The histone chaperones ASF1 and HIRA are required for telomere length and 45S rDNA copy number homeostasis

. 2024 Nov ; 120 (3) : 1125-1141. [epub] 20241014

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39400911

Grantová podpora
23-06643S Grantová Agentura České Republiky
MUNI/R/1364/2023 Grant Agency of Masaryk University
ANR-11 JSV2 009 01 French National Research Agency
ANR-12 ISV6 0001 French National Research Agency
CZ.02.01.01/00/22_008/0004581 European Regional Development Fund Programme Johannes Amos Comenius

Genome stability is significantly influenced by the precise coordination of chromatin complexes that facilitate the loading and eviction of histones from chromatin during replication, transcription, and DNA repair processes. In this study, we investigate the role of the Arabidopsis H3 histone chaperones ANTI-SILENCING FUNCTION 1 (ASF1) and HISTONE REGULATOR A (HIRA) in the maintenance of telomeres and 45S rDNA loci, genomic sites that are particularly susceptible to changes in the chromatin structure. We find that both ASF1 and HIRA are essential for telomere length regulation, as telomeres are significantly shorter in asf1a1b and hira mutants. However, these shorter telomeres remain localized around the nucleolus and exhibit a comparable relative H3 occupancy to the wild type. In addition to regulating telomere length, ASF1 and HIRA contribute to silencing 45S rRNA genes and affect their copy number. Besides, ASF1 supports global heterochromatin maintenance. Our findings also indicate that ASF1 transiently binds to the TELOMERE REPEAT BINDING 1 protein and the N terminus of telomerase in vivo, suggesting a physical link between the ASF1 histone chaperone and the telomere maintenance machinery.

Zobrazit více v PubMed

Abascal, F., Corpet, A., Gurard‐Levin, Z.A., Juan, D., Ochsenbein, F., Rico, D. et al. (2013) Subfunctionalization via adaptive evolution influenced by genomic context: the case of histone chaperones ASF1a and ASF1b. Molecular Biology and Evolution, 30, 1853–1866.

Adam, S., Polo, S.E. & Almouzni, G. (2013) Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell, 155, 94–106.

Anderson, H.E., Wardle, J., Korkut, S.V., Murton, H.E., Lopez‐Maury, L., Bahler, J. et al. (2009) The fission yeast HIRA histone chaperone is required for promoter silencing and the suppression of cryptic antisense transcripts. Molecular and Cellular Biology, 29, 5158–5167.

Arakawa, T., Nakatani, T., Oda, M., Kimura, Y., Sekita, Y., Kimura, T. et al. (2015) Stella controls chromocenter formation through regulation of Daxx expression in 2‐cell embryos. Biochemical and Biophysical Research Communications, 466, 60–65.

Armstrong, S.J., Franklin, F.C. & Jones, G.H. (2001) Nucleolus‐associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. Journal of Cell Science, 114, 4207–4217.

Benoit, M., Simon, L., Desset, S., Duc, C., Cotterell, S., Poulet, A. et al. (2019) Replication‐coupled histone H3.1 deposition determines nucleosome composition and heterochromatin dynamics during Arabidopsis seedling development. The New Phytologist, 221, 385–398.

Bouvier, D., Ferrand, J., Chevallier, O., Paulsen, M.T., Ljungman, M. & Polo, S.E. (2021) Dissecting regulatory pathways for transcription recovery following DNA damage reveals a non‐canonical function of the histone chaperone HIRA. Nature Communications, 12, 3835.

Buschbeck, M. & Hake, S.B. (2017) Variants of core histones and their roles in cell fate decisions, development and cancer. Nature Reviews. Molecular Cell Biology, 18, 299–314.

Chandrasekhara, C., Mohannath, G., Blevins, T., Pontvianne, F. & Pikaard, C.S. (2016) Chromosome‐specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis. Genes & Development, 30, 177–190.

