In-Situ Coating of Iron with a Conducting Polymer, Polypyrrole, as a Promise for Corrosion Protection

. 2024 Sep 29 ; 17 (19) : . [epub] 20240929

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39410354

Grantová podpora
DKRVO (RP/CPS/2024-28/005 Ministry of Education, Youth and Sports of the Czech Republic
22-25734S Czech Science Foundation

Iron microparticles were coated with polypyrrole in situ during the chemical oxidation of pyrrole with ammonium peroxydisulfate in aqueous medium. A series of hybrid organic/inorganic core-shell materials were prepared with 30-76 wt% iron content. Polypyrrole coating was revealed by scanning electron microscopy, and its molecular structure and completeness were proved by FTIR and Raman spectroscopies. The composites of polypyrrole/carbonyl iron were obtained as powders and characterized with respect to their electrical properties. Their resistivity was monitored by the four-point van der Pauw method under 0.01-10 MPa pressure. In an apparent paradox, the resistivity of composites increased from the units Ω cm for neat polypyrrole to thousands Ω cm for the highest iron content despite the high conductivity of iron. This means that composite conductivity is controlled by the electrical properties of the polypyrrole matrix. The change of sample size during the compression was also recorded and provides a parameter reflecting the mechanical properties of composites. In addition to conductivity, the composites displayed magnetic properties afforded by the presence of iron. The study also illustrates the feasibility of the polypyrrole coating on macroscopic objects, demonstrated by an iron nail, and offers potential application in the corrosion protection of iron. The differences in the morphology of micro- and macroscopic polypyrrole objects are described.

Zobrazit více v PubMed

Belyavskii S.G., Mingalyov P.G., Giulieri F., Combarrieau R., Lisichkin G.V. Chemical modification of the surface of a carbonyl iron powder. Prot. Met. 2006;42:244–252. doi: 10.1134/S0033173206030064. DOI

Cvek M., Mrlík M., Ilčíková M., Mosnáček J., Münster L., Pavlínek V. Synthesis of silicone elastomers containing silyl-based polymer grafted carbonyl iron particles: An efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules. 2017;50:2189–2200. doi: 10.1021/acs.macromol.6b02041. DOI

Mrlík M., Sedlačík M., Pavlínek V., Bažant P., Sáha P., Peer P., Filip P. Synthesis and magnetorheological characteristics of ribbon-like, polypyrrole-coated carbonyl iron suspensions under oscillatory shear. J. Appl. Polym. Sci. 2013;128:2977–2982. doi: 10.1002/app.38473. DOI

Mrlík M., Sedlačík M., Pavlínek V., Peer P., Filip P., Sáha P. Magnetorheology of carbonyl iron particles coated with polypyrrole ribbons: The steady shear study. J. Phys. Conf. Ser. 2013;412:12016. doi: 10.1088/1742-6596/412/1/012016. DOI

Chen Y.H., Wang J., Zhang B., Yang S., Liu S.J., Chen X. One-step preparation of sea urchin-like conducting polypyrrole-modified porous carbonyl iron powders with excellent microwave absorption properties. Mater. Res. Bull. 2024;175:112762. doi: 10.1016/j.materresbull.2024.112762. DOI

Mrlík M., Kollár J., Borská K., Ilčíková M., Gorgol D., Osicka J., Sedlačík M., Ronzová A., Kasák P., Mosnáček J. Atom transfer radical polymerization of pyrrole-bearing methacrylate for production of carbonyl iron particles with conducting shell for enhanced electromagnetic shielding. Int. J. Mol. Sci. 2022;23:8540. doi: 10.3390/ijms23158540. PubMed DOI PMC

Li S.Y., Tian X.X., Wang J.F., Ma L.S., Li C.C., Qin Z., Qu S.B. Ternary heterogeneous core-shell structure CIP@PPy/MWCNTs composites for broadband microwave absorption. Diam. Relat. Mater. 2022;130:109420. doi: 10.1016/j.diamond.2022.109420. DOI

Sui M.X., Lu X.L., Xie A., Xu W.D., Rong X.H., Wu G.J. The synthesis of three-dimensional (3D) polydopamine-functioned carbonyl iron powder@polypyrrole (CIP@PPy) aerogel composites for excellent microwave absorption. Synth. Met. 2015;210:156–164. doi: 10.1016/j.synthmet.2015.09.025. DOI

Xie M.D., Tian X.X., Qu S.B., Cheng H.L. Synthesis and electromagnetic properties of porous carbonyl iron/SiO2/polypyrrole core-shell structure composites. Chin. J. Inorg. Chem. 2018;34:1261–1270. doi: 10.11862/CJ.I.C.2018.178. DOI

Malinauskas A., Malinauskiene J., Ramanavicius A. Conducting polymer-based nanostructurized materials: Electrochemical aspects. Nanotechnology. 2005;16:R51–R62. doi: 10.1088/0957-4484/16/10/R01. PubMed DOI

