Assessment of optogenetically-driven strategies for prosthetic restoration of cortical vision in large-scale neural simulation of V1
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
27302C0038
NIEHS NIH HHS - United States
PubMed
34031442
PubMed Central
PMC8144184
DOI
10.1038/s41598-021-88960-8
PII: 10.1038/s41598-021-88960-8
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- oční protézy MeSH
- optogenetika metody MeSH
- ověření koncepční studie MeSH
- světelná stimulace metody MeSH
- teoretické modely MeSH
- zraková percepce MeSH
- zrakové dráhy MeSH
- zrakové korové centrum fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The neural encoding of visual features in primary visual cortex (V1) is well understood, with strong correlates to low-level perception, making V1 a strong candidate for vision restoration through neuroprosthetics. However, the functional relevance of neural dynamics evoked through external stimulation directly imposed at the cortical level is poorly understood. Furthermore, protocols for designing cortical stimulation patterns that would induce a naturalistic perception of the encoded stimuli have not yet been established. Here, we demonstrate a proof of concept by solving these issues through a computational model, combining (1) a large-scale spiking neural network model of cat V1 and (2) a virtual prosthetic system transcoding the visual input into tailored light-stimulation patterns which drive in situ the optogenetically modified cortical tissue. Using such virtual experiments, we design a protocol for translating simple Fourier contrasted stimuli (gratings) into activation patterns of the optogenetic matrix stimulator. We then quantify the relationship between spatial configuration of the imposed light pattern and the induced cortical activity. Our simulations in the absence of visual drive (simulated blindness) show that optogenetic stimulation with a spatial resolution as low as 100 [Formula: see text]m, and light intensity as weak as [Formula: see text] photons/s/cm[Formula: see text] is sufficient to evoke activity patterns in V1 close to those evoked by normal vision.
Faculty of Mathematics and Physics Charles University Malostranské nám 25 118 00 Prague 1 Czechia
Sorbonne Université INSERM CNRS Institut de la Vision 17 rue Moreau 75012 Paris France
Unité de Neurosciences Information et Complexité NeuroPSI Gif sur Yvette France
University of Pittsburgh McGowan Institute 3025 E Carson St Pittsburgh PA USA
Zobrazit více v PubMed
Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 1968;196:479–493. doi: 10.1113/jphysiol.1968.sp008519. PubMed DOI PMC
Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex state of the art. ASAIO J. 2000;46:3–9. doi: 10.1097/00002480-200001000-00002. PubMed DOI
Farnum A, Pelled G. New vision for visual prostheses. Front. Neurosci. 2020;14:36. doi: 10.3389/fnins.2020.00036. PubMed DOI PMC
Pezaris JS, Clay Reid R, Reid RC. Demonstration of artificial visual percepts generated through thalamic microstimulation. PNAS. 2007;104:7670–7675. doi: 10.1073/pnas.0608563104. PubMed DOI PMC
Shepherd RK, Shivdasani MN, Nayagam DA, Williams CE, Blamey PJ. Visual prostheses for the blind. Trends Biotechnol. 2013;31:562–571. doi: 10.1016/j.tibtech.2013.07.001. PubMed DOI
Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res. 2015;1595:51–73. doi: 10.1016/j.brainres.2014.11.020. PubMed DOI
Beauchamp MS, et al. Dynamic stimulation of visual cortex produces form vision in sighted and blind humans. Cell. 2020;181:774–783.e5. doi: 10.1016/j.cell.2020.04.033. PubMed DOI PMC
da Cruz L, et al. Five-year safety and performance results from the Argus II retinal prosthesis system clinical trial. Ophthalmology. 2016;123:2248–2254. doi: 10.1016/j.ophtha.2016.06.049. PubMed DOI PMC
Galluppi, F. et al. A stimulation platform for optogenetic and bionic vision restoration. In IEEE International Symposium on Circuits and Systems (ISCAS) 1–4 (2017).
Falabella P, Nazari H, Schor P, Weiland J. Argus II Retinal Prosthesis System. Springer; 2017. pp. 49–63.
