Conducting and Magnetic Hybrid Polypyrrole/Nickel Composites and Their Application in Magnetorheology
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-07244S
Czech Science Foundation
22-25734S
Czech Science Foundation
PubMed
38204007
PubMed Central
PMC10780277
DOI
10.3390/ma17010151
PII: ma17010151
Knihovny.cz E-zdroje
- Klíčová slova
- conductivity, hybrid composites, magnetization, magnetorheology, nickel microparticles, polypyrrole, resistivity,
- Publikační typ
- časopisecké články MeSH
Hybrid organic/inorganic conducting and magnetic composites of core-shell type have been prepared by in-situ coating of nickel microparticles with polypyrrole. Three series of syntheses have been made. In the first, pyrrole was oxidised with ammonium peroxydisulfate in water in the presence of various amounts of nickel and the composites contained up to 83 wt% of this metal. The second series used 0.1 M sulfuric acid as a reaction medium. Finally, the composites with polypyrrole nanotubes were prepared in water in the presence of structure-guiding methyl orange dye. The nanotubes have always been accompanied by the globular morphology. FTIR and Raman spectroscopies confirmed the formation of polypyrrole. The resistivity of composite powders of the order of tens to hundreds Ω cm was monitored as a function of pressure up to 10 MPa. The resistivity of composites slightly increased with increasing content of nickel. This apparent paradox is explained by the coating of nickel particles with polypyrrole, which prevents their contact and subsequent generation of metallic conducting pathways. Electrical properties were practically independent of the way of composite preparation or nickel content and were controlled by the polypyrrole phase. On the contrary, magnetic properties were determined exclusively by nickel content. The composites were used as a solid phase to prepare a magnetorheological fluid. The test showed better performance when compared with a different nickel system reported earlier.
Faculty of Mathematics and Physics Charles University 180 00 Prague Czech Republic
University Institute Tomas Bata University in Zlín 760 01 Zlín Czech Republic
University of Chemistry and Technology 166 28 Prague Czech Republic
Zobrazit více v PubMed
Obodo R.M., Shinde N.M., Chime U.K., Ezugwu S., Nwanya A.C., Ahmad S., Maaza M., Ejikeme P.M., Ezema F.I. Recent advances in metal oxide/hydroxide on three-dimensional nickel foam substrate for high performance pseudocapacitive electrodes. Curr. Opin. Electrochem. 2020;21:242–249. doi: 10.1016/j.coelec.2020.02.022. DOI
Ul-Hoque M.I., Holze R. Intrinsically conducting polymer composites as active masses in supercapacitors. Polymers. 2023;15:730. doi: 10.3390/polym15030730. PubMed DOI PMC
Irshad M.S., Arshad N., Wang X.B., Li H.R., Javed M.Q., Xu Y., Alshahrani L.A., Mei T., Li J.H. Intensifying solar interfacial heat accumulation for clean water generation excluding heavy metal ions and oil emulsions. Solar RRL. 2021;5:2100427. doi: 10.1002/solr.202100427. DOI
Ghanbari R., Ghorbani S.R. High-performance nickel molybdate/reduced graphene oxide/polypyrrole ternary nanocomposite as flexible all-solid-state asymmetric supercapacitor. J. Energy Storage. 2023;60:106670. doi: 10.1016/j.est.2023.106670. DOI
Shi A.R., Song X.M., Wei L., Ma H.Y., Pang H.J., Li W.W., Liu X.W., Tan L.C. Design of an internal/external bicontinuous conductive network for high-performance asymmetrical supercapacitors. Molecules. 2023;27:8168. doi: 10.3390/molecules27238168. PubMed DOI PMC
Zhao M.M., Zhao Q.X., Li B., Xue H.G., Pang H., Chen C.Y. Recent progress in layered double hydroxide based materials for electrochemical capacitors: Design, synthesis and performance. Nanoscale. 2017;9:15206–15225. doi: 10.1039/C7NR04752E. PubMed DOI