Davarinejad, H., Huang, Y.C., Mermaz, B., LeBlanc, C., Poulet, A., Thomson, G. et al. (2022) The histone H3.1 variant regulates TONSOKU‐mediated DNA repair during replication. Science, 375, 1281–1286.

de Lange, T. (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes & Development, 19, 2100–2110.

Dellaporta, S.L., Wood, J. & Hicks, J.B. (1983) A plant DNA minipreparation: version II. Plant Molecular Biology Reporter, 1, 19–21.

Desset, S., Poulet, A. & Tatout, C. (2018) Quantitative 3D analysis of nuclear morphology and heterochromatin organization from whole‐mount plant tissue using NucleusJ. Methods in Molecular Biology, 1675, 615–632.

Dewari, P.S. & Bhargava, P. (2014) Genome‐wide mapping of yeast histone chaperone anti‐silencing function 1 reveals its role in condensin binding with chromatin. PLoS One, 9, e108652.

Dreissig, S., Schiml, S., Schindele, P., Weiss, O., Rutten, T., Schubert, V. et al. (2017) Live‐cell CRISPR imaging in plants reveals dynamic telomere movements. The Plant Journal: For Cell and Molecular Biology, 91, 565–573.

Dubos, T., Poulet, A., Gonthier‐Gueret, C., Mougeot, G., Vanrobays, E., Li, Y. et al. (2020) Automated 3D bio‐imaging analysis of nuclear organization by NucleusJ 2.0. Nucleus, 11, 315–329.

Duc, C., Benoit, M., Detourne, G., Simon, L., Poulet, A., Jung, M. et al. (2017) Arabidopsis ATRX modulates H3.3 occupancy and fine‐tunes gene expression. Plant Cell, 29, 1773–1793.

Duc, C., Benoit, M., Le Goff, S., Simon, L., Poulet, A., Cotterell, S. et al. (2015) The histone chaperone complex HIR maintains nucleosome occupancy and counterbalances impaired histone deposition in CAF‐1 complex mutants. The Plant Journal, 81, 707–722.

Dvorackova, M., Fojtova, M. & Fajkus, J. (2015) Chromatin dynamics of plant telomeres and ribosomal genes. The Plant Journal: For Cell and Molecular Biology, 83, 18–37.

Dvorackova, M., Rossignol, P., Shaw, P.J., Koroleva, O.A., Doonan, J.H. & Fajkus, J. (2010) AtTRB1, a telomeric DNA‐binding protein from Arabidopsis, is concentrated in the nucleolus and shows highly dynamic association with chromatin. The Plant Journal: For Cell and Molecular Biology, 61, 637–649.

Edwards, K., Johnstone, C. & Thompson, C. (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19, 1349.

Eekhout, T., Dvorackova, M., Pedroza Garcia, J.A., Nespor Dadejova, M., Kalhorzadeh, P., Van den Daele, H. et al. (2021) G2/M‐checkpoint activation in fasciata1 rescues an aberrant S‐phase checkpoint but causes genome instability. Plant Physiology, 186, 1893–1907.

English, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E. & Tyler, J.K. (2006) Structural basis for the histone chaperone activity of Asf1. Cell, 127, 495–508.

Exner, V., Taranto, P., Schonrock, N., Gruissem, W. & Hennig, L. (2006) Chromatin assembly factor CAF‐1 is required for cellular differentiation during plant development. Development, 133, 4163–4172.

Fajkus, J., Fulneckova, J., Hulanova, M., Berkova, K., Riha, K. & Matyasek, R. (1998) Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths. Molecular & General Genetics, 260, 470–474.

Fajkus, J. & Trifonov, E.N. (2001) Columnar packing of telomeric nucleosomes. Biochemical and Biophysical Research Communications, 280, 961–963.

Feng, S., Ma, S., Li, K., Gao, S., Ning, S., Shang, J. et al. (2022) RIF1‐ASF1‐mediated high‐order chromatin structure safeguards genome integrity. Nature Communications, 13, 957.