Stingl K, et al. Interim results of a multicenter trial with the new electronic subretinal implant alpha AMS in 15 patients blind from inherited retinal degenerations. Front. Neurosci. 2017;11:445. doi: 10.3389/fnins.2017.00445. PubMed DOI PMC
Prevot P-H, et al. Behavioural responses to a photovoltaic subretinal prosthesis implanted in non-human primates. Nat. Biomed. Eng. 2020;4:172–180. doi: 10.1038/s41551-019-0484-2. PubMed DOI
Thompson A, Stoddart P, Jansen E. Optical stimulation of neurons. Curr. Mol. Imaging. 2015;3:162–177. doi: 10.2174/2211555203666141117220611. PubMed DOI PMC
Vassanelli S. Brain-chip interfaces: the present and the future. Procedia Comput. Sci. 2011;7:61–64. doi: 10.1016/j.procs.2011.12.020. DOI
Lorach H, et al. Artificial retina: the multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device. J. Neural Eng. 2012;9:066004. doi: 10.1088/1741-2560/9/6/066004. PubMed DOI
Deisseroth K. Optogenetics. Nat. Methods. 2011;8:26–29. doi: 10.1038/nmeth.f.324. PubMed DOI PMC
Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 2015;18:1213–1225. doi: 10.1038/nn.4091. PubMed DOI PMC
Grossman N, et al. Multi-site optical excitation using chr2 and micro-led array. J. Neural Eng. 2010;7:16004. doi: 10.1088/1741-2560/7/1/016004. PubMed DOI
Poher V, et al. Micro-led arrays: a tool for two-dimensional neuron stimulation. J. Phys. D Appl. Phys. 2008;41:094014. doi: 10.1088/0022-3727/41/9/094014. DOI
Chaudet, L. et al. Development of optics with micro-led arrays for improved opto-electronic neural stimulation. Proc. SPIE8586 (2013).
Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat. Methods. 2006;2:932–40. doi: 10.1038/nmeth818. PubMed DOI
Grienberger C, Konnerth A. Imaging calcium in neurons. Neuron. 2012;73:862–85. doi: 10.1016/j.neuron.2012.02.011. PubMed DOI
Ronzitti E, et al. Recent advances in patterned photostimulation for optogenetics. J. Opt. 2017;19:113001. doi: 10.1088/2040-8986/aa8299. DOI
Packer A, Russell L, Dalgleish H, Hausser M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. methods. 2014;12:140–146. doi: 10.1038/nmeth.3217. PubMed DOI PMC
Carrillo-Reid L, Yang W, Bando Y, Peterka D, Yuste R. Imprinting and recalling cortical ensembles. Science. 2016;353:691–694. doi: 10.1126/science.aaf7560. PubMed DOI PMC
Yang W, Carrillo-Reid L, Bando Y, Peterka D, Yuste R. Simultaneous two-photon optogenetics and imaging of cortical circuits in three dimensions. eLife. 2018;7:32671. doi: 10.7554/eLife.32671. PubMed DOI PMC
Dal Maschio M, Donovan J, Helmbrecht T, Baier H. Linking neurons to network function and behavior by two-photon holographic optogenetics and volumetric imaging. Neuron. 2017;94:774–789.e5. doi: 10.1016/j.neuron.2017.04.034. PubMed DOI
Ronzitti E, et al. Submillisecond optogenetic control of neuronal firing with two-photon holographic photoactivation of chronos. J. Neurosci. 2017;37:10679–10689. doi: 10.1523/JNEUROSCI.1246-17.2017. PubMed DOI PMC
Pegard N, et al. Three-dimensional scanless holographic optogenetics with temporal focusing (3d-shot) Nat. Commun. 2017;8:1–14. doi: 10.1038/s41467-017-01031-3. PubMed DOI PMC
Mardinly A, et al. Precise multimodal optical control of neural ensemble activity. Nat. Neurosci. 2018;21:881–893. doi: 10.1038/s41593-018-0139-8. PubMed DOI PMC
Lerman GM, Little JP, Gill JV, Rinberg D, Shoham S. Realtime in situ holographic optogenetics confocally unraveled sculpting microscopy. J. Laser Photonics Rev. 2019;13:1900144. doi: 10.1002/lpor.201900144. DOI
