Conducting and Magnetic Hybrid Polypyrrole/Nickel Composites and Their Application in Magnetorheology

. 2023 Dec 27 ; 17 (1) : . [epub] 20231227

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38204007

Grantová podpora
23-07244S Czech Science Foundation
22-25734S Czech Science Foundation

Hybrid organic/inorganic conducting and magnetic composites of core-shell type have been prepared by in-situ coating of nickel microparticles with polypyrrole. Three series of syntheses have been made. In the first, pyrrole was oxidised with ammonium peroxydisulfate in water in the presence of various amounts of nickel and the composites contained up to 83 wt% of this metal. The second series used 0.1 M sulfuric acid as a reaction medium. Finally, the composites with polypyrrole nanotubes were prepared in water in the presence of structure-guiding methyl orange dye. The nanotubes have always been accompanied by the globular morphology. FTIR and Raman spectroscopies confirmed the formation of polypyrrole. The resistivity of composite powders of the order of tens to hundreds Ω cm was monitored as a function of pressure up to 10 MPa. The resistivity of composites slightly increased with increasing content of nickel. This apparent paradox is explained by the coating of nickel particles with polypyrrole, which prevents their contact and subsequent generation of metallic conducting pathways. Electrical properties were practically independent of the way of composite preparation or nickel content and were controlled by the polypyrrole phase. On the contrary, magnetic properties were determined exclusively by nickel content. The composites were used as a solid phase to prepare a magnetorheological fluid. The test showed better performance when compared with a different nickel system reported earlier.

Zobrazit více v PubMed

Obodo R.M., Shinde N.M., Chime U.K., Ezugwu S., Nwanya A.C., Ahmad S., Maaza M., Ejikeme P.M., Ezema F.I. Recent advances in metal oxide/hydroxide on three-dimensional nickel foam substrate for high performance pseudocapacitive electrodes. Curr. Opin. Electrochem. 2020;21:242–249. doi: 10.1016/j.coelec.2020.02.022. DOI

Ul-Hoque M.I., Holze R. Intrinsically conducting polymer composites as active masses in supercapacitors. Polymers. 2023;15:730. doi: 10.3390/polym15030730. PubMed DOI PMC

Irshad M.S., Arshad N., Wang X.B., Li H.R., Javed M.Q., Xu Y., Alshahrani L.A., Mei T., Li J.H. Intensifying solar interfacial heat accumulation for clean water generation excluding heavy metal ions and oil emulsions. Solar RRL. 2021;5:2100427. doi: 10.1002/solr.202100427. DOI

Ghanbari R., Ghorbani S.R. High-performance nickel molybdate/reduced graphene oxide/polypyrrole ternary nanocomposite as flexible all-solid-state asymmetric supercapacitor. J. Energy Storage. 2023;60:106670. doi: 10.1016/j.est.2023.106670. DOI

Shi A.R., Song X.M., Wei L., Ma H.Y., Pang H.J., Li W.W., Liu X.W., Tan L.C. Design of an internal/external bicontinuous conductive network for high-performance asymmetrical supercapacitors. Molecules. 2023;27:8168. doi: 10.3390/molecules27238168. PubMed DOI PMC

Zhao M.M., Zhao Q.X., Li B., Xue H.G., Pang H., Chen C.Y. Recent progress in layered double hydroxide based materials for electrochemical capacitors: Design, synthesis and performance. Nanoscale. 2017;9:15206–15225. doi: 10.1039/C7NR04752E. PubMed DOI

Wei J.T., Xing G.Z., Gao L., Suo H., He X.P., Zhao C., Li S., Xing S.X. Nickel foam based polypyrrole-Ag composite film: A new route toward stable electrodes for supercapacitors. New J. Chem. 2013;37:337–341. doi: 10.1039/C2NJ40590C. DOI

Gao J., Wang X.H., Wang X.Q., Que R.H., Fang Y., Shi B., Wang Z.H. Hierarchical polypyrrole/Ni3S2@MoS2 core-shell nanostructures on a nickel foam for high-performance supercapacitors. RSC Adv. 2016;6:68460–68467. doi: 10.1039/C6RA12095D. DOI

Hasanzadeh M., Ansari R., Farahpour M. Cobalt disulfide/polypyrrole cauliflower-like nanocomposite: Single-pot hydrothermal synthesis, characterization, and their enhanced storage energy in supercapacitors. J. Alloy Compd. 2023;951:169965. doi: 10.1016/j.jallcom.2023.169965. DOI

