Optogenetic Stimulation Recruits Cortical Neurons in a Morphology-Dependent Manner
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
39424369
PubMed Central
PMC11622177
DOI
10.1523/jneurosci.1215-24.2024
PII: JNEUROSCI.1215-24.2024
Knihovny.cz E-zdroje
- Klíčová slova
- brain interface, morphology, neural stimulation, optogenetics, spatial precision, visual cortex,
- MeSH
- kočky MeSH
- modely neurologické MeSH
- mozková kůra fyziologie cytologie MeSH
- neurony fyziologie MeSH
- optogenetika * metody MeSH
- pyramidové buňky fyziologie MeSH
- světelná stimulace metody MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Single-photon optogenetics enables precise, cell-type-specific modulation of neuronal circuits, making it a crucial tool in neuroscience. Its miniaturization in the form of fully implantable wide-field stimulator arrays enables long-term interrogation of cortical circuits and bears promise for brain-machine interfaces for sensory and motor function restoration. However, achieving selective activation of functional cortical representations poses a challenge, as studies show that targeted optogenetic stimulation results in activity spread beyond one functional domain. While recurrent network mechanisms contribute to activity spread, here we demonstrate with detailed simulations of isolated pyramidal neurons from cats of unknown sex that already neuron morphology causes a complex spread of optogenetic activity at the scale of one cortical column. Since the shape of a neuron impacts its optogenetic response, we find that a single stimulator at the cortical surface recruits a complex spatial distribution of neurons that can be inhomogeneous and vary with stimulation intensity and neuronal morphology across layers. We explore strategies to enhance stimulation precision, finding that optimizing stimulator optics may offer more significant improvements than the preferentially somatic expression of the opsin through genetic targeting. Our results indicate that, with the right optical setup, single-photon optogenetics can precisely activate isolated neurons at the scale of functional cortical domains spanning several hundred micrometers.
Faculty of Mathematics and Physics Charles University Prague 118 00 Czechia
Institut de la Vision Sorbonne Université Paris 75012 France
Zobrazit více v PubMed
Antolik J, Sabatier Q, Galle C, Frégnac Y, Benosman R (2021) Assessment of optogenetically-driven strategies for prosthetic restoration of cortical vision in large-scale neural simulation of V1. Sci Rep 11:10783. 10.1038/s41598-021-88960-8 PubMed DOI PMC
Aravanis AM, Wang L-P, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, Deisseroth K (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143. 10.1088/1741-2560/4/3/S02 PubMed DOI
Binzegger T, Douglas RJ, Martin KAC (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24:8441–8453. 10.1523/JNEUROSCI.1400-04.2004 PubMed DOI PMC
Carnevale NT, Hines ML (2006) The NEURON Book. Cambridge: Cambridge University Press.
Chaffiol A, et al. (2017) A new promoter allows optogenetic vision restoration with enhanced sensitivity in macaque retina. Mol Ther 25:2546–2560. 10.1016/j.ymthe.2017.07.011 PubMed DOI PMC
Chernov MM, Friedman RM, Chen G, Stoner GR, Roe AW (2018) Functionally specific optogenetic modulation in primate visual cortex. Proc Natl Acad Sci U S A 115:10505–10510. 10.1073/pnas.1802018115 PubMed DOI PMC
Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18:1213–1225. 10.1038/nn.4091 PubMed DOI PMC
Emiliani V, et al. (2022) Optogenetics for light control of biological systems. Nat Rev Methods Primers 2:1–25. 10.1038/s43586-022-00136-4 PubMed DOI PMC
Foutz TJ, Arlow RL, McIntyre CC (2012) Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron. J Neurophysiol 107:3235–3245. 10.1152/jn.00501.2011 PubMed DOI PMC
Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of Parkinsonian neural circuitry. Science 324:354–359. 10.1126/science.1167093 PubMed DOI PMC
Grossman N, et al. (2010) Multi-site optical excitation using ChR2 and micro-LED array. J Neural Eng 7:016004. 10.1088/1741-2560/7/1/016004 PubMed DOI
Grossman N, Nikolic K, Toumazou C, Degenaar P (2011) Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. IEEE Trans Biomed Eng 58:1742–1751. 10.1109/TBME.2011.2114883 PubMed DOI
Grossman N, Simiaki V, Martinet C, Toumazou C, Schultz SR, Nikolic K (2013) The spatial pattern of light determines the kinetics and modulates backpropagation of optogenetic action potentials. J Comput Neurosci 34:477–488. 10.1007/s10827-012-0431-7 PubMed DOI PMC
Hee Lee J, Lee S, Kim D, Jae Lee K (2022) Implantable micro-light-emitting diode (µLED)-based optogenetic interfaces toward human applications. Adv Drug Deliv Rev 187:114399. 10.1016/j.addr.2022.114399 PubMed DOI
Hegemann P, Ehlenbeck S, Gradmann D (2005) Multiple photocycles of channelrhodopsin. Biophys J 89:3911–3918. 10.1529/biophysj.105.069716 PubMed DOI PMC
Herman AM, Huang L, Murphey DK, Garcia I, Arenkiel BR (2014) Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing channelrhodopsin-2. Elife 3:e01481. 10.7554/eLife.01481 PubMed DOI PMC
Hines M, Davison A, Muller E (2009) NEURON and Python. Front Neuroinform 3:1. 10.3389/neuro.11.001.2009 PubMed DOI PMC
Hu W, Tian C, Li T, Yang M, Hou H, Shu Y (2009) Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat Neurosci 12:996–1002. 10.1038/nn.2359 PubMed DOI
Huang X, Elyada YM, Bosking WH, Walker T, Fitzpatrick D (2014) Optogenetic assessment of horizontal interactions in primary visual cortex. J Neurosci 34:4976–4990. 10.1523/JNEUROSCI.4116-13.2014 PubMed DOI PMC
Jarvis S, Nikolic K, Schultz SR (2018) Neuronal gain modulability is determined by dendritic morphology: a computational optogenetic study. PLoS Comput Biol 14:e1006027. 10.1371/journal.pcbi.1006027 PubMed DOI PMC
Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T (2020) Emerging approaches for restoration of hearing and vision. Physiol Rev 100:1467–1525. 10.1152/physrev.00035.2019 PubMed DOI
Kubelka P, Munk F (1931) Ein beitrag zur optik der farbanstriche. Z Tech Physik 12:593–601.
