwave absorption properties. Mater. Res. Bull. 2024;175:112762. doi: 10.1016/j.materresbull.2024.112762. DOI
Mrlík M., Kollár J., Borská K., Ilčíková M., Gorgol D., Osicka J., Sedlačík M., Ronzová A., Kasák P., Mosnáček J. Atom transfer radical polymerization of pyrrole-bearing methacrylate for production of carbonyl iron particles with conducting shell for enhanced electromagnetic shielding. Int. J. Mol. Sci. 2022;23:8540. doi: 10.3390/ijms23158540. PubMed DOI PMC
Li S.Y., Tian X.X., Wang J.F., Ma L.S., Li C.C., Qin Z., Qu S.B. Ternary heterogeneous core-shell structure CIP@PPy/MWCNTs composites for broadband microwave absorption. Diam. Relat. Mater. 2022;130:109420. doi: 10.1016/j.diamond.2022.109420. DOI
Sui M.X., Lu X.L., Xie A., Xu W.D., Rong X.H., Wu G.J. The synthesis of three-dimensional (3D) polydopamine-functioned carbonyl iron powder@polypyrrole (CIP@PPy) aerogel composites for excellent microwave absorption. Synth. Met. 2015;210:156–164. doi: 10.1016/j.synthmet.2015.09.025. DOI
Xie M.D., Tian X.X., Qu S.B., Cheng H.L. Synthesis and electromagnetic properties of porous carbonyl iron/SiO2/polypyrrole core-shell structure composites. Chin. J. Inorg. Chem. 2018;34:1261–1270. doi: 10.11862/CJ.I.C.2018.178. DOI
Malinauskas A., Malinauskiene J., Ramanavicius A. Conducting polymer-based nanostructurized materials: Electrochemical aspects. Nanotechnology. 2005;16:R51–R62. doi: 10.1088/0957-4484/16/10/R01. PubMed DOI
Sedlačík M., Pavlínek V., Sáha P., Svrčinová P., Filip P. Core-shell structured polypyrrole-coated magnetic carbonyl iron microparticles and their magnetorheology. AIP Conf. Proc. 2011;1375:284–291. doi: 10.1063/1.3604489. DOI
Rashmi H.M., Revanasiddappa M., Manjunatha S., Surekha M., Ravikiran Y.T. Low frequency alternating current response of PPy-PVA-Fe nanocomposite films. Chem. Pap. 2024;78:1435–1442. doi: 10.1007/s11696-023-03169-5. DOI
Mamatha G.M., Dixit P., Krishna H.R., Kumar G.S. Polymer based composites for electromagnetic interference (EMI) shielding: The role for magnetic fillers in effective attenuation of microwaves, a review. Hybrid Adv. 2024;6:100200. doi: 10.1016/j.hybadv.2024.100200. DOI
Truong V.T., Riddell S.Z., Muscat R.F. Polypyrrole based microwave absorbers. J. Mater. Sci. 1998;33:4971–4976. doi: 10.1023/A:1004498705776. DOI
Sun K., Yang X.C., Lei Y.H., Du H.L., Dudziak T., Fan R.H. Core-shell structural design and microwave absorption enhancement of multi-dimensional graphene oxide@polypyrrole/carbonyl iron fiber nanocomposites. J. Compd. Alloys. 2023;390:167446. doi: 10.1016/j.jallcom.2022.167446. DOI
Rezazadeh N., Rezazadeh J. Fabrication of ultra-thin, hydrophobic and flexible electromagnetic wave absorber sheets based on nano-carbon/carbonyl iron in a polypyrrole/silicone rubber matrix. J. Magn. Magn. Mater. 2019;475:201–204. doi: 10.1016/j.jmmm.2018.11.117. DOI
Dong Y.Z., Choi K., Kwon S.H., Nam J.D., Choi H.J. Nanoparticles functionalized by conducting polymers and their electrorheological and magnetorheological applications. Polymers. 2020;12:204. doi: 10.3390/polym12010204. PubMed DOI PMC
