Influence of WO3 Content in Phosphated Tungsten-Zirconium Oxide Catalysts on the Catalytic Pathways of Glycerol Transformation

. 2025 Mar 03 ; 18 (5) : e202401800. [epub] 20241112

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39429095

Grantová podpora
20217167 Central European Research Infrastructure Consortium

The catalytic performance of phosphate-stabilized WOx-ZrO2 compositions in gas-phase glycerol dehydration has been investigated. Results show that varying WO3 concentrations direct the process towards either acrolein or allyl alcohol formation. Catalysts with low WOx content exhibit strong Lewis acid sites (Zr4+ and W6+), where these metal ions likely function as redox sites, facilitating glycerol hydrogenolysis to produce allyl alcohol. Higher WOx concentrations (exceeding 20 wt %) lead to the shielding of some W6+ and Zr4+ sites by polytungstate surface complexes, which are strong Brønsted acid sites. This alteration promotes glycerol dehydration through the removal of two water molecules, thereby shifting the selectivity towards acrolein formation.

Zobrazit více v PubMed

D. Neupane, Bioengineering (Basel) 2023, 10, 29.

U. Bello, C. M. Agu, D. A. Ajiya, A. A. Mahmoud, L. Udopia, N. M. Lawal, A. A. Abubakar, M. Muhammad, J. Chem. Rew. 2022, 4, 272.

A. Demirbas, Energy Convers. Manag. 2009, 50, 14.

A. Murugesan, C. Umarani, R. Subramanian, N. Nedunchezhian, Renew. Sustain. Energy Rev. 2009, 13, 653.

S. V. Konovalov, S. O. Zubenko, L. K. Patrylak, A. V. Yakovenko, Catal. Petrochem. 2021, 32, 40.

P. J. M. Lima, R. M. da Silva, C. A. C. G. Neto, N. C. Gomes e Silva, J. E. da Silva Souza, Y. L. Nunes, J. C. S. dos Santos, Biotechnol. Appl. Bioc. 2021, 69, 2794.

M. Checa, S. Nogales-Delgado, V. Montes, J. M. Encinar, Catalysts 2020, 10, 1279.

J. Cecilia, C. García-Sancho, C. Jiménez-Gómez, R. Moreno-Tost, P. Maireles-Torres, Materials 2018, 11, 1569.

M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, C. Della Pina, Angew. Chem. Int. Ed. 2007, 46, 4434.

S. Bagheri, N. M. Julkapli, W. A. Yehye, Renew. Sustain. Energy Rev. 2015, 41, 113.

J. L. Dubois, C. Duquenne, W. Hulderich (Arkema France, Colombes), US 7,396,962, 2008.

B. Katryniok, S. Paul, M. Capron, F. Dumeignil, ChemSusChem. 2009, 2, 719.

R. Pothu, N. Mameda, R. Boddula, H. Mitta, V. Perugopu, N. Al-Qahtani, Mater. Sci. Energy Techn. 2023, 6, 226.

D. H. Piva, R. H. Piva, C. A. Pereira, D. S. A. Silva, O. R. K. Montedo, M. R. Morelli, E. A. Urquieta-González, Mater. Today Chem. 2020, 18, 100367.

S. Li, C. Jin, N. Feng, F. Deng, L. Xiao, J. Fan, Catal. Commun. 2019, 123, 54.

P. Lauriol-Garbey, S. Loridant, V. Bellière-Baca, P. Rey, J. M. M. Millet, Catal. Commun. 2011, 16, 170.

L. Nadji, A. Massó, D. Delgado, R. Issaadi, E. Rodriguez-Aguado, E. Rodriguez-Castellón, J. L. Nieto, RSC Adv. 2018, 8, 13344.

I. P. Rosas, J. L. C. Larios, B. Zeifert, J. S. Blásquez, in Glycerine Production and Transformation - An Innovative Platform for Sustainable Biorefinery and Energy, IntechOpen, 2019, DOI: 10.5772/intechopen.85751.

S. H. Chai, L. Z. Tao, B. Yan, J. C. Vedrine, B. Q. Xu, RSC Adv. 2014, 4, 46190.

K. H. Sung, S. Cheng, RSC Adv. 2017, 7, 41880.

A. Alhanash, E. F. Kozhevnikova, I. V. Kozhevnikov, Appl. Catal. A: Gen. 2010, 378, 11.

K. Kongpatpanich, T. Nanok, B. Boekfa, M. Probst, J. Limtrakul, PCCP 2011, 13, 6462.

S−H. Chai, H−P. Wang, Y. Liang, B−Q. Xu, Green Chem. 2007, 9, 1130.