Sedlačík M., Pavlínek V., Sáha P., Svrčinová P., Filip P. Core-shell structured polypyrrole-coated magnetic carbonyl iron microparticles and their magnetorheology. AIP Conf. Proc. 2011;1375:284–291. doi: 10.1063/1.3604489. DOI

Rashmi H.M., Revanasiddappa M., Manjunatha S., Surekha M., Ravikiran Y.T. Low frequency alternating current response of PPy-PVA-Fe nanocomposite films. Chem. Pap. 2024;78:1435–1442. doi: 10.1007/s11696-023-03169-5. DOI

Mamatha G.M., Dixit P., Krishna H.R., Kumar G.S. Polymer based composites for electromagnetic interference (EMI) shielding: The role for magnetic fillers in effective attenuation of microwaves, a review. Hybrid Adv. 2024;6:100200. doi: 10.1016/j.hybadv.2024.100200. DOI

Truong V.T., Riddell S.Z., Muscat R.F. Polypyrrole based microwave absorbers. J. Mater. Sci. 1998;33:4971–4976. doi: 10.1023/A:1004498705776. DOI

Sun K., Yang X.C., Lei Y.H., Du H.L., Dudziak T., Fan R.H. Core-shell structural design and microwave absorption enhancement of multi-dimensional graphene oxide@polypyrrole/carbonyl iron fiber nanocomposites. J. Compd. Alloys. 2023;390:167446. doi: 10.1016/j.jallcom.2022.167446. DOI

Rezazadeh N., Rezazadeh J. Fabrication of ultra-thin, hydrophobic and flexible electromagnetic wave absorber sheets based on nano-carbon/carbonyl iron in a polypyrrole/silicone rubber matrix. J. Magn. Magn. Mater. 2019;475:201–204. doi: 10.1016/j.jmmm.2018.11.117. DOI

Dong Y.Z., Choi K., Kwon S.H., Nam J.D., Choi H.J. Nanoparticles functionalized by conducting polymers and their electrorheological and magnetorheological applications. Polymers. 2020;12:204. doi: 10.3390/polym12010204. PubMed DOI PMC

Munteanu A., Plachý T., Munteanu L., Ngwabebhoh F.A., Stejskal J., Trchová M., Kubík M., Sedlačík M. Bidisperse magnetorheological fluids utilizing composite polypyrrole nanotubes /magnetite nanoparticles and carbonyl iron microspheres. Rheol. Acta. 2023;62:462–472. doi: 10.1007/s00397-023-01409-9. DOI

Bairagi H., Vashishth P., Ji G., Shukla S.K., Ebenso E.E., Mangla B. Polymers and their composites for corrosion inhibition application: Development, advancement, and future scope—A critical review. Corros. Commun. 2024;15:79–94. doi: 10.1016/j.corcom.2023.10.006. DOI

Spinks G.M., Dominis A.J., Wallace G.G., Tallman D.E. Electroactive conducting polymers for corrosion control—Part 2. Ferrous metals. J. Solid State Electrochem. 2002;6:85–100. doi: 10.1007/s100080100211. DOI

Kraljić M., Mandić Z., Duić L. Inhibition of steel corrosion by polyaniline coatings. Corros. Sci. 2003;45:181–185. doi: 10.1016/S0010-938X(02)00083-5. DOI

Rohwerder M., Michalik A. Conducting polymers for corrosion protection: What makes the difference between failure and success? Electrochim. Acta. 2007;53:1300–1313. doi: 10.1016/j.electacta.2007.05.026. DOI

Deshpande P.P., Jadhav N.G., Gelling V.J., Sazou D. Conducting polymers for corrosion protection: A review. J. Coat. Technol. Res. 2014;11:473–494. doi: 10.1007/s11998-014-9586-7. DOI

Kausar A. Conductive nanocomposite coatings-manufacturing, features, and technical revolution. Polym. Plast. Technol. Mater. 2024;63:2000–2020. doi: 10.1080/25740881.2024.2365279. DOI

Sood Y., Singh K., Mudila H., Lokhande P.E., Singh L., Kumar D., Kumar A., Mubarak N.M., Dehghani M.H. Insights into properties, synthesis and emerging applications of polypyrrole-based composites, and future prospective: A review. Heliyon. 2024;10:e33643. doi: 10.1016/j.heliyon.2024.e33643. PubMed DOI PMC

Ye W., Zhu J., Liao X.J., Jiang S.H., Li Y.H., Fang H., Hou H.Q. Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. J. Power Sources. 2015;299:417–424. doi: 10.1016/j.jpowsour.2015.09.037. DOI

