Assessment of optogenetically-driven strategies for prosthetic restoration of cortical vision in large-scale neural simulation of V1

. 2021 May 24 ; 11 (1) : 10783. [epub] 20210524

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34031442

Grantová podpora
27302C0038 NIEHS NIH HHS - United States

Odkazy

PubMed 34031442
PubMed Central PMC8144184
DOI 10.1038/s41598-021-88960-8
PII: 10.1038/s41598-021-88960-8
Knihovny.cz E-zdroje

The neural encoding of visual features in primary visual cortex (V1) is well understood, with strong correlates to low-level perception, making V1 a strong candidate for vision restoration through neuroprosthetics. However, the functional relevance of neural dynamics evoked through external stimulation directly imposed at the cortical level is poorly understood. Furthermore, protocols for designing cortical stimulation patterns that would induce a naturalistic perception of the encoded stimuli have not yet been established. Here, we demonstrate a proof of concept by solving these issues through a computational model, combining (1) a large-scale spiking neural network model of cat V1 and (2) a virtual prosthetic system transcoding the visual input into tailored light-stimulation patterns which drive in situ the optogenetically modified cortical tissue. Using such virtual experiments, we design a protocol for translating simple Fourier contrasted stimuli (gratings) into activation patterns of the optogenetic matrix stimulator. We then quantify the relationship between spatial configuration of the imposed light pattern and the induced cortical activity. Our simulations in the absence of visual drive (simulated blindness) show that optogenetic stimulation with a spatial resolution as low as 100 [Formula: see text]m, and light intensity as weak as [Formula: see text] photons/s/cm[Formula: see text] is sufficient to evoke activity patterns in V1 close to those evoked by normal vision.

Zobrazit více v PubMed

Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 1968;196:479–493. doi: 10.1113/jphysiol.1968.sp008519. PubMed DOI PMC

Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex state of the art. ASAIO J. 2000;46:3–9. doi: 10.1097/00002480-200001000-00002. PubMed DOI

Farnum A, Pelled G. New vision for visual prostheses. Front. Neurosci. 2020;14:36. doi: 10.3389/fnins.2020.00036. PubMed DOI PMC

Pezaris JS, Clay Reid R, Reid RC. Demonstration of artificial visual percepts generated through thalamic microstimulation. PNAS. 2007;104:7670–7675. doi: 10.1073/pnas.0608563104. PubMed DOI PMC

Shepherd RK, Shivdasani MN, Nayagam DA, Williams CE, Blamey PJ. Visual prostheses for the blind. Trends Biotechnol. 2013;31:562–571. doi: 10.1016/j.tibtech.2013.07.001. PubMed DOI

Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res. 2015;1595:51–73. doi: 10.1016/j.brainres.2014.11.020. PubMed DOI

Beauchamp MS, et al. Dynamic stimulation of visual cortex produces form vision in sighted and blind humans. Cell. 2020;181:774–783.e5. doi: 10.1016/j.cell.2020.04.033. PubMed DOI PMC

da Cruz L, et al. Five-year safety and performance results from the Argus II retinal prosthesis system clinical trial. Ophthalmology. 2016;123:2248–2254. doi: 10.1016/j.ophtha.2016.06.049. PubMed DOI PMC

Galluppi, F. et al. A stimulation platform for optogenetic and bionic vision restoration. In IEEE International Symposium on Circuits and Systems (ISCAS) 1–4 (2017).

Falabella P, Nazari H, Schor P, Weiland J. Argus II Retinal Prosthesis System. Springer; 2017. pp. 49–63.

Stingl K, et al. Interim results of a multicenter trial with the new electronic subretinal implant alpha AMS in 15 patients blind from inherited retinal degenerations. Front. Neurosci. 2017;11:445. doi: 10.3389/fnins.2017.00445. PubMed DOI PMC

Prevot P-H, et al. Behavioural responses to a photovoltaic subretinal prosthesis implanted in non-human primates. Nat. Biomed. Eng. 2020;4:172–180. doi: 10.1038/s41551-019-0484-2. PubMed DOI

Thompson A, Stoddart P, Jansen E. Optical stimulation of neurons. Curr. Mol. Imaging. 2015;3:162–177. doi: 10.2174/2211555203666141117220611. PubMed DOI PMC