Li N, et al. (2019) Spatiotemporal constraints on optogenetic inactivation in cortical circuits. Elife 8:e48622. 10.7554/eLife.48622 PubMed DOI PMC
Luboeinski J, Tchumatchenko T (2020) Nonlinear response characteristics of neural networks and single neurons undergoing optogenetic excitation. Netw Neurosci 4:852–870. 10.1162/netn_a_00154 PubMed DOI PMC
Mahrach A, Chen G, Li N, van Vreeswijk C, Hansel D (2020) Mechanisms underlying the response of mouse cortical networks to optogenetic manipulation. Elife 9:e49967. 10.7554/eLife.49967 PubMed DOI PMC
Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366. 10.1038/382363a0 PubMed DOI
Mölder F, et al. (2021) Sustainable data analysis with Snakemake. F1000Res 10:33. 10.12688/f1000research.29032.2 PubMed DOI PMC
Mulholland HN, Jayakumar H, Farinella DM, Smith GB (2024a) All-optical interrogation of millimeter-scale networks and application to developing ferret cortex. J Neurosci Methods 403:110051. 10.1016/j.jneumeth.2023.110051 PubMed DOI PMC
Mulholland HN, Kaschube M, Smith GB (2024b) Self-organization of modular activity in immature cortical networks. Nat Commun 15:4145. 10.1038/s41467-024-48341-x PubMed DOI PMC
Nagel G, Möckel B, Büldt G, Bamberg E (1995) Functional expression of bacteriorhodopsin in oocytes allows direct measurement of voltage dependence of light induced H+ pumping. FEBS Lett 377:263–266. 10.1016/0014-5793(95)01356-3 PubMed DOI
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945. 10.1073/pnas.1936192100 PubMed DOI PMC
Nassi JJ, Avery MC, Cetin AH, Roe AW, Reynolds JH (2015) Optogenetic activation of normalization in alert macaque visual cortex. Neuron 86:1504–1517. 10.1016/j.neuron.2015.05.040 PubMed DOI PMC
Nikolic K, Grossman N, Grubb MS, Burrone J, Toumazou C, Degenaar P (2009) Photocycles of channelrhodopsin-2. Photochem Photobiol 85:400–411. 10.1111/j.1751-1097.2008.00460.x PubMed DOI
Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:597–603. 10.1038/nature03274 PubMed DOI
Rajalingham R, Sorenson M, Azadi R, Bohn S, DiCarlo JJ, Afraz A (2021) Chronically implantable LED arrays for behavioral optogenetics in primates. Nat Methods 18:1112–1116. 10.1038/s41592-021-01238-9 PubMed DOI
Roe AW, Chen G, Xu AG, Hu J (2020) A roadmap to a columnar visual cortical prosthetic. Curr Opin Physiol 16:68–78. 10.1016/j.cophys.2020.06.009 DOI
Sahel J-A, et al. (2021) Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med 27:1223–1229. 10.1038/s41591-021-01351-4 PubMed DOI
Schoeters R, Tarnaud T, Weyn L, Joseph W, Raedt R, Tanghe E (2023) Quantitative analysis of the optogenetic excitability of CA1 neurons. Front Comput Neurosci 17:1229715. 10.3389/fncom.2023.1229715 PubMed DOI PMC
Seidemann E (2023) Invited session IV: studies of the visual cortex with sub-millimeter resolution: toward an all-optical bi-directional interrogation of topographic population codes in primate cortex. J Vis 23:26. 10.1167/jov.23.11.26 DOI
Shemesh OA, Tanese D, Zampini V, Linghu C, Piatkevich K, Ronzitti E, Papagiakoumou E, Boyden ES, Emiliani V (2017) Temporally precise single-cell-resolution optogenetics. Nat Neurosci 20:1796–1806. 10.1038/s41593-017-0018-8 PubMed DOI PMC
Sridharan S, et al. (2022) High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks. Neuron 110:1139–1155.e6. 10.1016/j.neuron.2022.01.008 PubMed DOI PMC
Stepanyants A, Hirsch JA, Martinez LM, Kisvárday ZF, Ferecskó AS, Chklovskii DB (2008) Local potential connectivity in cat primary visual cortex. Cereb Cortex 18:13–28. 10.1093/cercor/bhm027 PubMed DOI
Vo-Dinh T (2014) Biomedical photonics handbook: biomedical diagnostics. Boca Raton, FL: CRC Press.
Wang S, Palmigiano A, Miller KD, Van Hooser SD (2022) Targeted cortical stimulation reveals principles of cortical contextual interactions. bioRxiv 497254.