Wei J.T., Xing G.Z., Gao L., Suo H., He X.P., Zhao C., Li S., Xing S.X. Nickel foam based polypyrrole-Ag composite film: A new route toward stable electrodes for supercapacitors. New J. Chem. 2013;37:337–341. doi: 10.1039/C2NJ40590C. DOI
Gao J., Wang X.H., Wang X.Q., Que R.H., Fang Y., Shi B., Wang Z.H. Hierarchical polypyrrole/Ni3S2@MoS2 core-shell nanostructures on a nickel foam for high-performance supercapacitors. RSC Adv. 2016;6:68460–68467. doi: 10.1039/C6RA12095D. DOI
Hasanzadeh M., Ansari R., Farahpour M. Cobalt disulfide/polypyrrole cauliflower-like nanocomposite: Single-pot hydrothermal synthesis, characterization, and their enhanced storage energy in supercapacitors. J. Alloy Compd. 2023;951:169965. doi: 10.1016/j.jallcom.2023.169965. DOI
Wang S., Fan Y.K., Wang F., Su Y.N., Zhou X., Zhu Z.Q., Sun H.X., Liang W.D., Li A. Potentially scalable fabrication of salt-rejection evaporator based on electrogenerated polypyrrole-coated nickel foam for efficient solar steam generation. Desalination. 2021;505:114982. doi: 10.1016/j.desal.2021.114982. DOI
Karazehir T. Electrodeposited Pd nanoparticles on polypyrrole/nickel foam for efficient methanol oxidation. Int. J. Hydrogen Energy. 2023;48:10493–10506. doi: 10.1016/j.ijhydene.2022.12.059. DOI
Yu H.B., Che M., Zhao B., Lu Y., Zhu S.Y., Wang X.H., Qin W.C., Huo M.X. Enhanced electrosorption of rhodamine B over porous copper-nickel foam electrodes modified with graphene oxide/polypyrrole. Synth. Met. 2021;262:116332. doi: 10.1016/j.synthmet.2020.116332. DOI
Ren J., Shen M., Li Z.L., Yang C.M., Liang Y., Wang H.E., Li J.H., Li N., Qian D. Towards high-performance all-solid-state asymmetric supercapacitors: A hierarchical doughnut-like Ni3S2@PPy core-shell heterostructure on nickel foam electrode and density functional theory calculations. J. Power Sources. 2021;501:230003. doi: 10.1016/j.jpowsour.2021.230003. DOI
Song Y.C., Hong P.D., Li T.F., Ma G.X., Deng Q.H., Zhou Y.M., Zhang Y.W. A nanoflower-like polypyrrole-based cobalt-nickel sulfide hybrid heterostructures with electrons migration to boost overall water splitting. J. Colloid Interface Sci. 2022;618:1–10. doi: 10.1016/j.jcis.2022.03.035. PubMed DOI
Li J., Zou Y.J., Li B., Xu F., Chu H.L., Qiu S.J., Zhang J., Sun L.X., Xiang C.L. Polypyrrole-wrapped NiCo2S4 nanoneedles as an electrode material for supercapacitor applications. Ceram. Int. 2021;47:16562–16569. doi: 10.1016/j.ceramint.2021.02.227. DOI
Shen X.J., Wei X.Y., Wang T.F., Li S.M., Li H.T. Polypyrrole embedded in nickel-cobalt sulfide nanosheets grown on nickel particles passivated silicon nanowire arrays for high-performance supercapacitors. Chem. Eng. J. 2023;461:141745. doi: 10.1016/j.cej.2023.141745. DOI
Kumar A., Kumar S., Jana S., Prakash R. Investigation of the synergistic effect in polypyrrole/Ni-doped NASICON composites for an enhanced hydrogen evolution reaction. Energy Fuels. 2023;37:4552–4565. doi: 10.1021/acs.energyfuels.2c04178. DOI
Jiao F.Z., Wu J., Zhang T.T., Pan R.J., Wang Z.H., Yu Z.Z., Qu J. Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants. ACS Appl. Mater. Interfaces. 2023;15:41007–41018. doi: 10.1021/acsami.3c09346. PubMed DOI
Oriňáková R., Filkusová M. Hydrogen evolution on microstructured polypyrrole films modified with nickel. Synth. Met. 2010;160:927–931. doi: 10.1016/j.synthmet.2010.02.002. DOI
Chemchoub S., Oularbi L., El Attar A., Younssi S.A., Bentiss F., Jama C., El Rhazi M. Cost-effective non-noble metal supported on conducting polymer composite such as nickel nanoparticles/polypyrrole as efficient anode electrocatalyst for ethanol oxidation. Mater. Chem. Phys. 2020;250:123009. doi: 10.1016/j.matchemphys.2020.123009. DOI