Fitzgerald, M.S., McKnight, T.D. & Shippen, D.E. (1996) Characterization and developmental patterns of telomerase expression in plants. Proceedings of the National Academy of Sciences of the United States of America, 93, 14422–14427.

Fitzgerald, M.S., Riha, K., Gao, F., Ren, S., McKnight, T.D. & Shippen, D.E. (1999) Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proceedings of the National Academy of Sciences of the United States of America, 96, 14813–14818.

Fransz, P., de Jong, J.H., Lysak, M., Castiglione, M.R. & Schubert, I. (2002) Interphase chromosomes in are organized as well defined chromocenters from which euchromatin loops emanate. Proceedings of the National Academy of Sciences of the United States of America, 99, 14584–14589.

Fulneckova, J., Dokladal, L., Kolarova, K., Nespor Dadejova, M., Prochazkova, K., Gomelska, S. et al. (2021) Telomerase interaction partners‐insight from plants. International Journal of Molecular Sciences, 23, 368.

Goldberg, A.D., Banaszynski, L.A., Noh, K.M., Lewis, P.W., Elsaesser, S.J., Stadler, S. et al. (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell, 140, 678–691.

Greider, C.W. & Blackburn, E.H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 43, 405–413.

Greider, C.W. & Blackburn, E.H. (1996) Telomeres, telomerase and cancer. Scientific American, 274, 92–97.

Groth, A., Corpet, A., Cook, A.J., Roche, D., Bartek, J., Lukas, J. et al. (2007) Regulation of replication fork progression through histone supply and demand. Science, 318, 1928–1931.

Guthmann, M., Qian, C., Gialdini, I., Nakatani, T., Ettinger, A., Schauer, T. et al. (2023) A change in biophysical properties accompanies heterochromatin formation in mouse embryos. Genes & Development, 37, 336–350.

Hiraga, S., Botsios, S. & Donaldson, A.D. (2008) Histone H3 lysine 56 acetylation by Rtt109 is crucial for chromosome positioning. The Journal of Cell Biology, 183, 641–651.

Hoang, S.M., Kaminski, N., Bhargava, R., Barroso‐Gonzalez, J., Lynskey, M.L., Garcia‐Exposito, L. et al. (2020) Regulation of ALT‐associated homology‐directed repair by polyADP‐ribosylation. Nature Structural & Molecular Biology, 27, 1152–1164.

Hofr, C., Sultesova, P., Zimmermann, M., Mozgova, I., Schrumpfova, P.P., Wimmerova, M. et al. (2009) Single‐Myb‐histone proteins from Arabidopsis thaliana: a quantitative study of telomere‐binding specificity and kinetics. The Biochemical Journal, 419, 221–228.

Huang, S., Zhou, H., Tarara, J. & Zhang, Z. (2007) A novel role for histone chaperones CAF‐1 and Rtt106p in heterochromatin silencing. The EMBO Journal, 26, 2274–2283.

Jaske, K., Mokros, P., Mozgova, I., Fojtova, M. & Fajkus, J. (2013) A telomerase‐independent component of telomere loss in chromatin assembly factor 1 mutants of Arabidopsis thaliana. Chromosoma, 122, 285–293.

Jiang, D. & Berger, F. (2017) DNA replication‐coupled histone modification maintains polycomb gene silencing in plants. Science, 357, 1146–1149.

Jiang, W.Q., Nguyen, A., Cao, Y., Chang, A.C. & Reddel, R.R. (2011) HP1‐mediated formation of alternative lengthening of telomeres‐associated PML bodies requires HIRA but not ASF1a. PLoS One, 6, e17036.

Kannan, K., Nelson, A.D. & Shippen, D.E. (2008) Dyskerin is a component of the Arabidopsis telomerase RNP required for telomere maintenance. Molecular and Cellular Biology, 28, 2332–2341.

Kaufman, P.D., Kobayashi, R., Kessler, N. & Stillman, B. (1995) The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell, 81, 1105–1114.

