Pulling the Rug Out from Under: Biomechanical Microenvironment Remodeling for Induction of Hepatic Stellate Cell Quiescence
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
0701320001
Young Elite Scientists Sponsorship Program by Tianjin
0402080005
Major Special Projects
2020YFC1512304
National Key R&D Program of China
NUHSRO/2020/133/Startup/08
National University of Singapore
NUHSRO/2023/008/NUSMed/TCE/LOA
National University of Singapore
NUHSRO/2021/034/TRP/09/Nanomedicine
National University of Singapore
MOH-001388-00
National Medical Research Council
MOH-001041
National Medical Research Council
CG21APR1005
National Medical Research Council
NRF-000352-00
National Research Foundation
23-04740 M
Czech Science Foundation
82273873
National Natural Science Foundation of China
31971106
National Natural Science Foundation of China
81372124
National Natural Science Foundation of China
MOE-000387-00
Singapore Ministry of Education
PubMed
39410721
DOI
10.1002/adma.202406590
Knihovny.cz E-zdroje
- Klíčová slova
- biomechanical microenvironment, collagen I, hepatic fibrosis, hepatic stellate cell quiescence,
- MeSH
- biomechanika MeSH
- buněčné mikroprostředí účinky léků MeSH
- flavanony farmakologie chemie MeSH
- jaterní cirhóza * farmakoterapie metabolismus patologie MeSH
- jaterní hvězdicovité buňky * metabolismus cytologie účinky léků MeSH
- kolagen typu I metabolismus MeSH
- kyselina askorbová * farmakologie metabolismus chemie MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- flavanony MeSH
- kolagen typu I MeSH
- kyselina askorbová * MeSH
Hepatic fibrosis progresses concomitantly with a variety of biomechanical alternations, especially increased liver stiffness. These biomechanical alterations have long been considered as pathological consequences. Recently, growing evidence proposes that these alternations result in the fibrotic biomechanical microenvironment, which drives the activation of hepatic stellate cells (HSCs). Here, an inorganic ascorbic acid-oxidase (AAO) mimicking nanozyme loaded with liquiritigenin (LQ) is developed to trigger remodeling of the fibrotic biomechanical microenvironment. The AAO mimicking nanozyme is able to consume intracellular ascorbic acid, thereby impeding collagen I deposition by reducing its availability. Simultaneously, LQ inhibits the transcription of lysyl oxidase like 2 (LOXL2), thus impeding collagen I crosslinking. Through its synergistic activities, the prepared nanosystem efficiently restores the fibrotic biomechanical microenvironment to a near-normal physiological condition, promoting the quiescence of HSCs and regression of fibrosis. This strategy of remodeling the fibrotic biomechanical microenvironment, akin to "pulling the rug out from under", effectively treats hepatic fibrosis in mice, thereby highlighting the importance of tissue biomechanics and providing a potential approach to improve hepatic fibrosis treatment.
Zobrazit více v PubMed
T. Kisseleva, D. Brenner, Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 151.
C. Trautwein, S. L. Friedman, D. Schuppan, M. Pinzani, J. Hepatol. 2015, 62, S15.
Y. A. Lee, M. C. Wallace, S. L. Friedman, Gut 2015, 64, 830.
H. Takaaki, L. F. Scott, H. Yujin, Adv. Drug Delivery Rev. 2017, 121, 27.
N. C. Henderson, F. Rieder, T. A. Wynn, Nature 2020, 587, 555.
V. R. Rubin, K. Bojanic, M. Smolic, J. Rubin, A. Tabll, R. Smolic, J. Clin. Transl. Hepatol. 2021, 9, 60.
U. Arena, F. Vizzutti, G. Corti, S. Ambu, C. Stasi, S. Bresci, S. Moscarella, V. Boddi, A. Petrarca, G. Laffi, F. Marra, M. Pinzani, Hepatology 2008, 47, 380.
G. W. Rebecca, Hepatology 2008, 47, 1394.
O. Chaudhuri, J. Cooper‐White, P. A. Janmey, D. J. Mooney, V. B. Shenoy, Nature 2020, 584, 535.
E. D. Dennis, J. Paul, W. Yu‐Li, Science 2005, 310, 1139.
O. H. Richard, Science 2009, 326, 1216.
P. C. Georges, J.‐J. Hui, Z. Gombos, M. E. McCormick, A. Y. Wang, M. Uemura, R. Mick, P. A. Janmey, E. E. Furth, R. G. Wells, Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G1147.