Vassanelli S. Brain-chip interfaces: the present and the future. Procedia Comput. Sci. 2011;7:61–64. doi: 10.1016/j.procs.2011.12.020. DOI

Lorach H, et al. Artificial retina: the multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device. J. Neural Eng. 2012;9:066004. doi: 10.1088/1741-2560/9/6/066004. PubMed DOI

Deisseroth K. Optogenetics. Nat. Methods. 2011;8:26–29. doi: 10.1038/nmeth.f.324. PubMed DOI PMC

Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 2015;18:1213–1225. doi: 10.1038/nn.4091. PubMed DOI PMC

Grossman N, et al. Multi-site optical excitation using chr2 and micro-led array. J. Neural Eng. 2010;7:16004. doi: 10.1088/1741-2560/7/1/016004. PubMed DOI

Poher V, et al. Micro-led arrays: a tool for two-dimensional neuron stimulation. J. Phys. D Appl. Phys. 2008;41:094014. doi: 10.1088/0022-3727/41/9/094014. DOI

Chaudet, L. et al. Development of optics with micro-led arrays for improved opto-electronic neural stimulation. Proc. SPIE8586 (2013).

Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat. Methods. 2006;2:932–40. doi: 10.1038/nmeth818. PubMed DOI

Grienberger C, Konnerth A. Imaging calcium in neurons. Neuron. 2012;73:862–85. doi: 10.1016/j.neuron.2012.02.011. PubMed DOI

Ronzitti E, et al. Recent advances in patterned photostimulation for optogenetics. J. Opt. 2017;19:113001. doi: 10.1088/2040-8986/aa8299. DOI

Packer A, Russell L, Dalgleish H, Hausser M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. methods. 2014;12:140–146. doi: 10.1038/nmeth.3217. PubMed DOI PMC

Carrillo-Reid L, Yang W, Bando Y, Peterka D, Yuste R. Imprinting and recalling cortical ensembles. Science. 2016;353:691–694. doi: 10.1126/science.aaf7560. PubMed DOI PMC

Yang W, Carrillo-Reid L, Bando Y, Peterka D, Yuste R. Simultaneous two-photon optogenetics and imaging of cortical circuits in three dimensions. eLife. 2018;7:32671. doi: 10.7554/eLife.32671. PubMed DOI PMC

Dal Maschio M, Donovan J, Helmbrecht T, Baier H. Linking neurons to network function and behavior by two-photon holographic optogenetics and volumetric imaging. Neuron. 2017;94:774–789.e5. doi: 10.1016/j.neuron.2017.04.034. PubMed DOI

Ronzitti E, et al. Submillisecond optogenetic control of neuronal firing with two-photon holographic photoactivation of chronos. J. Neurosci. 2017;37:10679–10689. doi: 10.1523/JNEUROSCI.1246-17.2017. PubMed DOI PMC

Pegard N, et al. Three-dimensional scanless holographic optogenetics with temporal focusing (3d-shot) Nat. Commun. 2017;8:1–14. doi: 10.1038/s41467-017-01031-3. PubMed DOI PMC

Mardinly A, et al. Precise multimodal optical control of neural ensemble activity. Nat. Neurosci. 2018;21:881–893. doi: 10.1038/s41593-018-0139-8. PubMed DOI PMC

Lerman GM, Little JP, Gill JV, Rinberg D, Shoham S. Realtime in situ holographic optogenetics confocally unraveled sculpting microscopy. J. Laser Photonics Rev. 2019;13:1900144. doi: 10.1002/lpor.201900144. DOI

Engel SA, Glover GH, Wandell BA. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex (New York, N.Y.: 1991) 1997;7:181–192. PubMed

Antolík, J., Monier, C., Davison, A. & Frégnac, Y. A comprehensive data-driven model of cat primary visual cortex. bioRxiv 416156 (2019). PubMed PMC

Hirsch JA, Martinez LM. Laminar processing in the visual cortical column. Curr. Opin. Neurobiol. 2006;16:377–384. doi: 10.1016/j.conb.2006.06.014. PubMed DOI