Munteanu A., Plachý T., Munteanu L., Ngwabebhoh F.A., Stejskal J., Trchová M., Kubík M., Sedlačík M. Bidisperse magnetorheological fluids utilizing composite polypyrrole nanotubes /magnetite nanoparticles and carbonyl iron microspheres. Rheol. Acta. 2023;62:462–472. doi: 10.1007/s00397-023-01409-9. DOI
Bairagi H., Vashishth P., Ji G., Shukla S.K., Ebenso E.E., Mangla B. Polymers and their composites for corrosion inhibition application: Development, advancement, and future scope—A critical review. Corros. Commun. 2024;15:79–94. doi: 10.1016/j.corcom.2023.10.006. DOI
Spinks G.M., Dominis A.J., Wallace G.G., Tallman D.E. Electroactive conducting polymers for corrosion control—Part 2. Ferrous metals. J. Solid State Electrochem. 2002;6:85–100. doi: 10.1007/s100080100211. DOI
Kraljić M., Mandić Z., Duić L. Inhibition of steel corrosion by polyaniline coatings. Corros. Sci. 2003;45:181–185. doi: 10.1016/S0010-938X(02)00083-5. DOI
Rohwerder M., Michalik A. Conducting polymers for corrosion protection: What makes the difference between failure and success? Electrochim. Acta. 2007;53:1300–1313. doi: 10.1016/j.electacta.2007.05.026. DOI
Deshpande P.P., Jadhav N.G., Gelling V.J., Sazou D. Conducting polymers for corrosion protection: A review. J. Coat. Technol. Res. 2014;11:473–494. doi: 10.1007/s11998-014-9586-7. DOI
Kausar A. Conductive nanocomposite coatings-manufacturing, features, and technical revolution. Polym. Plast. Technol. Mater. 2024;63:2000–2020. doi: 10.1080/25740881.2024.2365279. DOI
Sood Y., Singh K., Mudila H., Lokhande P.E., Singh L., Kumar D., Kumar A., Mubarak N.M., Dehghani M.H. Insights into properties, synthesis and emerging applications of polypyrrole-based composites, and future prospective: A review. Heliyon. 2024;10:e33643. doi: 10.1016/j.heliyon.2024.e33643. PubMed DOI PMC
Ye W., Zhu J., Liao X.J., Jiang S.H., Li Y.H., Fang H., Hou H.Q. Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. J. Power Sources. 2015;299:417–424. doi: 10.1016/j.jpowsour.2015.09.037. DOI
Kalendová A., Veselý D., Sapurina I., Stejskal J. Anticorrosion efficiency of organic coatings depending on the pigment volume concentration of polyaniline phosphate. Prog. Org. Coat. 2008;63:228–237. doi: 10.1016/j.porgcoat.2008.06.005. DOI
Stejskal J., Sapurina I., Trchová M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 2010;35:1420–1481. doi: 10.1016/j.progpolymsci.2010.07.006. DOI
Zhou C.F., Du X.S., Liu Z., Ringer S.P., Mai Y.W. Solid phase mechanochemical synthesis of polyaniline branched nanofibers. Synth. Met. 2009;159:1302–1307. doi: 10.1016/j.synthmet.2009.02.033. DOI
Abdiryim T., Xiao-Gang Z., Jamal R. Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Mater. Chem. Phys. 2005;90:367–372. doi: 10.1016/j.matchemphys.2004.10.036. DOI
Stejskal J. Conducting polymer hydrogels. Chem. Pap. 2017;71:269–291. doi: 10.1007/s11696-016-0072-9. DOI
Milakin K.A., Capáková Z., Acharya U., Vajďák J., Morávková Z., Hodan J., Humpolíček P., Bober P. Biocompatible and antibacterial gelatin-based polypyrrole cryogels. Polymer. 2020;197:122491. doi: 10.1016/j.polymer.2020.122491. DOI
Kalendová A., Sapurina I., Stejskal J., Veselý D. Anticorrosion properties of polyaniline-coated pigments in organic coatings. Corros. Sci. 2008;50:3549–3560. doi: 10.1016/j.corsci.2008.08.044. DOI