G. W. Rebecca, Biochim. Biophys. Acta. 2013, 884, 1832.
A. Santos, D. Lagares, Curr. Rheumatol. Rep. 2018, 20, 2.
H. Jeremy, A. H. Craig, B. B. Peter, J. Clin. Invest. 2018, 128, 45.
C. L. Marsha, A. R. Cynthia, Sci. Transl. Med. 2018, 10, eaao0475.
J. Humphrey, E. Dufresne, M. Schwartz, Nat. Rev. Mol. Cell Biol. 2014, 15, 802.
G. Chen, B. Xia, Q. Fu, X. Huang, F. Wang, Z. Chen, Y. Lv, Int. J. Biol. Sci. 2019, 15, 2509.
J. J. Tomasek, G. Gabbiani, B. Hinz, C. Chaponnier, R. A. Brown, Nat. Rev. Mol. Cell Biol. 2002, 3, 349.
H. Boris, J. Biomech. 2010, 43, 146.
J. H. W. Distler, A.‐H. Györfi, M. Ramanujam, M. L. Whitfield, M. Königshoff, R. Lafyatis, Nat. Rev. Rheumatol. 2019, 15, 705.
C. Bonnans, J. Chou, Z. Werb, Nat. Rev. Mol. Cell Biol. 2014, 15, 786.
M. W. Parker, D. Rossi, M. Peterson, K. Smith, K. Sikström, E. S. White, J. E. Connett, C. A. Henke, O. Larsson, P. B. Bitterman, J. Clin. Invest. 2014, 124, 1622.
A. Baiocchini, C. Montaldo, A. Conigliaro, A. Grimaldi, V. Correani, F. Mura, F. Ciccosanti, N. Rotiroti, A. Brenna, M. Montalbano, G. D'Offizi, M. R. Capobianchi, R. Alessandro, M. Piacentini, M. E. Schininà, B. Maras, F. D. Nonno, M. Tripodi, C. Mancone, PLoS One 2016, 11, 0151736.
E. Ye, M. D. Regulacio, S.‐Y. Zhang, X. J. Loh, M.‐Y. Han, Chem. Soc. Rev. 2015, 44, 6001.
J. Li, J. Wang, Q. Yao, T. Li, Y. Yan, Z. Li, J. Zhang, Nanoscale 2020, 12, 14911.
H.‐J. Chen, T. Hang, C. Yang, D. Liu, C. Su, S. Xiao, C. Liu, D.‐A. Lin, T. Zhang, Q. Jin, J. Tao, M. X. Wu, J. Wang, X. Xie, ACS Cent. Sci. 2019, 5, 960.
X. Zhao, F. K. Amevor, X. Xue, C. Wang, Z. Cui, S. Dai, C. Peng, Y. Li, J. Nanobiotechnol. 2023, 21, 121.
R. Böttger, G. Pauli, P.‐H. Chao, N. A. Fayez, L. Hohenwarter, S.‐D. Li, Adv. Drug Delivery Rev. 2020, 174, 79.
D. J. Prockop, K. I. Kivirikko, L. Tuderman, N. A. Guzman, N. Engl. J. Med. 1979, 301, 13.
M. S. Antti, M. Johanna, Exp. Dermatol. 2020, 30, 38.
N. S. Cortinez, R. R. Fagundes, V. Gomez, D. Kong, D. R. Waart, J. Heegsma, S. Sydor, P. Olinga, V. E. Meijer, C. T. Taylor, R. Bank, C. C. Paulusma, K. N. Faber, FASEB. J. 2021, 35, e21219.
N. J. Kruse, P. Bornstein, J. Biol. Chem. 1975, 250, 4841.
J. H. Tsai, J. Y. Liu, T. T. Wu, P. C. Ho, C. Y. Huang, J. C. Shyu, Y. S. Hsieh, C. C. Tsai, Y. C. Liu, J. Viral Hepatitis 2008, 15, 508.