Ringach DL, Shapley R, Hawken MJ. Orientation selectivity in macaque V1: diversity and laminar dependence. J. Neurosci. 2002;22:5639–5651. doi: 10.1523/JNEUROSCI.22-13-05639.2002. PubMed DOI PMC

Liang Z, Shen W, Sun C, Shou T. Comparative study on the offset responses of simple cells and complex cells in the primary visual cortex of the cat. Neuroscience. 2008;156:365–373. doi: 10.1016/j.neuroscience.2008.07.046. PubMed DOI

Monier C, Fournier J, Frégnac Y. In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. J. Neurosci. Methods. 2008;169:323–365. doi: 10.1016/j.jneumeth.2007.11.008. PubMed DOI

Allen EA, Freeman RD. Dynamic spatial processing originates in early visual pathways. J. Neurosci. 2006;26:11763–11774. doi: 10.1523/JNEUROSCI.3297-06.2006. PubMed DOI PMC

Wang WL, et al. V1 neurons respond to luminance changes faster than contrast changes. Sci. Rep. 2015;5:1–13. PubMed PMC

Jiang Y, Purushothaman G, Casagrande VA. The functional asymmetry of ON and OFF channels in the perception of contrast. J. Neurophysiol. 2015;114:2816–2829. doi: 10.1152/jn.00560.2015. PubMed DOI PMC

Finn IM, Priebe NJ, Ferster D. The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron. 2007;54:137–52. doi: 10.1016/j.neuron.2007.02.029. PubMed DOI PMC

Nowak LG, Sanchez-Vives MV, McCormick DA. Lack of orientation and direction selectivity in a subgroup of fast-spiking inhibitory interneurons: cellular and synaptic mechanisms and comparison with other electrophysiological cell types. Cereb. Cortex. 2008;18:1058–1078. doi: 10.1093/cercor/bhm137. PubMed DOI PMC

Cardin JA, Palmer LA, Contreras D. Stimulus feature selectivity in excitatory and inhibitory neurons in primary visual cortex. J. Neurosci. 2007;27:10333–10344. doi: 10.1523/JNEUROSCI.1692-07.2007. PubMed DOI PMC

Roy A, et al. Optogenetic spatial and temporal control of cortical circuits on a columnar scale. J. Neurophysiol. 2016;115:1043–1062. doi: 10.1152/jn.00960.2015. PubMed DOI PMC

Yu J, Ferster D. Membrane potential synchrony in primary visual cortex during sensory stimulation. Neuron. 2010;68:1187–1201. doi: 10.1016/j.neuron.2010.11.027. PubMed DOI PMC

Tao L, Cai D, McLaughlin DW, Shelley MJ, Shapley R. Orientation selectivity in visual cortex by fluctuation-controlled criticality. Proc. Natl. Acad. Sci. U. S. A. 2006;103:12911–12916. doi: 10.1073/pnas.0605415103. PubMed DOI PMC

Kuhn A, Aertsen A, Rotter S. Neuronal integration of synaptic input in the fluctuation-driven regime. J. Neurosci. Off. J. Soc. Neurosci. 2004;24:2345–56. doi: 10.1523/JNEUROSCI.3349-03.2004. PubMed DOI PMC

Mahrach A, Chen G, Li N, van Vreeswijk C, Hansel D. Mechanisms underlying the response of mouse cortical networks to optogenetic manipulation. eLife. 2020;9:1–37. doi: 10.7554/eLife.49967. PubMed DOI PMC

Sadeh S, Clopath C. Patterned perturbation of inhibition can reveal the dynamical structure of neural processing. eLife. 2020;9:e52757. doi: 10.7554/eLife.52757. PubMed DOI PMC

Luo, J. W., Nikolic, K. & Degenaar, P. Modelling optogenetic subthreshold effects. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 6136–6140 (Institute of Electrical and Electronics Engineers Inc., 2019). PubMed

Huang X, Elyada YM, Bosking WH, Walker T, Fitzpatrick D. Optogenetic assessment of horizontal interactions in primary visual cortex. J. Neurosci. 2014;34:4976–4990. doi: 10.1523/JNEUROSCI.4116-13.2014. PubMed DOI PMC

Shewcraft, R. A. et al. Coherent neuronal dynamics driven by optogenetic stimulation in the primate brain. bioRxiv (2018). PubMed PMC