Engel SA, Glover GH, Wandell BA. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex (New York, N.Y.: 1991) 1997;7:181–192. PubMed
Antolík, J., Monier, C., Davison, A. & Frégnac, Y. A comprehensive data-driven model of cat primary visual cortex. bioRxiv 416156 (2019). PubMed PMC
Hirsch JA, Martinez LM. Laminar processing in the visual cortical column. Curr. Opin. Neurobiol. 2006;16:377–384. doi: 10.1016/j.conb.2006.06.014. PubMed DOI
Ringach DL, Shapley R, Hawken MJ. Orientation selectivity in macaque V1: diversity and laminar dependence. J. Neurosci. 2002;22:5639–5651. doi: 10.1523/JNEUROSCI.22-13-05639.2002. PubMed DOI PMC
Liang Z, Shen W, Sun C, Shou T. Comparative study on the offset responses of simple cells and complex cells in the primary visual cortex of the cat. Neuroscience. 2008;156:365–373. doi: 10.1016/j.neuroscience.2008.07.046. PubMed DOI
Monier C, Fournier J, Frégnac Y. In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. J. Neurosci. Methods. 2008;169:323–365. doi: 10.1016/j.jneumeth.2007.11.008. PubMed DOI
Allen EA, Freeman RD. Dynamic spatial processing originates in early visual pathways. J. Neurosci. 2006;26:11763–11774. doi: 10.1523/JNEUROSCI.3297-06.2006. PubMed DOI PMC
Wang WL, et al. V1 neurons respond to luminance changes faster than contrast changes. Sci. Rep. 2015;5:1–13. PubMed PMC
Jiang Y, Purushothaman G, Casagrande VA. The functional asymmetry of ON and OFF channels in the perception of contrast. J. Neurophysiol. 2015;114:2816–2829. doi: 10.1152/jn.00560.2015. PubMed DOI PMC
Finn IM, Priebe NJ, Ferster D. The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron. 2007;54:137–52. doi: 10.1016/j.neuron.2007.02.029. PubMed DOI PMC
Nowak LG, Sanchez-Vives MV, McCormick DA. Lack of orientation and direction selectivity in a subgroup of fast-spiking inhibitory interneurons: cellular and synaptic mechanisms and comparison with other electrophysiological cell types. Cereb. Cortex. 2008;18:1058–1078. doi: 10.1093/cercor/bhm137. PubMed DOI PMC
Cardin JA, Palmer LA, Contreras D. Stimulus feature selectivity in excitatory and inhibitory neurons in primary visual cortex. J. Neurosci. 2007;27:10333–10344. doi: 10.1523/JNEUROSCI.1692-07.2007. PubMed DOI PMC
Roy A, et al. Optogenetic spatial and temporal control of cortical circuits on a columnar scale. J. Neurophysiol. 2016;115:1043–1062. doi: 10.1152/jn.00960.2015. PubMed DOI PMC
Yu J, Ferster D. Membrane potential synchrony in primary visual cortex during sensory stimulation. Neuron. 2010;68:1187–1201. doi: 10.1016/j.neuron.2010.11.027. PubMed DOI PMC
Tao L, Cai D, McLaughlin DW, Shelley MJ, Shapley R. Orientation selectivity in visual cortex by fluctuation-controlled criticality. Proc. Natl. Acad. Sci. U. S. A. 2006;103:12911–12916. doi: 10.1073/pnas.0605415103. PubMed DOI PMC
Kuhn A, Aertsen A, Rotter S. Neuronal integration of synaptic input in the fluctuation-driven regime. J. Neurosci. Off. J. Soc. Neurosci. 2004;24:2345–56. doi: 10.1523/JNEUROSCI.3349-03.2004. PubMed DOI PMC
Mahrach A, Chen G, Li N, van Vreeswijk C, Hansel D. Mechanisms underlying the response of mouse cortical networks to optogenetic manipulation. eLife. 2020;9:1–37. doi: 10.7554/eLife.49967. PubMed DOI PMC
Sadeh S, Clopath C. Patterned perturbation of inhibition can reveal the dynamical structure of neural processing. eLife. 2020;9:e52757. doi: 10.7554/eLife.52757. PubMed DOI PMC
Luo, J. W., Nikolic, K. & Degenaar, P. Modelling optogenetic subthreshold effects. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 6136–6140 (Institute of Electrical and Electronics Engineers Inc., 2019). PubMed