Kaya, H., Shibahara, K.I., Taoka, K.I., Iwabuchi, M., Stillman, B. & Araki, T. (2001) FASCIATA genes for chromatin assembly factor‐1 in Arabidopsis maintain the cellular organization of apical meristems. Cell, 104, 131–142.

Kerppola, T.K. (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annual Review of Biophysics, 37, 465–487.

Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L. et al. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science, 266, 2011–2015.

Kirik, A., Pecinka, A., Wendeler, E. & Reiss, B. (2006) The chromatin assembly factor subunit FASCIATA1 is involved in homologous recombination in plants. Plant Cell, 18, 2431–2442.

Klein, K.N., Zhao, P.A., Lyu, X., Sasaki, T., Bartlett, D.A., Singh, A.M. et al. (2021) Replication timing maintains the global epigenetic state in human cells. Science, 372, 371–378.

Klimovskaia, I.M., Young, C., Stromme, C.B., Menard, P., Jasencakova, Z., Mejlvang, J. et al. (2014) Tousled‐like kinases phosphorylate Asf1 to promote histone supply during DNA replication. Nature Communications, 5, 3394.

Kolarova, K., Nespor Dadejova, M., Loja, T., Lochmanova, G., Sykorova, E. & Dvorackova, M. (2021) Disruption of NAP1 genes in Arabidopsis thaliana suppresses the fas1 mutant phenotype, enhances genome stability and changes chromatin compaction. The Plant Journal, 106, 56–73.

Lamour, V., Lecluse, Y., Desmaze, C., Spector, M., Bodescot, M., Aurias, A. et al. (1995) A human homolog of the S. cerevisiae HIR1 and HIR2 transcriptional repressors cloned from the DiGeorge syndrome critical region. Human Molecular Genetics, 4, 791–799.

Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. (2009) Ultrafast and memory‐efficient alignment of short DNA sequences to the human genome. Genome Biology, 10, R25.

Le Goff, S., Keceli, B.N., Jerabkova, H., Heckmann, S., Rutten, T., Cotterell, S. et al. (2020) The H3 histone chaperone NASP(SIM3) escorts CenH3 in Arabidopsis. The Plant Journal: For Cell and Molecular Biology, 101, 71–86.

Le, S., Davis, C., Konopka, J.B. & Sternglanz, R. (1997) Two new S‐phase‐specific genes from Saccharomyces cerevisiae. Yeast, 13, 1029–1042.

Lee, J.H., Lee, Y.S., Jeong, S.A., Khadka, P., Roth, J. & Chung, I.K. (2014) Catalytically active telomerase holoenzyme is assembled in the dense fibrillar component of the nucleolus during S phase. Histochemistry and Cell Biology, 141, 137–152.

Lermontova, I., Schubert, V., Bornke, F., Macas, J. & Schubert, I. (2007) Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1. Plant Molecular Biology, 65, 615–626.

Lewis, P.W., Elsaesser, S.J., Noh, K.M., Stadler, S.C. & Allis, C.D. (2010) Daxx is an H3.3‐specific histone chaperone and cooperates with ATRX in replication‐independent chromatin assembly at telomeres. Proceedings of the National Academy of Sciences of the United States of America, 107, 14075–14080.

Li, F., Deng, Z., Zhang, L., Wu, C., Jin, Y., Hwang, I. et al. (2019) ATRX loss induces telomere dysfunction and necessitates induction of alternative lengthening of telomeres during human cell immortalization. The EMBO Journal, 38, e96659.

Lycka, M., Peska, V., Demko, M., Spyroglou, I., Kilar, A., Fajkus, J. et al. (2021) WALTER: an easy way to online evaluate telomere lengths from terminal restriction fragment analysis. BMC Bioinformatics, 22, 145.

McClintock, B. (1930) A cytological demonstration of the location of an interchange between two non‐homologous chromosomes of Zea mays. Proceedings of the National Academy of Sciences of the United States of America, 16, 791–796.

Miller, K.E., Kim, Y., Huh, W.K. & Park, H.O. (2015) Bimolecular fluorescence complementation (BiFC) analysis: advances and recent applications for genome‐wide interaction studies. Journal of Molecular Biology, 427, 2039–2055.