Liu Y-J, Hashemi-Nezhad M, Lyon DC. Dynamics of extraclassical surround modulation in three types of V1 neurons. J. Neurophysiol. 2011;105:1306–17. doi: 10.1152/jn.00692.2010. PubMed DOI

Harris KD, Mrsic-Flogel TD. Cortical connectivity and sensory coding. Nature. 2013;503:51–58. doi: 10.1038/nature12654. PubMed DOI

Bathellier B, Ushakova L, Rumpel S. Discrete neocortical dynamics predict behavioral categorization of sounds. Neuron. 2012;76:435–449. doi: 10.1016/j.neuron.2012.07.008. PubMed DOI

Ben-Yishai R, Lev Bar-Or R, Sompolinsky H. Theory of orientation tuning in visual cortex. Proc. Natil. Acad. Sci. U. S. A. 1995;92:3844–3848. doi: 10.1073/pnas.92.9.3844. PubMed DOI PMC

Somers DC, Nelson SB, Sur M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 1995;15:5448–5465. doi: 10.1523/JNEUROSCI.15-08-05448.1995. PubMed DOI PMC

Miconi T, McKinstry JL, Edelman GM. Spontaneous emergence of fast attractor dynamics in a model of developing primary visual cortex. Nat. Commun. 2016;7:1–10. doi: 10.1038/ncomms13208. PubMed DOI PMC

Liu B-H, et al. Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. Neuron. 2011;71:542–554. doi: 10.1016/j.neuron.2011.06.017. PubMed DOI PMC

Marre O, Yger P, Davison AP, Frégnac Y. Reliable recall of spontaneous activity patterns in cortical networks. J. Neurosci. 2009;29:14596–14606. doi: 10.1523/JNEUROSCI.0753-09.2009. PubMed DOI PMC

Chen SC, Suaning GJ, Morley JW, Lovell NH. Simulating prosthetic vision: I. Visual models of phosphenes. Vis. Res. 2009;49:1493–1506. doi: 10.1016/j.visres.2009.02.003. PubMed DOI

Killian NJ, Vurro M, Keith SB, Kyada MJ, Pezaris JS. Perceptual learning in a non-human primate model of artificial vision. Sci. Rep. 2016;6:1–16. doi: 10.1038/srep36329. PubMed DOI PMC

Rassia KEK, Pezaris JS. Improvement in reading performance through training with simulated thalamic visual prostheses. Sci. Rep. 2018;8:1–19. doi: 10.1038/s41598-018-31435-0. PubMed DOI PMC

Frégnac Y, Bathellier B. Cortical correlates of low-level perception: from neural circuits to percepts. Neuron. 2015;88:110–126. doi: 10.1016/j.neuron.2015.09.041. PubMed DOI

Gong X, et al. An ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. Neuron. 2020;107:38–51.e8. doi: 10.1016/j.neuron.2020.03.032. PubMed DOI PMC

Fan B, Li W. Miniaturized optogenetic neural implants: a review. Lab Chip. 2015;15:3838–3855. doi: 10.1039/C5LC00588D. PubMed DOI

Aharoni D, Hoogland TM. Circuit investigations with open-source miniaturized microscopes: past, present and future. Front. Cell. Neurosci. 2019;13:141. doi: 10.3389/fncel.2019.00141. PubMed DOI PMC

Matsuo T, et al. Intrasulcal electrocorticography in macaque monkeys with minimally invasive neurosurgical protocols. Front. Syst. Neurosci. 2011;5:34. doi: 10.3389/fnsys.2011.00034. PubMed DOI PMC

Ji B, et al. Flexible polyimide-based hybrid opto-electric neural interface with 16 channels of micro-LEDs and electrodes. Microsyst. Nanoeng. 2018;4:1–11. doi: 10.1038/s41378-018-0027-0. PubMed DOI PMC

Reddy JW, et al. High density, double-sided, flexible optoelectronic neural probes with embedded LEDs. Front. Genet. 2019;10:745. doi: 10.3389/fgene.2019.00745. PubMed DOI PMC

Chiang CH, et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl. Med. 2020;12:eaay4682. doi: 10.1126/scitranslmed.aay4682. PubMed DOI PMC