Kalendová A., Veselý D., Sapurina I., Stejskal J. Anticorrosion efficiency of organic coatings depending on the pigment volume concentration of polyaniline phosphate. Prog. Org. Coat. 2008;63:228–237. doi: 10.1016/j.porgcoat.2008.06.005. DOI

Stejskal J., Sapurina I., Trchová M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 2010;35:1420–1481. doi: 10.1016/j.progpolymsci.2010.07.006. DOI

Zhou C.F., Du X.S., Liu Z., Ringer S.P., Mai Y.W. Solid phase mechanochemical synthesis of polyaniline branched nanofibers. Synth. Met. 2009;159:1302–1307. doi: 10.1016/j.synthmet.2009.02.033. DOI

Abdiryim T., Xiao-Gang Z., Jamal R. Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Mater. Chem. Phys. 2005;90:367–372. doi: 10.1016/j.matchemphys.2004.10.036. DOI

Stejskal J. Conducting polymer hydrogels. Chem. Pap. 2017;71:269–291. doi: 10.1007/s11696-016-0072-9. DOI

Milakin K.A., Capáková Z., Acharya U., Vajďák J., Morávková Z., Hodan J., Humpolíček P., Bober P. Biocompatible and antibacterial gelatin-based polypyrrole cryogels. Polymer. 2020;197:122491. doi: 10.1016/j.polymer.2020.122491. DOI

Kalendová A., Sapurina I., Stejskal J., Veselý D. Anticorrosion properties of polyaniline-coated pigments in organic coatings. Corros. Sci. 2008;50:3549–3560. doi: 10.1016/j.corsci.2008.08.044. DOI

Boga K., Pothu R., Arukula R., Boddula R., Gaddam S.K. The role of anticorrosive polymer coatings for the protection of metallic surface. Corros. Rev. 2021;39:547–559. doi: 10.1515/corrrev-2021-0027. DOI

Zhang N., Wang Y., Chen P.Z., Chen W.X. A rational route towards dual wave-transparent type of carbonyl iron@SiO2@heterogeneous state polypyrrole@paraffin composites for electromagnetic wave absorption application. J. Colloid Interface Sci. 2021;581:84–95. doi: 10.1016/j.jcis.2020.07.087. PubMed DOI

MacDiarmid A.G. “Synthetic metals”: A novel role for organic polymers (Nobel lecture) Angew. Chem. Int. Ed. 2001;40:2581–2590. doi: 10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2. PubMed DOI

Holze R. Overoxidation of intrinsically conducting polymers. Polymers. 2022;14:1584. doi: 10.3390/polym14081584. PubMed DOI PMC

Hoque M.I.U., Holze R. Intrinsically conducting polymer composites as active masses in supercapacitors. Polymers. 2023;15:730. doi: 10.3390/polym15030730. PubMed DOI PMC

Stejskal J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: Polymer morphology control, dye adsorption and photocatalytic decomposition. Chem. Pap. 2020;74:1–54. doi: 10.1007/s11696-019-00982-9. DOI

Ravikumar R., Jagadeshvaran P.L., Biju R., Binoy L., Raghavan J.R.V., Krishnakumar T.S., Indulal C.R. Role of polypyrrole-based SrO-CuO nanocomposite on flame retardancy and heat dissipation applications. Chem. Pap. 2023;77:3413–3426. doi: 10.1007/s11696-023-02713-7. DOI

Le H.N.T., Bernard M.C., Garcia-Renaud B., Deslouis C. Raman spectroscopy analysis of polypyrrole films as protective coatings on iron. Synth. Met. 2004;140:287–293. doi: 10.1016/S0379-6779(03)00376-X. DOI

Liao Z.W., Zoumhani O., Boutry C.M. Recent advances in magnetic polymer composites for bioMEMS: A review. Materials. 2023;16:3802. doi: 10.3390/ma16103802. PubMed DOI PMC

Acharya R., Dutta S.D., Patil T.V., Ganguly K., Randhawa A., Lim K.T. A review on electroactive polymer-metal composites: Development and applications for tissue regeneration. J. Funct. Biomater. 2023;14:523. doi: 10.3390/jfb14100523. PubMed DOI PMC

Jurča M., Vilčáková J., Kazantseva N.E., Munteanu A., Munteanu L., Sedlačík M., Stejskal J., Trchová M., Prokeš J. Conducting and magnetic hybrid polypyrrole/nickel composites and their application in magnetorheology. Materials. 2024;17:151. doi: 10.3390/ma17010151. PubMed DOI PMC

Abshinova M.A., Kazantseva N.E., Sáha P., Sapurina I., Kovářová J., Stejskal J. The enhancement of the oxidation resistance of carbonyl iron by polyaniline coating and consequent changes in electromagnetic properties. Polym. Degrad. Stab. 2008;93:1826–1831. doi: 10.1016/j.polymdegradstab.2008.07.008. DOI