M. Velásquez, C. Batiot-Dupeyrat, J. F. Espinal, A. Sánchez, A. Santamaría, Dyna 2019, 86, 126.

B. Katryniok, S. Paul, F. Dumeignil, ACS Catal. 2013, 3, 1819.

H. Fujitsuka, K. Terai, M. Hayashi, T. Yoshikawa, Y. Nakasaka, T. Masuda, T. Tago, J. Jpn. Petrol. Inst. 2019, 62, 319.

H. Zhao, Y. Jiang, H. Liu, Y. Long, Z. Wang, Z. Hou, Appl. Catal. B: Environ. 2020, 277, 119187.

N. Martín, M. de Lourdes Rodríguez, D. Solís-Casados, M. Viniegra, J. Mex. Chem. Soc. 2020, 64, 327.

A. S. Belousov, ChemistrySelect 2021, 6, 9191.

E. I. Ross-Medgaarden, W. V. Knowles, T. Kim, M. S. Wong, W. Zhou, C. J. I. Kiely, E. Wachs, J. Catal. 2008, 256, 108.

W. Zhou, N. Soultanidis, H. Xu, M. S. Wong, M. Neurock, C. J. Kiely, I. E. Wachs, ACS Catal. 2017, 7, 2181.

V. V. Brei, O. V. Melezhyk, S. V. Prudius, G. M. Tel'biz, O. I. Oranska, Adsorpt. Sci. Technol. 2005, 23, 109.

W. Zhou, E. I. Ross-Medgaarden, W. V. Knowles, M. S. Wong, I. E. Wachs, C. J. Kiely, Nat. Chem. 2009, 1, 722.

V. L. Struzhko, E. V. Senchilo, V. G. Il'in, Theor. Exp. Chem. 2006, 42, 53.

S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60, 309.

L. M Skinner, J. R. Sambles, J. Aerosol Sci. 1972, 3, 199.

K. S. Lakhi, G. Singh, S. Kim, A. V. Baskar, S. Joseph, J.-H. Yang, H. Ilbeygi, S. J. M. Ruban, V. T. H. Vu, A. Vinu, Micropor. Mesopor. Mater. 2018, 267, 134.

D. Li, D. Chandra, K. Saito, T. Yui, M. Yagi, Nanoscale Res. Lett. 2014, 9, 542.

S. Li, V. A. Tuan, J. L. Falconer, R. D. Noble, Ind. Eng. Chem. Res. 2001, 40, 1952.

A. C. Dimian, G. i. Rothenberg, Catal. Sci. Technol. 2016, 6, 6097.

E. Zhao, Y. Isaev, A. Sklyarov, J. J. Fripiat, Catal. Lett. 1999, 60, 173.

Y. Ikeda, T. Sakaihori, K. Tomishige, K. Fujimoto, Catal. Lett. 2000, 66, 59.

F. Aberuagba, M. Kumar, J. K. Gupta, G. Muralidhar, L. D. Sharma, Catal. Lett. 2003, 80, 311.

M. Tamura, K. Shimizu, A. Satsuma, Appl. Catal. A: Gen. 2012, 433, 135.

U. Ciesla, G. Stucky, F. Schuts, Stud. Surf. Sci. Catal. 1998, 117, 527.

K. I. Hadjiivanov, D. A. Panayotov, M. Y. Mihaylov, E. Z. Ivanova, K. K. Chakarova, S. M. Andonova, N. L. Drenchev, Chem. Rev. 2021, 121, 1286.

F. Di Gregorio, V. Keller, J. Catal. 2004, 225, 45.

J. F. Moulder, J. Chastain, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie, Minn. 1992, p. 261.

M. Arfelli, G. Mattogno, C. Ferragina, M. A. Massucci, J. Incl. Phenom. Macrocycl. Chem. 1991, 11, 15.

D. G. Barton, S. L. Soled, E. Iglesia, Top. Catal. 1998, 6, 87.

A. Galano, G. Rodriguez-Gattorno, E. Torres-García, PCCP 2008, 10, 4181.

Z. Miao, H. Zhao, H. Songac, L. Chou, RSC Adv. 2014, 4, 22509.

Z. Miao, H. Song, H. Zhao, L. Xuab, L. Chou, Catal. Sci. Technol. 2014, 4, 838.

C. D. Baertsch, S. L. Soled, E. Iglesia, J. Phys. Chem. B 2001, 105, 1320.

F. Can, X. Courtois, D. Duprez, Catalysts 2021, 11, 703.

Y. Liu, H. Tüysüz, C.-J. Jia, M. Schwickardi, R. Rinaldi, A.-H. Lu, W. Schmidt, F. Schüth, Chem. Commun. 2010, 46, 1238.

F. J. Urbano, M. A. Aramendia, A. Marinas, J. M. Marinas, J. Catal. 2009, 268, 79.

F. Braun, J. I. D. Cosimo, Catal.Today 2006, 116, 206.

A. Kostyniuk, D. Bajec, P. Djinović, B. Likozar, Chem. Eng. J. 2020, 397, 125430.

T. Yoshikawa, T. Tago, A. Nakamura, A. Konaka, M. Mukaida, T. Masuda, Res. Chem. Intermed. 2011, 37, 1247.

L. Ning, Y. Ding, W. Chen, L. Gong, R. Lin, Y. Lü, Q. Xin, Chinese J. Catal. 2008, 29, 212.

T. Aihara, K. Asazuma, H. Miura, T. Shishido, RSC Adv. 2020, 10, 37538.

B. Viswanadham, A. Srikanth, K. V. R. Chary, J. Chem Sci. 2014, 126, 445.

H. Lan, J. Zeng, B. Zhang, Y. Jiang, Res. Chem. Intermed. 2019, 45, 1565.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...