Wang S., Fan Y.K., Wang F., Su Y.N., Zhou X., Zhu Z.Q., Sun H.X., Liang W.D., Li A. Potentially scalable fabrication of salt-rejection evaporator based on electrogenerated polypyrrole-coated nickel foam for efficient solar steam generation. Desalination. 2021;505:114982. doi: 10.1016/j.desal.2021.114982. DOI

Karazehir T. Electrodeposited Pd nanoparticles on polypyrrole/nickel foam for efficient methanol oxidation. Int. J. Hydrogen Energy. 2023;48:10493–10506. doi: 10.1016/j.ijhydene.2022.12.059. DOI

Yu H.B., Che M., Zhao B., Lu Y., Zhu S.Y., Wang X.H., Qin W.C., Huo M.X. Enhanced electrosorption of rhodamine B over porous copper-nickel foam electrodes modified with graphene oxide/polypyrrole. Synth. Met. 2021;262:116332. doi: 10.1016/j.synthmet.2020.116332. DOI

Ren J., Shen M., Li Z.L., Yang C.M., Liang Y., Wang H.E., Li J.H., Li N., Qian D. Towards high-performance all-solid-state asymmetric supercapacitors: A hierarchical doughnut-like Ni3S2@PPy core-shell heterostructure on nickel foam electrode and density functional theory calculations. J. Power Sources. 2021;501:230003. doi: 10.1016/j.jpowsour.2021.230003. DOI

Song Y.C., Hong P.D., Li T.F., Ma G.X., Deng Q.H., Zhou Y.M., Zhang Y.W. A nanoflower-like polypyrrole-based cobalt-nickel sulfide hybrid heterostructures with electrons migration to boost overall water splitting. J. Colloid Interface Sci. 2022;618:1–10. doi: 10.1016/j.jcis.2022.03.035. PubMed DOI

Li J., Zou Y.J., Li B., Xu F., Chu H.L., Qiu S.J., Zhang J., Sun L.X., Xiang C.L. Polypyrrole-wrapped NiCo2S4 nanoneedles as an electrode material for supercapacitor applications. Ceram. Int. 2021;47:16562–16569. doi: 10.1016/j.ceramint.2021.02.227. DOI

Shen X.J., Wei X.Y., Wang T.F., Li S.M., Li H.T. Polypyrrole embedded in nickel-cobalt sulfide nanosheets grown on nickel particles passivated silicon nanowire arrays for high-performance supercapacitors. Chem. Eng. J. 2023;461:141745. doi: 10.1016/j.cej.2023.141745. DOI

Kumar A., Kumar S., Jana S., Prakash R. Investigation of the synergistic effect in polypyrrole/Ni-doped NASICON composites for an enhanced hydrogen evolution reaction. Energy Fuels. 2023;37:4552–4565. doi: 10.1021/acs.energyfuels.2c04178. DOI

Jiao F.Z., Wu J., Zhang T.T., Pan R.J., Wang Z.H., Yu Z.Z., Qu J. Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants. ACS Appl. Mater. Interfaces. 2023;15:41007–41018. doi: 10.1021/acsami.3c09346. PubMed DOI

Oriňáková R., Filkusová M. Hydrogen evolution on microstructured polypyrrole films modified with nickel. Synth. Met. 2010;160:927–931. doi: 10.1016/j.synthmet.2010.02.002. DOI

Chemchoub S., Oularbi L., El Attar A., Younssi S.A., Bentiss F., Jama C., El Rhazi M. Cost-effective non-noble metal supported on conducting polymer composite such as nickel nanoparticles/polypyrrole as efficient anode electrocatalyst for ethanol oxidation. Mater. Chem. Phys. 2020;250:123009. doi: 10.1016/j.matchemphys.2020.123009. DOI

Emir G., Dilgin Y., Ramanaviciene A., Ramanavicius A. Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite. Microchem. J. 2021;161:105751. doi: 10.1016/j.microc.2020.105751. DOI

Šišoláková I., Gorejová R., Chovancová F., Shepa J., Ngwabebhoh F.A., Fedorková A.S., Sáha P., Oriňáková R. Polymer-based electrochemical sensor: Fast, accurate, and simple insulin diagnostics tool. Electrocatalysis. 2023;14:697–707. doi: 10.1007/s12678-023-00827-w. DOI