Richter A, et al. A simple implantation method for flexible, multisite microelectrodes into rat brains. Front. Neuroeng. 2013;6:6. doi: 10.3389/fneng.2013.00006. PubMed DOI PMC

Akasaki T, Sato H, Yoshimura Y, Ozeki H, Shimegi S. Suppressive effects of receptive field surround on neuronal activity in the cat primary visual cortex. Neurosci. Res. 2002;43:207–220. doi: 10.1016/S0168-0102(02)00038-X. PubMed DOI

Wilson DE, Whitney DE, Scholl B, Fitzpatrick D. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nat. Neurosci. 2016;19:1003–1009. doi: 10.1038/nn.4323. PubMed DOI PMC

Li M, Liu F, Jiang H, Lee TS, Tang S. Long-term two-photon imaging in awake macaque monkey. Neuron. 2017;93:1049–1057. doi: 10.1016/j.neuron.2017.01.027. PubMed DOI

Naumann J. Search for Paradise: A Patient’s Account of the Artificial Vision Experiment. Xlibris Corporation; 2012.

Antolík J, Davison AP. Integrated workflows for spiking neuronal network simulations. Front. Neuroinform. 2013;7:1–15. doi: 10.3389/fninf.2013.00034. PubMed DOI PMC

Antolík J, Davison AA. Arkheia: data management and communication for open computational neuroscience. Front. Neuroinform. 2018;12:6. doi: 10.3389/fninf.2018.00006. PubMed DOI PMC

Sabatier, Q. et al. Modeling the electro-chemical properties of microbial opsin chrimsonr for application to optogenetics-based vision restoration. bioRxiv 417899 (2018).

Gewaltig M-O, Diesmann M. NEST (NEural Simulation Tool) Scholarpedia. 2007;2:1430. doi: 10.4249/scholarpedia.1430. DOI

Jacques SL. Optical properties of biological tissues: a review. Phys. Med. Biol. 2013;58:R37–R61. doi: 10.1088/0031-9155/58/11/R37. PubMed DOI

Destexhe A, Mainen ZF, Sejnowski TJ. Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 1994;1:195–230. doi: 10.1007/BF00961734. PubMed DOI

Swindale NV. Visual cortex: a cat’s-eye view of the visual system. Curr. Biol. 1997;7:387–389. doi: 10.1016/S0960-9822(06)00182-5. PubMed DOI

Roland PE, Hilgetag CC, Deco G. Cortico-cortical communication dynamics. Front. Syst. Neurosci. 2014;8:1–11. PubMed PMC

Tusa RJ, Palmer LA, Rosenquist AC. The retinotopic organization of area 17 (striate cortex) in the cat. J. Comp. Neurol. 1978;177:213–235. doi: 10.1002/cne.901770204. PubMed DOI

Beaulieu C, Colonnier M. Number of neurons in individual laminae of areas 3B, 4 PubMed DOI

Beaulieu C, Kisvarday Z, Somogyi P, Cynader M, Cowey A. Quantitative distribution of gaba-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17) Cereb. Cortex. 1992;2:295–309. doi: 10.1093/cercor/2.4.295. PubMed DOI

Markram H, et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 2004;5:793–807. doi: 10.1038/nrn1519. PubMed DOI

Stepanyants A, Martinez LM, Ferecsko AS, Kisvarday ZF. The fractions of short- and long-range connections in the visual cortex. Proc. Natl. Acad. Sci. 2009;106:3555–3560. doi: 10.1073/pnas.0810390106. PubMed DOI PMC

Buzás P, et al. Model-based analysis of excitatory lateral connections in the visual cortex. J. Comp. Neurol. 2006;499:861–881. doi: 10.1002/cne.21134. PubMed DOI

Angelucci A, et al. Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 2002;22:8633–8646. doi: 10.1523/JNEUROSCI.22-19-08633.2002. PubMed DOI PMC

Troyer TW, Krukowski AE, Priebe NJ, Miller KD. Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J. Neurosci. 1998;18:5908–5927. doi: 10.1523/JNEUROSCI.18-15-05908.1998. PubMed DOI PMC