Min, Y., Frost, J.M. & Choi, Y. (2019) Nuclear chaperone ASF1 is required for gametogenesis in Arabidopsis thaliana. Scientific Reports, 9(13), 959.

Moshkin, Y.M., Armstrong, J.A., Maeda, R.K., Tamkun, J.W., Verrijzer, P., Kennison, J.A. et al. (2002) Histone chaperone ASF1 cooperates with the Brahma chromatin‐remodelling machinery. Genes & Development, 16, 2621–2626.

Mougeot, G., Safarbati, S., Alégot, H., Pouchin, P., Field, N., Almagro, S. et al. (2024) Biom3d, a modular framework to host and develop 3D segmentation methods. bioRxiv. Available from: https://doi.org/10.1101/2024.07.25.60480

Mozgova, I., Mokros, P. & Fajkus, J. (2010) Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. Plant Cell, 22, 2768–2780.

Muchova, V., Amiard, S., Mozgova, I., Dvorackova, M., Gallego, M.E., White, C. et al. (2015) Homology‐dependent repair is involved in 45S rDNA loss in plant CAF‐1 mutants. The Plant Journal, 81, 198–209.

Munoz‐Viana, R., Wildhaber, T., Trejo‐Arellano, M.S., Mozgova, I. & Hennig, L. (2017) Arabidopsis chromatin assembly factor 1 is required for occupancy and position of a subset of nucleosomes. The Plant Journal, 92, 363–374.

Naish, M., Alonge, M., Wlodzimierz, P., Tock, A.J., Abramson, B.W., Schmucker, A. et al. (2021) The genetic and epigenetic landscape of the Arabidopsis centromeres. Science, 374, eabi7489.

Nersisyan, L. & Arakelyan, A. (2015) Computel: computation of mean telomere length from whole‐genome next‐generation sequencing data. PLoS One, 10, e0125201.

Nespor Dadejova, M., Franek, M. & Dvorackova, M. (2022) Laser microirradiation as a versatile system for probing protein recruitment and protein–protein interactions at DNA lesions in plants. The New Phytologist, 234, 1891–1900.

Nie, X., Wang, H., Li, J., Holec, S. & Berger, F. (2014) The HIRA complex that deposits the histone H3.3 is conserved in Arabidopsis and facilitates transcriptional dynamics. Biology Open, 3, 794–802.

Olovnikov, A.M. (1992) Aging is a result of a shortening of the “differotene” in the telomere due to end under‐replication and under‐repair of DNA. Izvestiia Akademii nauk SSSR. Seriia Biologicheskaia, 641–643.

Ono, T., Kaya, H., Takeda, S., Abe, M., Ogawa, Y., Kato, M. et al. (2006) Chromatin assembly factor 1 ensures the stable maintenance of silent chromatin states in Arabidopsis. Genes to Cells, 11, 153–162.

O'Sullivan, R.J., Arnoult, N., Lackner, D.H., Oganesian, L., Haggblom, C., Corpet, A. et al. (2014) Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1. Nature Structural & Molecular Biology, 21, 167–174.

Otero, S., Desvoyes, B., Peiro, R. & Gutierrez, C. (2016) Histone H3 dynamics reveal domains with distinct proliferation potential in the Arabidopsis root. Plant Cell, 28, 1361–1371.

Palm, W. & de Lange, T. (2008) How shelterin protects mammalian telomeres. Annual Review of Genetics, 42, 301–334.

Picart‐Picolo, A., Grob, S., Picault, N., Franek, M., Llauro, C., Halter, T. et al. (2020) Large tandem duplications affect gene expression, 3D organization, and plant‐pathogen response. Genome Research, 30, 1583–1592.

Pontvianne, F., Blevins, T., Chandrasekhara, C., Mozgova, I., Hassel, C., Pontes, O.M. et al. (2013) Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states. Genes & Development, 27, 1545–1550.