Genetti W.B., Yuan W.L., Grady B.P., O’Rear E.A., Lai C.L., Glatzhofer D.T. Polymer matrix composites: Conductivity enhancement through polypyrrole coating of nickel flake. J. Mater. Sci. 1998;33:3085–3093. doi: 10.1023/A:1004387621165. DOI

Guo J., Li X., Chen Z.R., Zhu J.F., Mai X.M., Wei R.B., Sun K., Liu H., Chen Y.X., Naik N. Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J. Mater. Sci. Technol. 2022;108:64–72. doi: 10.1016/j.jmst.2021.08.049. DOI

Jurča M., Vilčáková J., Kazantseva N.E., Prokeš J., Trchová M., Stejskal J. Conducting and magnetic hybrid polyaniline/nickel composites. Synth. Met. 2022;291:117165. doi: 10.1016/j.synthmet.2022.117165. DOI

Saraswat A., Kumar S. Cutting-edge applications of polyaniline composites towards futuristic energy supply devices. Eur. Polym. J. 2023;200:112501. doi: 10.1016/j.eurpolymj.2023.112501. DOI

Stejskal J., Vilčáková J., Jurča M., Fei H.J., Trchová M., Kolská Z., Prokeš J., Křivka I. Polypyrrole-coated melamine sponge as a precursor for conducting macroporous nitrogen-containing carbons. Coatings. 2022;12:324. doi: 10.3390/coatings12030324. DOI

Cascales J.J.L., Fernandez A.J., Otero T.F. Characterization of the reduced and oxidized polypyrrole/water interface: A molecular dynamics simulation study. J. Phys. Chem. B. 2003;107:9339–9343. doi: 10.1021/jp027717o. DOI

Trchová M., Stejskal J. Resonance Raman spectroscopy of conducting polypyrrole nanotubes: Disordered surface versus ordered body. J. Phys. Chem. A. 2018;122:9298–9306. doi: 10.1021/acs.jpca.8b09794. PubMed DOI

Shymborska Y., Budkowski A., Raczkowska J., Donchak V., Vasiichuk V., Stetsyshyn Y. Switching it up: The promise of stimuli-responsive polymer systems in biomedical science. Chem. Rec. 2023:e202300217. doi: 10.1002/tcr.202300217. PubMed DOI

Park B.J., Fang F.F., Choi H.J. Magnetorheology: Materials and application. Soft Matter. 2010;6:5246–5253. doi: 10.1039/c0sm00014k. DOI

Lim S.T., Cho M.S., Jang I.B., Choi H.J. Magnetorheological characterization of carbonyl iron based suspension stabilized by fumed silica. J. Magn. Magn. Mater. 2004;282:170–173. doi: 10.1016/j.jmmm.2004.04.040. DOI

Fang F.F., Kim J.H., Choi H.J. Synthesis of core-shell structured PS/Fe3O4 microbeads and their magnetorheology. Polymer. 2009;50:2290–2293. doi: 10.1016/j.polymer.2009.03.023. DOI

Munteanu A., Plachý T., Munteanu L., Ngwabebhoh F.A., Stejskal J., Trchová M., Kubík M., Sedlačík M. Bidisperse magnetorheological fluids utilizing composite polypyrrole nanotubes/magnetite nanoparticles and carbonyl iron microspheres. Rheol. Acta. 2023;62:461–472. doi: 10.1007/s00397-023-01409-9. DOI

Munteanu L., Masař M., Sedlačík M., Kohl M., Kalendová A. Magneto-active ferrite-based paint pigments. AIP Conf. Proc. 2023;2997:040006. doi: 10.1063/5.0159567. DOI

Morillas J.R., Carreón-González E., de Vicente J. Effect of particle aspect ratio in magnetorheology. Smart Mater. Struct. 2015;24:125005. doi: 10.1088/0964-1726/24/12/125005. DOI

Gwon H., Park S., Lu Q., Choi H.J., Lee S. Size effect of iron oxide nanorods with controlled aspect ratio on magneto-responsive behavior. J. Ind. Eng. Chem. 2023;124:279–286. doi: 10.1016/j.jiec.2023.04.017. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

In-Situ Coating of Iron with a Conducting Polymer, Polypyrrole, as a Promise for Corrosion Protection

. 2024 Sep 29 ; 17 (19) : . [epub] 20240929

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...