Y. Ishida, H. Kubota, A. Yamamoto, A. Kitamura, H. P. Bächinger, K. Nagata, Mol. Biol. Cell 2006, 17, 2346.
H. L. Eun, P. Kwang‐Il, K. Kwang‐Youn, L. Ju‐Hee, J. J. Eun, K. K. Sae, C. K. Sang, Y. S. Ho, Y. P. Ji, Y. B. Su, W. K. Young, Phytomedicine 2018, 62, 152780.
D. Shakiba, B. Babaei, F. Saadat, S. Thomopoulos, G. M. Genin, Proc. Natl. Acad. Sci. USA 2017, 114, 5772.
B. M. Baker, B. Trappmann, W. Y. Wang, M. S. Sakar, I. L. Kim, V. B. Shenoy, J. A. Burdick, C. S. Chen, Nature Mater 2015, 14, 1262.
Y. Mitsuo, S. Marnisa, Essays Biochem 2012, 52, 113.
M. Tian, Y. Li, W. Liu, L. Jin, X. Jiang, X. Wang, Z. Ding, Y. Peng, J. Zhou, J. Fan, Y. Cao, W. Wang, Y. Shi, Nanoscale 2015, 7, 12998.
H. Jia, J. Janjanam, S. C. Wu, R. Wang, G. Pano, M. Celestine, O. Martinot, H. B. Jones, G. Clayton, C. Garcin, A. Shirinifard, A. M. Zaske, D. Finkelstein, M. Labelle, EMBO.J 2019, 38, 101302.
C. J. Calvente, A. Sehgal, Y. Popov, Y. O. Kim, V. Zevallos, U. Sahin, M. Diken, D. Schuppan, Hepatology 2015, 62, 1285.
L. Campana, H. Esser, M. Huch, S. Forbes, Nat. Rev. Mol. Cell. Biol. 2021, 22, 608.
T. Tsuchida, S. Friedman, Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 397.
V. Mittelheisser, V. Gensbittel, L. Bonati, W. Li, L. Tang, J. G. Goetz, Nat. Nanotechnol. 2024, 19, 281.
M. N. Akhtar, R. Saeed, F. Saeed, A. Asghar, S. Ghani, H. Ateeq, A. Ahmed, A. Rasheed, M. Afzaal, M. Waheed, B. Hussain, M. A. Shah, Int. J. Food Prop. 2023, 26, 2256.
Y. Liu, C. Hao, L. Li, H. Zhang, W. Zha, L. Ma, L. Chen, J. Gan, Curr. Cancer Drug Targets. 2023, 23, 792.
A. Mansour, M. Eisa, T. Abdelghany, S. Salama, Al‐Azhar J. Pharm. Sci. 2022, 66, 246.
D. J. Prockop, K. Juva, Proc. Natl. Acad. Sci. USA 1965, 53, 661.
J. P. Darwin, J. Kale, Biochim. biophys. Res. Commun. 1965, 18, 54.
J. Hurych, M. Chvapil, Biochem. J. 1965, 97, 236.
K. Juva, D. J. Prockop, W. C. George, W. L. James, Science 1966, 152, 92.
S. B. Rajendra, J. P. Darwin, R. Joel, Science 1967, 158, 492.
G. S. Barsh, P. H. Byers, Proc. Natl. Acad. Sci. USA 1981, 78, 5142.
M. Jin, H. Liu, H. Zhang, Z. Xie, J. Liu, Y. Xia, Nano Res. 2011, 4, 83.
J. Hafner, J. Comput. Chem. 2008, 29, 2044.
P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
S. S Grimme, J. Comput. Chem. 2006, 27, 1787.
H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
J. Bomo, F. Ezan, F. Tiaho, M. Bellamri, S. Langouët, N. Theret, G. Baffet, J. Cell. Biochem. 2016, 177, 708.
J. Steinwachs, C. Metzner, K. Skodzek, N. Lang, I. Thievessen, C. Mark, S. Münster, K. E. Aifantis, B. Fabry, Nat. Methods 2016, 13, 171.
K. Hedman, M. Kurkinen, K. Alitalo, A. Vaheri, S. Johansson, M. Hook, J. Cell Biol. 1979, 81, 83.