Pontvianne, F., Carpentier, M.C., Durut, N., Pavlistova, V., Jaske, K., Schorova, S. et al. (2016) Identification of nucleolus‐associated chromatin domains reveals a role for the nucleolus in 3D organization of the A. thaliana genome. Cell Reports, 16, 1574–1587.

Probst, A.V., Desvoyes, B. & Gutierrez, C. (2020) Similar yet critically different: the distribution, dynamics and function of histone variants. Journal of Experimental Botany, 71, 5191–5204.

Probst, A.V., Fransz, P.F., Paszkowski, J. & Mittelsten Scheid, O. (2003) Two means of transcriptional reactivation within heterochromatin. The Plant Journal: For Cell and Molecular Biology, 33, 743–749.

Ray‐Gallet, D., Quivy, J.P., Scamps, C., Martini, E.M., Lipinski, M. & Almouzni, G. (2002) HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Molecular Cell, 9, 1091–1100.

Richards, E.J. & Ausubel, F.M. (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell, 53, 127–136.

Riha, K., McKnight, T.D., Griffing, L.R. & Shippen, D.E. (2001) Living with genome instability: plant responses to telomere dysfunction. Science, 291, 1797–1800.

Ruckova, E., Friml, J., Schrumpfova, P.P. & Fajkus, J. (2008) Role of alternative telomere lengthening unmasked in telomerase knock‐out mutant plants. Plant Molecular Biology, 66, 637–646.

Schorova, S., Fajkus, J., Zaveska Drabkova, L., Honys, D. & Schrumpfova, P.P. (2019) The plant Pontin and Reptin homologues, RuvBL1 and RuvBL2a, colocalize with TERT and TRB proteins in vivo, and participate in telomerase biogenesis. The Plant Journal: For Cell and Molecular Biology, 98, 195–212.

Schrumpfova, P.P., Fojtova, M. & Fajkus, J. (2019) Telomeres in plants and humans: not so different, not so similar. Cells, 8, 58.

Schrumpfova, P.P., Vychodilova, I., Dvorackova, M., Majerska, J., Dokladal, L., Schorova, S. et al. (2014) Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. The Plant Journal, 77, 770–781.

Schrumpfova, P.P., Vychodilova, I., Hapala, J., Schorova, S., Dvoracek, V. & Fajkus, J. (2016) Telomere binding protein TRB1 is associated with promoters of translation machinery genes in vivo. Plant Molecular Biology, 90, 189–206.

Sharp, J.A., Fouts, E.T., Krawitz, D.C. & Kaufman, P.D. (2001) Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Current Biology, 11, 463–473.

Silverman, J., Takai, H., Buonomo, S.B.C., Eisenhaber, F. & de Lange, T. (2004) Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S‐phase checkpoint. Genes & Development, 18, 2108–2119.

Soman, A., Wong, S.Y., Korolev, N., Surya, W., Lattmann, S., Vogirala, V.K. et al. (2022) Columnar structure of human telomeric chromatin. Nature, 609, 1048–1055.

Song, J., Rutjens, B. & Dean, C. (2014) Detecting histone modifications in plants. Methods in Molecular Biology, 1112, 165–175.

Tagami, H., Ray‐Gallet, D., Almouzni, G. & Nakatani, Y. (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell, 116, 51–61.

Tang, M., Chen, Z., Wang, C., Feng, X., Lee, N., Huang, M. et al. (2022) Histone chaperone ASF1 acts with RIF1 to promote DNA end joining in BRCA1‐deficient cells. The Journal of Biological Chemistry, 298(101), 979.

Teano, G., Concia, L., Wolff, L., Carron, L., Biocanin, I., Adamusova, K. et al. (2023) Histone H1 protects telomeric repeats from H3K27me3 invasion in Arabidopsis. Cell Reports, 42(112), 894.

Timashev, L.A., Babcock, H., Zhuang, X. & de Lange, T. (2017) The DDR at telomeres lacking intact shelterin does not require substantial chromatin decompaction. Genes & Development, 31, 578–589.