Emir G., Dilgin Y., Ramanaviciene A., Ramanavicius A. Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite. Microchem. J. 2021;161:105751. doi: 10.1016/j.microc.2020.105751. DOI
Šišoláková I., Gorejová R., Chovancová F., Shepa J., Ngwabebhoh F.A., Fedorková A.S., Sáha P., Oriňáková R. Polymer-based electrochemical sensor: Fast, accurate, and simple insulin diagnostics tool. Electrocatalysis. 2023;14:697–707. doi: 10.1007/s12678-023-00827-w. DOI
Genetti W.B., Yuan W.L., Grady B.P., O’Rear E.A., Lai C.L., Glatzhofer D.T. Polymer matrix composites: Conductivity enhancement through polypyrrole coating of nickel flake. J. Mater. Sci. 1998;33:3085–3093. doi: 10.1023/A:1004387621165. DOI
Guo J., Li X., Chen Z.R., Zhu J.F., Mai X.M., Wei R.B., Sun K., Liu H., Chen Y.X., Naik N. Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J. Mater. Sci. Technol. 2022;108:64–72. doi: 10.1016/j.jmst.2021.08.049. DOI
Jurča M., Vilčáková J., Kazantseva N.E., Prokeš J., Trchová M., Stejskal J. Conducting and magnetic hybrid polyaniline/nickel composites. Synth. Met. 2022;291:117165. doi: 10.1016/j.synthmet.2022.117165. DOI
Saraswat A., Kumar S. Cutting-edge applications of polyaniline composites towards futuristic energy supply devices. Eur. Polym. J. 2023;200:112501. doi: 10.1016/j.eurpolymj.2023.112501. DOI
Stejskal J., Vilčáková J., Jurča M., Fei H.J., Trchová M., Kolská Z., Prokeš J., Křivka I. Polypyrrole-coated melamine sponge as a precursor for conducting macroporous nitrogen-containing carbons. Coatings. 2022;12:324. doi: 10.3390/coatings12030324. DOI
Cascales J.J.L., Fernandez A.J., Otero T.F. Characterization of the reduced and oxidized polypyrrole/water interface: A molecular dynamics simulation study. J. Phys. Chem. B. 2003;107:9339–9343. doi: 10.1021/jp027717o. DOI
Trchová M., Stejskal J. Resonance Raman spectroscopy of conducting polypyrrole nanotubes: Disordered surface versus ordered body. J. Phys. Chem. A. 2018;122:9298–9306. doi: 10.1021/acs.jpca.8b09794. PubMed DOI
Shymborska Y., Budkowski A., Raczkowska J., Donchak V., Vasiichuk V., Stetsyshyn Y. Switching it up: The promise of stimuli-responsive polymer systems in biomedical science. Chem. Rec. 2023:e202300217. doi: 10.1002/tcr.202300217. PubMed DOI
Park B.J., Fang F.F., Choi H.J. Magnetorheology: Materials and application. Soft Matter. 2010;6:5246–5253. doi: 10.1039/c0sm00014k. DOI
Lim S.T., Cho M.S., Jang I.B., Choi H.J. Magnetorheological characterization of carbonyl iron based suspension stabilized by fumed silica. J. Magn. Magn. Mater. 2004;282:170–173. doi: 10.1016/j.jmmm.2004.04.040. DOI
Fang F.F., Kim J.H., Choi H.J. Synthesis of core-shell structured PS/Fe3O4 microbeads and their magnetorheology. Polymer. 2009;50:2290–2293. doi: 10.1016/j.polymer.2009.03.023. DOI
Munteanu A., Plachý T., Munteanu L., Ngwabebhoh F.A., Stejskal J., Trchová M., Kubík M., Sedlačík M. Bidisperse magnetorheological fluids utilizing composite polypyrrole nanotubes/magnetite nanoparticles and carbonyl iron microspheres. Rheol. Acta. 2023;62:461–472. doi: 10.1007/s00397-023-01409-9. DOI
Munteanu L., Masař M., Sedlačík M., Kohl M., Kalendová A. Magneto-active ferrite-based paint pigments. AIP Conf. Proc. 2023;2997:040006. doi: 10.1063/5.0159567. DOI
Morillas J.R., Carreón-González E., de Vicente J. Effect of particle aspect ratio in magnetorheology. Smart Mater. Struct. 2015;24:125005. doi: 10.1088/0964-1726/24/12/125005. DOI
Gwon H., Park S., Lu Q., Choi H.J., Lee S. Size effect of iron oxide nanorods with controlled aspect ratio on magneto-responsive behavior. J. Ind. Eng. Chem. 2023;124:279–286. doi: 10.1016/j.jiec.2023.04.017. DOI