Huang X, Elyada YM, Bosking WH, Walker T, Fitzpatrick D. Optogenetic assessment of horizontal interactions in primary visual cortex. J. Neurosci. 2014;34:4976–4990. doi: 10.1523/JNEUROSCI.4116-13.2014. PubMed DOI PMC
Shewcraft, R. A. et al. Coherent neuronal dynamics driven by optogenetic stimulation in the primate brain. bioRxiv (2018). PubMed PMC
Liu Y-J, Hashemi-Nezhad M, Lyon DC. Dynamics of extraclassical surround modulation in three types of V1 neurons. J. Neurophysiol. 2011;105:1306–17. doi: 10.1152/jn.00692.2010. PubMed DOI
Harris KD, Mrsic-Flogel TD. Cortical connectivity and sensory coding. Nature. 2013;503:51–58. doi: 10.1038/nature12654. PubMed DOI
Bathellier B, Ushakova L, Rumpel S. Discrete neocortical dynamics predict behavioral categorization of sounds. Neuron. 2012;76:435–449. doi: 10.1016/j.neuron.2012.07.008. PubMed DOI
Ben-Yishai R, Lev Bar-Or R, Sompolinsky H. Theory of orientation tuning in visual cortex. Proc. Natil. Acad. Sci. U. S. A. 1995;92:3844–3848. doi: 10.1073/pnas.92.9.3844. PubMed DOI PMC
Somers DC, Nelson SB, Sur M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 1995;15:5448–5465. doi: 10.1523/JNEUROSCI.15-08-05448.1995. PubMed DOI PMC
Miconi T, McKinstry JL, Edelman GM. Spontaneous emergence of fast attractor dynamics in a model of developing primary visual cortex. Nat. Commun. 2016;7:1–10. doi: 10.1038/ncomms13208. PubMed DOI PMC
Liu B-H, et al. Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. Neuron. 2011;71:542–554. doi: 10.1016/j.neuron.2011.06.017. PubMed DOI PMC
Marre O, Yger P, Davison AP, Frégnac Y. Reliable recall of spontaneous activity patterns in cortical networks. J. Neurosci. 2009;29:14596–14606. doi: 10.1523/JNEUROSCI.0753-09.2009. PubMed DOI PMC
Chen SC, Suaning GJ, Morley JW, Lovell NH. Simulating prosthetic vision: I. Visual models of phosphenes. Vis. Res. 2009;49:1493–1506. doi: 10.1016/j.visres.2009.02.003. PubMed DOI
Killian NJ, Vurro M, Keith SB, Kyada MJ, Pezaris JS. Perceptual learning in a non-human primate model of artificial vision. Sci. Rep. 2016;6:1–16. doi: 10.1038/srep36329. PubMed DOI PMC
Rassia KEK, Pezaris JS. Improvement in reading performance through training with simulated thalamic visual prostheses. Sci. Rep. 2018;8:1–19. doi: 10.1038/s41598-018-31435-0. PubMed DOI PMC
Frégnac Y, Bathellier B. Cortical correlates of low-level perception: from neural circuits to percepts. Neuron. 2015;88:110–126. doi: 10.1016/j.neuron.2015.09.041. PubMed DOI
Gong X, et al. An ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. Neuron. 2020;107:38–51.e8. doi: 10.1016/j.neuron.2020.03.032. PubMed DOI PMC
Fan B, Li W. Miniaturized optogenetic neural implants: a review. Lab Chip. 2015;15:3838–3855. doi: 10.1039/C5LC00588D. PubMed DOI
Aharoni D, Hoogland TM. Circuit investigations with open-source miniaturized microscopes: past, present and future. Front. Cell. Neurosci. 2019;13:141. doi: 10.3389/fncel.2019.00141. PubMed DOI PMC
Matsuo T, et al. Intrasulcal electrocorticography in macaque monkeys with minimally invasive neurosurgical protocols. Front. Syst. Neurosci. 2011;5:34. doi: 10.3389/fnsys.2011.00034. PubMed DOI PMC
Ji B, et al. Flexible polyimide-based hybrid opto-electric neural interface with 16 channels of micro-LEDs and electrodes. Microsyst. Nanoeng. 2018;4:1–11. doi: 10.1038/s41378-018-0027-0. PubMed DOI PMC
Reddy JW, et al. High density, double-sided, flexible optoelectronic neural probes with embedded LEDs. Front. Genet. 2019;10:745. doi: 10.3389/fgene.2019.00745. PubMed DOI PMC