Torne, J., Ray‐Gallet, D., Boyarchuk, E., Garnier, M., Le Baccon, P., Coulon, A. et al. (2020) Two HIRA‐dependent pathways mediate H3.3 de novo deposition and recycling during transcription. Nature Structural & Molecular Biology, 27, 1057–1068.

Tyler, J.K., Adams, C.R., Chen, S.R., Kobayashi, R., Kamakaka, R.T. & Kadonaga, J.T. (1999) The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature, 402, 555–560.

Typas, D. (2023) Histone H3 and its chaperones. Nature Structural & Molecular Biology, 30, 405.

Vaquero‐Sedas, M.I. & Vega‐Palas, M.A. (2013) Differential association of Arabidopsis telomeres and centromeres with histone H3 variants. Scientific Reports, 3, 1202.

Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. (1996) Nucleosome assembly by a complex of CAF‐1 and acetylated histones H3/H4. Cell, 87, 95–104.

Vespa, L., Warrington, R.T., Mokros, P., Siroky, J. & Shippen, D.E. (2007) ATM regulates the length of individual telomere tracts in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 104, 18145–18150.

Vrbsky, J., Akimcheva, S., Watson, J.M., Turner, T.L., Daxinger, L., Vyskot, B. et al. (2010) siRNA‐mediated methylation of Arabidopsis telomeres. PLoS Genetics, 6, e1000986.

Weinert, T. (2005) Do telomeres ask checkpoint proteins: “gimme shelter‐in”? Developmental Cell, 9, 725–726.

Wollmann, H., Holec, S., Alden, K., Clarke, N.D., Jacques, P.E. & Berger, F. (2012) Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome. PLoS Genetics, 8, e1002658.

Wong, L.H., Ren, H., Williams, E., McGhie, J., Ahn, S., Sim, M. et al. (2009) Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells. Genome Research, 19, 404–414.

Wu, M.Y., Lin, C.Y., Tseng, H.Y., Hsu, F.M., Chen, P.Y. & Kao, C.F. (2017) H2B ubiquitylation and the histone chaperone Asf1 cooperatively mediate the formation and maintenance of heterochromatin silencing. Nucleic Acids Research, 45, 8225–8238.

Wu, W., He, J.N., Lan, M., Zhang, P. & Chu, W.K. (2021) Transcription‐replication collisions and chromosome fragility. Frontiers in Genetics, 12(804), 547.

Yang, Y., Chen, Y., Zhang, C., Huang, H. & Weissman, S.M. (2002) Nucleolar localization of hTERT protein is associated with telomerase function. Experimental Cell Research, 277, 201–209.

Zachova, D., Fojtova, M., Dvorackova, M., Mozgova, I., Lermontova, I., Peska, V. et al. (2013) Structure–function relationships during transgenic telomerase expression in Arabidopsis. Physiologia Plantarum, 149, 114–126.

Zavodnik, M., Fajkus, P., Franek, M., Kopecky, D., Garcia, S., Dodsworth, S. et al. (2023) Telomerase RNA gene paralogs in plants – the usual pathway to unusual telomeres. The New Phytologist, 239, 2353–2366.

Zhong, Z., Wang, Y., Wang, M., Yang, F., Thomas, Q.A., Xue, Y. et al. (2022) Histone chaperone ASF1 mediates H3.3‐H4 deposition in Arabidopsis. Nature Communications, 13, 6970.

Zhou, Y., Hartwig, B., James, G.V., Schneeberger, K. & Turck, F. (2016) Complementary activities of TELOMERE REPEAT BINDING proteins and Polycomb group complexes in transcriptional regulation of target genes. Plant Cell, 28, 87–101.

Zhu, Y., Weng, M., Yang, Y., Zhang, C., Li, Z., Shen, W.H. et al. (2011) Arabidopsis homologues of the histone chaperone ASF1 are crucial for chromatin replication and cell proliferation in plant development. The Plant Journal, 66, 443–455.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...