Boga K., Pothu R., Arukula R., Boddula R., Gaddam S.K. The role of anticorrosive polymer coatings for the protection of metallic surface. Corros. Rev. 2021;39:547–559. doi: 10.1515/corrrev-2021-0027. DOI
Zhang N., Wang Y., Chen P.Z., Chen W.X. A rational route towards dual wave-transparent type of carbonyl iron@SiO2@heterogeneous state polypyrrole@paraffin composites for electromagnetic wave absorption application. J. Colloid Interface Sci. 2021;581:84–95. doi: 10.1016/j.jcis.2020.07.087. PubMed DOI
MacDiarmid A.G. “Synthetic metals”: A novel role for organic polymers (Nobel lecture) Angew. Chem. Int. Ed. 2001;40:2581–2590. doi: 10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2. PubMed DOI
Holze R. Overoxidation of intrinsically conducting polymers. Polymers. 2022;14:1584. doi: 10.3390/polym14081584. PubMed DOI PMC
Hoque M.I.U., Holze R. Intrinsically conducting polymer composites as active masses in supercapacitors. Polymers. 2023;15:730. doi: 10.3390/polym15030730. PubMed DOI PMC
Stejskal J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: Polymer morphology control, dye adsorption and photocatalytic decomposition. Chem. Pap. 2020;74:1–54. doi: 10.1007/s11696-019-00982-9. DOI
Ravikumar R., Jagadeshvaran P.L., Biju R., Binoy L., Raghavan J.R.V., Krishnakumar T.S., Indulal C.R. Role of polypyrrole-based SrO-CuO nanocomposite on flame retardancy and heat dissipation applications. Chem. Pap. 2023;77:3413–3426. doi: 10.1007/s11696-023-02713-7. DOI
Le H.N.T., Bernard M.C., Garcia-Renaud B., Deslouis C. Raman spectroscopy analysis of polypyrrole films as protective coatings on iron. Synth. Met. 2004;140:287–293. doi: 10.1016/S0379-6779(03)00376-X. DOI
Liao Z.W., Zoumhani O., Boutry C.M. Recent advances in magnetic polymer composites for bioMEMS: A review. Materials. 2023;16:3802. doi: 10.3390/ma16103802. PubMed DOI PMC
Acharya R., Dutta S.D., Patil T.V., Ganguly K., Randhawa A., Lim K.T. A review on electroactive polymer-metal composites: Development and applications for tissue regeneration. J. Funct. Biomater. 2023;14:523. doi: 10.3390/jfb14100523. PubMed DOI PMC
Jurča M., Vilčáková J., Kazantseva N.E., Munteanu A., Munteanu L., Sedlačík M., Stejskal J., Trchová M., Prokeš J. Conducting and magnetic hybrid polypyrrole/nickel composites and their application in magnetorheology. Materials. 2024;17:151. doi: 10.3390/ma17010151. PubMed DOI PMC
Abshinova M.A., Kazantseva N.E., Sáha P., Sapurina I., Kovářová J., Stejskal J. The enhancement of the oxidation resistance of carbonyl iron by polyaniline coating and consequent changes in electromagnetic properties. Polym. Degrad. Stab. 2008;93:1826–1831. doi: 10.1016/j.polymdegradstab.2008.07.008. DOI
Stejskal J., Sapurina I. Polyaniline: Thin films and colloidal dispersions—(IUPAC technical report) Pure Appl. Chem. 2005;77:815–826. doi: 10.1351/pac200577050815. DOI
Stejskal J., Trchová M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018;72:1563–1595. doi: 10.1007/s11696-018-0394-x. PubMed DOI
Breslin C.B., Fenelon A.M., Conroy K.G. Surface engineering: Corrosion protection using conducting polymers. Mater. Des. 2005;26:233–237. doi: 10.1016/j.matdes.2004.02.004. DOI