Chiang CH, et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl. Med. 2020;12:eaay4682. doi: 10.1126/scitranslmed.aay4682. PubMed DOI PMC
Richter A, et al. A simple implantation method for flexible, multisite microelectrodes into rat brains. Front. Neuroeng. 2013;6:6. doi: 10.3389/fneng.2013.00006. PubMed DOI PMC
Akasaki T, Sato H, Yoshimura Y, Ozeki H, Shimegi S. Suppressive effects of receptive field surround on neuronal activity in the cat primary visual cortex. Neurosci. Res. 2002;43:207–220. doi: 10.1016/S0168-0102(02)00038-X. PubMed DOI
Wilson DE, Whitney DE, Scholl B, Fitzpatrick D. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nat. Neurosci. 2016;19:1003–1009. doi: 10.1038/nn.4323. PubMed DOI PMC
Li M, Liu F, Jiang H, Lee TS, Tang S. Long-term two-photon imaging in awake macaque monkey. Neuron. 2017;93:1049–1057. doi: 10.1016/j.neuron.2017.01.027. PubMed DOI
Naumann J. Search for Paradise: A Patient’s Account of the Artificial Vision Experiment. Xlibris Corporation; 2012.
Antolík J, Davison AP. Integrated workflows for spiking neuronal network simulations. Front. Neuroinform. 2013;7:1–15. doi: 10.3389/fninf.2013.00034. PubMed DOI PMC
Antolík J, Davison AA. Arkheia: data management and communication for open computational neuroscience. Front. Neuroinform. 2018;12:6. doi: 10.3389/fninf.2018.00006. PubMed DOI PMC
Sabatier, Q. et al. Modeling the electro-chemical properties of microbial opsin chrimsonr for application to optogenetics-based vision restoration. bioRxiv 417899 (2018).
Gewaltig M-O, Diesmann M. NEST (NEural Simulation Tool) Scholarpedia. 2007;2:1430. doi: 10.4249/scholarpedia.1430. DOI
Jacques SL. Optical properties of biological tissues: a review. Phys. Med. Biol. 2013;58:R37–R61. doi: 10.1088/0031-9155/58/11/R37. PubMed DOI
Destexhe A, Mainen ZF, Sejnowski TJ. Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 1994;1:195–230. doi: 10.1007/BF00961734. PubMed DOI
Swindale NV. Visual cortex: a cat’s-eye view of the visual system. Curr. Biol. 1997;7:387–389. doi: 10.1016/S0960-9822(06)00182-5. PubMed DOI
Roland PE, Hilgetag CC, Deco G. Cortico-cortical communication dynamics. Front. Syst. Neurosci. 2014;8:1–11. PubMed PMC
Tusa RJ, Palmer LA, Rosenquist AC. The retinotopic organization of area 17 (striate cortex) in the cat. J. Comp. Neurol. 1978;177:213–235. doi: 10.1002/cne.901770204. PubMed DOI
Beaulieu C, Colonnier M. Number of neurons in individual laminae of areas 3B, 4 PubMed DOI
Beaulieu C, Kisvarday Z, Somogyi P, Cynader M, Cowey A. Quantitative distribution of gaba-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17) Cereb. Cortex. 1992;2:295–309. doi: 10.1093/cercor/2.4.295. PubMed DOI
Markram H, et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 2004;5:793–807. doi: 10.1038/nrn1519. PubMed DOI
Stepanyants A, Martinez LM, Ferecsko AS, Kisvarday ZF. The fractions of short- and long-range connections in the visual cortex. Proc. Natl. Acad. Sci. 2009;106:3555–3560. doi: 10.1073/pnas.0810390106. PubMed DOI PMC
Buzás P, et al. Model-based analysis of excitatory lateral connections in the visual cortex. J. Comp. Neurol. 2006;499:861–881. doi: 10.1002/cne.21134. PubMed DOI
Angelucci A, et al. Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 2002;22:8633–8646. doi: 10.1523/JNEUROSCI.22-19-08633.2002. PubMed DOI PMC
Troyer TW, Krukowski AE, Priebe NJ, Miller KD. Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J. Neurosci. 1998;18:5908–5927. doi: 10.1523/JNEUROSCI.18-15-05908.1998. PubMed DOI PMC