Reid RC, Alonso JM. Specificity of monosynaptic connections from thalamus to visual cortex. Nature. 1995;378:281–4. doi: 10.1038/378281a0. PubMed DOI

Jones JP, Palmer LA. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysiol. 1987;58:1187–1211. doi: 10.1152/jn.1987.58.6.1187. PubMed DOI

Pei X, Vidyasagar TR, Volgushev M, Creutzfeldt OD. Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex. J. Neurosci. 1994;14:7130–7140. doi: 10.1523/JNEUROSCI.14-11-07130.1994. PubMed DOI PMC

Da Costa NM, Martin KA. How thalamus connects to spiny stellate cells in the cat’s visual cortex. J. Neurosci. 2011;31:2925–2937. doi: 10.1523/JNEUROSCI.5961-10.2011. PubMed DOI PMC

Budd JM, Kisvárday ZF. Local lateral connectivity of inhibitory clutch cells in layer 4 of cat visual cortex (area 17) Exp. Brain Res. 2001;140:245–250. doi: 10.1007/s002210100817. PubMed DOI

Stepanyants A, et al. Local potential connectivity in cat primary visual cortex. Cereb. Cortex. 2008;18:13–28. doi: 10.1093/cercor/bhm027. PubMed DOI

Ko H, et al. Functional specificity of local synaptic connections in neocortical networks. Nature. 2011;473:87–91. doi: 10.1038/nature09880. PubMed DOI PMC

Binzegger T, Douglas RJ, Martin KA. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 2004;24:8441–8453. doi: 10.1523/JNEUROSCI.1400-04.2004. PubMed DOI PMC

Abbott LF. Synaptic depression and cortical gain control. Science. 1997;275:221–224. doi: 10.1126/science.275.5297.221. PubMed DOI

Markram H, Wang Y, Tsodyks M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. U.S.A. 1998;95:5323–5328. doi: 10.1073/pnas.95.9.5323. PubMed DOI PMC

Bringuier V, Chavane F, Glaeser L, Frégnac Y. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science. 1999;283:695–699. doi: 10.1126/science.283.5402.695. PubMed DOI

Frégnac Y. Reading out the synaptic echoes of low-level perception in V1. In: Fusiello A, Murino V, Cucchiara R, editors. Lecture Notes in Computer Science 1. Springer; 2012. pp. 486–495.

Chavane F, et al. Lateral spread of orientation selectivity in V1 is controlled by intracortical cooperativity. Front. Syst. Neurosci. 2011;5:1–26. PubMed PMC

Ohana O, Portner H, Martin KAC. Fast recruitment of recurrent inhibition in the cat visual cortex. PLoS ONE. 2012;7:e40601. doi: 10.1371/journal.pone.0040601. PubMed DOI PMC

Papaioannou J, White A. Maintained activity of lateral geniculate nucleus neurons as a function of background luminance. Exp. Neurol. 1972;34:558–566. doi: 10.1016/0014-4886(72)90050-7. PubMed DOI

Bonin V, Mante V, Carandini M. The suppressive field of neurons in lateral geniculate nucleus. J. Neurosci. 2005;25:10844–10856. doi: 10.1523/JNEUROSCI.3562-05.2005. PubMed DOI PMC

Kaplan E, Purpura K, Shapley RM. Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J. Physiol. 1987;391:267–288. doi: 10.1113/jphysiol.1987.sp016737. PubMed DOI PMC

Alitto HJ, Usrey WM. Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. J. Neurophysiol. 2004;91:2797–2808. doi: 10.1152/jn.00943.2003. PubMed DOI

Adams DL, Sincich LC, Horton JC. Complete pattern of ocular dominance columns in human primary visual cortex. J. Neurosci. 2007;27:10391–10403. doi: 10.1523/JNEUROSCI.2923-07.2007. PubMed DOI PMC

Yacoub E, Harel N, Uurbil K. High-field fMRI unveils orientation columns in humans. Proc. Natl. Acad. Sci. U.S.A. 2008;105:10607–10612. doi: 10.1073/pnas.0804110105. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Optogenetic Stimulation Recruits Cortical Neurons in a Morphology-Dependent Manner

. 2024 Dec 04 ; 44 (49) : . [epub] 20241204

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...