Rammelt U., Duc L.M., Plieth W. Improvement of protection performance of polypyrrole by dopant anions. J. Appl. Electrochem. 2005;35:1225–1230. doi: 10.1007/s10800-005-9033-7. DOI
Sun Y.H., Hu C.Q., Cui J.C., Shen S.L., Qiu H.X., Li J. Electrodeposition of polypyrrole coatings doped by benzenesulfonic acid-modified graphene oxide on metallic bipolar plates. Prog. Org. Coat. 2022;170:106995. doi: 10.1016/j.porgcoat.2022.106995. DOI
Trung V.Q., Hung H.M., Khoe L.V., Duc L.M., Viet N.T.B., Linh D.K., Huong V.T., Dat N.D., Oanh D.T.Y., Luong N.X., et al. Synthesis and characterization of polypyrrole film doped with both molybdate and salicylate and its application in the corrosion protection for low carbon steel. ACS Omega. 2022;7:19842–19852. doi: 10.1021/acsomega.2c01561. PubMed DOI PMC
Dalmoro V., Cedron S., Azambuja D.S., Castagno K.R.L. Polypyrrole film doped with corrosion-inhibitors electropolymerized on AA 1100. Mater. Res. 2019;22:e20180919. doi: 10.1590/1980-5373-mr-2018-0919. DOI
Xiao N.L. Investigation on corrosion inhibition performance of polypyrrole coating on Q235 steel in civil structure. Alex. Eng. J. 2023;70:547–551. doi: 10.1016/j.aej.2023.03.014. DOI
Liu A.S., Almeida L.N., Evangelista L.M., Santos D.M.L., Cho L.Y. Electrosynthesis of polypyrrole-bilayer doped with phosphoric and dodecylbenzenesulfonic acids on 2024 aluminum alloy. Mater. Rio de Janeiro. 2024;29:e20240034. doi: 10.1590/1517-7076-RMAT-2024-0034. DOI
Zhao Y.C., Tomšík E., Wang J.X., Morávková Z., Zhigunov A., Stejskal J., Trchová M. Self-assembly of aniline oligomers. Chem. Asian J. 2013;8:129–137. doi: 10.1002/asia.201200836. PubMed DOI
Tao J.Z., Yang M., Gao H.Y., Yu J., Wang G. Synthesis and assembly of oligoaniline for hierarchical structures within stable and mild acid system. Colloids Surf. A Physicochem. Eng. Asp. 2014;451:117–124. doi: 10.1016/j.colsurfa.2014.03.042. DOI
Zhou C.Q., Li X.X., Gong X.X., Han J., Guo R. Ethanol-guided synthesis of (flower-on-leaf)-like aniline oligomers with excellent adsorption properties. New J. Chem. 2015;49:9257–9264. doi: 10.1039/C5NJ01828E. DOI
Sørensen P.A., Kiil S., Dam-Johansen K., Weinell C.E. Anticorrosive coatings: A review. J. Coat. Technol. Res. 2009;61:135–176. doi: 10.1007/s11998-008-9144-2. DOI
Zheludkevich M.L., Tedim J., Ferreira M.G.S. “Smart” coatings for active corrosion protection based on multi-functional micro and nanocontainers. Electrochim. Acta. 2012;82:314–323. doi: 10.1016/j.electacta.2012.04.095. DOI
Sabet-Bokati Z., Sabet-Bokati K., Russell Z., Morshed-Behbahani K., Ouanani S. Anticorrosion shape memory-assisted self-healing coatings: A review. Prog. Org. Coat. 2024;188:108193. doi: 10.1016/j.porgcoat.2023.108193. DOI
Dua S., Arora N., Prakashaiah B.G., Saxena R.C., Ganguly S.K., Senthilkumar T. Conjugated polymer-based composites for anti-corrosion applications. Prog. Org. Coat. 2024;188:108231. doi: 10.1016/j.porgcoat.2024.108231. DOI
Ding H., Hussein A.M., Ahmad I., Latef R., Abbas J.K., Ali A.T.A., Saeed S.M., Abdulwahid A.S., Ramadan M.F., Rasool H.A., et al. Conducting polymers in industry: A comprehensive review on the characterization, synthesis and application. Alex. Eng. J. 2024;88:253–267. doi: 10.1016/j.aej.2024.01.029. DOI