Reid RC, Alonso JM. Specificity of monosynaptic connections from thalamus to visual cortex. Nature. 1995;378:281–4. doi: 10.1038/378281a0. PubMed DOI
Jones JP, Palmer LA. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysiol. 1987;58:1187–1211. doi: 10.1152/jn.1987.58.6.1187. PubMed DOI
Pei X, Vidyasagar TR, Volgushev M, Creutzfeldt OD. Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex. J. Neurosci. 1994;14:7130–7140. doi: 10.1523/JNEUROSCI.14-11-07130.1994. PubMed DOI PMC
Da Costa NM, Martin KA. How thalamus connects to spiny stellate cells in the cat’s visual cortex. J. Neurosci. 2011;31:2925–2937. doi: 10.1523/JNEUROSCI.5961-10.2011. PubMed DOI PMC
Budd JM, Kisvárday ZF. Local lateral connectivity of inhibitory clutch cells in layer 4 of cat visual cortex (area 17) Exp. Brain Res. 2001;140:245–250. doi: 10.1007/s002210100817. PubMed DOI
Stepanyants A, et al. Local potential connectivity in cat primary visual cortex. Cereb. Cortex. 2008;18:13–28. doi: 10.1093/cercor/bhm027. PubMed DOI
Ko H, et al. Functional specificity of local synaptic connections in neocortical networks. Nature. 2011;473:87–91. doi: 10.1038/nature09880. PubMed DOI PMC
Binzegger T, Douglas RJ, Martin KA. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 2004;24:8441–8453. doi: 10.1523/JNEUROSCI.1400-04.2004. PubMed DOI PMC
Abbott LF. Synaptic depression and cortical gain control. Science. 1997;275:221–224. doi: 10.1126/science.275.5297.221. PubMed DOI
Markram H, Wang Y, Tsodyks M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. U.S.A. 1998;95:5323–5328. doi: 10.1073/pnas.95.9.5323. PubMed DOI PMC
Bringuier V, Chavane F, Glaeser L, Frégnac Y. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science. 1999;283:695–699. doi: 10.1126/science.283.5402.695. PubMed DOI
Frégnac Y. Reading out the synaptic echoes of low-level perception in V1. In: Fusiello A, Murino V, Cucchiara R, editors. Lecture Notes in Computer Science 1. Springer; 2012. pp. 486–495.
Chavane F, et al. Lateral spread of orientation selectivity in V1 is controlled by intracortical cooperativity. Front. Syst. Neurosci. 2011;5:1–26. PubMed PMC
Ohana O, Portner H, Martin KAC. Fast recruitment of recurrent inhibition in the cat visual cortex. PLoS ONE. 2012;7:e40601. doi: 10.1371/journal.pone.0040601. PubMed DOI PMC
Papaioannou J, White A. Maintained activity of lateral geniculate nucleus neurons as a function of background luminance. Exp. Neurol. 1972;34:558–566. doi: 10.1016/0014-4886(72)90050-7. PubMed DOI
Bonin V, Mante V, Carandini M. The suppressive field of neurons in lateral geniculate nucleus. J. Neurosci. 2005;25:10844–10856. doi: 10.1523/JNEUROSCI.3562-05.2005. PubMed DOI PMC
Kaplan E, Purpura K, Shapley RM. Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J. Physiol. 1987;391:267–288. doi: 10.1113/jphysiol.1987.sp016737. PubMed DOI PMC
Alitto HJ, Usrey WM. Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. J. Neurophysiol. 2004;91:2797–2808. doi: 10.1152/jn.00943.2003. PubMed DOI
Adams DL, Sincich LC, Horton JC. Complete pattern of ocular dominance columns in human primary visual cortex. J. Neurosci. 2007;27:10391–10403. doi: 10.1523/JNEUROSCI.2923-07.2007. PubMed DOI PMC
Yacoub E, Harel N, Uurbil K. High-field fMRI unveils orientation columns in humans. Proc. Natl. Acad. Sci. U.S.A. 2008;105:10607–10612. doi: 10.1073/pnas.0804110105. PubMed DOI PMC
Optogenetic Stimulation Recruits Cortical Neurons in a Morphology-Dependent Manner