Stejskal J., Sapurina I. Polyaniline: Thin films and colloidal dispersions—(IUPAC technical report) Pure Appl. Chem. 2005;77:815–826. doi: 10.1351/pac200577050815. DOI

Stejskal J., Trchová M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018;72:1563–1595. doi: 10.1007/s11696-018-0394-x. PubMed DOI

Breslin C.B., Fenelon A.M., Conroy K.G. Surface engineering: Corrosion protection using conducting polymers. Mater. Des. 2005;26:233–237. doi: 10.1016/j.matdes.2004.02.004. DOI

Rammelt U., Duc L.M., Plieth W. Improvement of protection performance of polypyrrole by dopant anions. J. Appl. Electrochem. 2005;35:1225–1230. doi: 10.1007/s10800-005-9033-7. DOI

Sun Y.H., Hu C.Q., Cui J.C., Shen S.L., Qiu H.X., Li J. Electrodeposition of polypyrrole coatings doped by benzenesulfonic acid-modified graphene oxide on metallic bipolar plates. Prog. Org. Coat. 2022;170:106995. doi: 10.1016/j.porgcoat.2022.106995. DOI

Trung V.Q., Hung H.M., Khoe L.V., Duc L.M., Viet N.T.B., Linh D.K., Huong V.T., Dat N.D., Oanh D.T.Y., Luong N.X., et al. Synthesis and characterization of polypyrrole film doped with both molybdate and salicylate and its application in the corrosion protection for low carbon steel. ACS Omega. 2022;7:19842–19852. doi: 10.1021/acsomega.2c01561. PubMed DOI PMC

Dalmoro V., Cedron S., Azambuja D.S., Castagno K.R.L. Polypyrrole film doped with corrosion-inhibitors electropolymerized on AA 1100. Mater. Res. 2019;22:e20180919. doi: 10.1590/1980-5373-mr-2018-0919. DOI

Xiao N.L. Investigation on corrosion inhibition performance of polypyrrole coating on Q235 steel in civil structure. Alex. Eng. J. 2023;70:547–551. doi: 10.1016/j.aej.2023.03.014. DOI

Liu A.S., Almeida L.N., Evangelista L.M., Santos D.M.L., Cho L.Y. Electrosynthesis of polypyrrole-bilayer doped with phosphoric and dodecylbenzenesulfonic acids on 2024 aluminum alloy. Mater. Rio de Janeiro. 2024;29:e20240034. doi: 10.1590/1517-7076-RMAT-2024-0034. DOI

Zhao Y.C., Tomšík E., Wang J.X., Morávková Z., Zhigunov A., Stejskal J., Trchová M. Self-assembly of aniline oligomers. Chem. Asian J. 2013;8:129–137. doi: 10.1002/asia.201200836. PubMed DOI

Tao J.Z., Yang M., Gao H.Y., Yu J., Wang G. Synthesis and assembly of oligoaniline for hierarchical structures within stable and mild acid system. Colloids Surf. A Physicochem. Eng. Asp. 2014;451:117–124. doi: 10.1016/j.colsurfa.2014.03.042. DOI

Zhou C.Q., Li X.X., Gong X.X., Han J., Guo R. Ethanol-guided synthesis of (flower-on-leaf)-like aniline oligomers with excellent adsorption properties. New J. Chem. 2015;49:9257–9264. doi: 10.1039/C5NJ01828E. DOI

Sørensen P.A., Kiil S., Dam-Johansen K., Weinell C.E. Anticorrosive coatings: A review. J. Coat. Technol. Res. 2009;61:135–176. doi: 10.1007/s11998-008-9144-2. DOI

Zheludkevich M.L., Tedim J., Ferreira M.G.S. “Smart” coatings for active corrosion protection based on multi-functional micro and nanocontainers. Electrochim. Acta. 2012;82:314–323. doi: 10.1016/j.electacta.2012.04.095. DOI

Sabet-Bokati Z., Sabet-Bokati K., Russell Z., Morshed-Behbahani K., Ouanani S. Anticorrosion shape memory-assisted self-healing coatings: A review. Prog. Org. Coat. 2024;188:108193. doi: 10.1016/j.porgcoat.2023.108193. DOI

Dua S., Arora N., Prakashaiah B.G., Saxena R.C., Ganguly S.K., Senthilkumar T. Conjugated polymer-based composites for anti-corrosion applications. Prog. Org. Coat. 2024;188:108231. doi: 10.1016/j.porgcoat.2024.108231. DOI

Ding H., Hussein A.M., Ahmad I., Latef R., Abbas J.K., Ali A.T.A., Saeed S.M., Abdulwahid A.S., Ramadan M.F., Rasool H.A., et al. Conducting polymers in industry: A comprehensive review on the characterization, synthesis and application. Alex. Eng. J. 2024;88:253–267. doi: 10.1016/j.aej.2024.01.029. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace