eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5102
European Commission (EC)
18/SPP/3522
Science Foundation Ireland (SFI)
GA22-30397S
Grantová Agentura České Republiky (GAČR)
CZ.02.1.01/0.0/0.0/16_019/0000868
EC | European Regional Development Fund (ERDF)
208402/Z/17
Wellcome Trust (WT)
Wellcome Trust - United Kingdom
GA20-22984S
Grantová Agentura České Republiky (GAČR)
PubMed
39436655
PubMed Central
PMC11536119
DOI
10.1073/pnas.2321305121
Knihovny.cz E-zdroje
- Klíčová slova
- DUSP6, ERK, MAP kinase, eIF4F, melanoma,
- MeSH
- eukaryotický iniciační faktor 4F * metabolismus genetika MeSH
- extracelulárním signálem regulované MAP kinasy metabolismus MeSH
- fosfatasa 6 s dvojí specificitou metabolismus genetika MeSH
- GTP-fosfohydrolasy * metabolismus genetika MeSH
- lidé MeSH
- MAP kinasový signální systém * genetika MeSH
- melanom * genetika metabolismus patologie MeSH
- membránové proteiny * metabolismus genetika MeSH
- mutace * MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- protoonkogenní proteiny B-Raf * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- BRAF protein, human MeSH Prohlížeč
- DUSP6 protein, human MeSH Prohlížeč
- EIF4E protein, human MeSH Prohlížeč
- eukaryotický iniciační faktor 4F * MeSH
- extracelulárním signálem regulované MAP kinasy MeSH
- fosfatasa 6 s dvojí specificitou MeSH
- GTP-fosfohydrolasy * MeSH
- membránové proteiny * MeSH
- NRAS protein, human MeSH Prohlížeč
- protoonkogenní proteiny B-Raf * MeSH
The eIF4F translation initiation complex plays a critical role in melanoma resistance to clinical BRAF and MEK inhibitors. In this study, we uncover a function of eIF4F in the negative regulation of the rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway. We demonstrate that eIF4F is essential for controlling ERK signaling intensity in treatment-naïve melanoma cells harboring BRAF or NRAS mutations. Specifically, the dual-specificity phosphatase DUSP6/MKP3, which acts as a negative feedback regulator of ERK activity, requires continuous production in an eIF4F-dependent manner to limit excessive ERK signaling driven by oncogenic RAF/RAS mutations. Treatment with small-molecule eIF4F inhibitors disrupts the negative feedback control of MAPK signaling, leading to ERK hyperactivation and EGR1 overexpression in melanoma cells in vitro and in vivo. Furthermore, our quantitative analyses reveal a high spare signaling capacity in the ERK pathway, suggesting that eIF4F-dependent feedback keeps the majority of ERK molecules inactive under normal conditions. Overall, our findings highlight the crucial role of eIF4F in regulating ERK signaling flux and suggest that pharmacological eIF4F inhibitors can disrupt the negative feedback control of MAPK activity in melanomas with BRAF and NRAS activating mutations.
Department of Biology Faculty of Medicine Masaryk University Brno 62500 Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno 62500 Czech Republic
International Clinical Research Center St Anne's University Hospital Brno 60200 Czech Republic
School of Biomolecular and Biomedical Science University College Dublin Dublin D04 V1W8 Ireland
Systems Biology Ireland School of Medicine University College Dublin Dublin D04 V1W8 Ireland
Zobrazit více v PubMed
Fecher L. A., Amaravadi R. K., Flaherty K. T., The MAPK pathway in melanoma. Curr. Opin. Oncol. 20, 183–189 (2008). PubMed
Smalley K. S. M., Sondak V. K., Inhibition of BRAF and MEK in BRAF-mutant melanoma. Lancet 386, 410–412 (2015). PubMed
Pratilas C. A., et al. , V600EBRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc. Natl. Acad. Sci. U.S.A. 106, 4519–4524 (2009). PubMed PMC
Lito P., et al. , Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22, 668–682 (2012). PubMed PMC
Dry J. R., et al. , Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244). Cancer Res. 70, 2264–2273 (2010). PubMed PMC
Hong A., et al. , Exploiting drug addiction mechanisms to select against mapki-resistant melanoma. Cancer Discov. 8, 74–93 (2018). PubMed PMC
Stern D. F., Keeping tumors out of the MAPK fitness zone. Cancer Discov. 8, 20–23 (2018). PubMed
Leung G. P., et al. , Hyperactivation of MAPK signaling is deleterious to RAS/RAF-mutant melanoma. Mol. Cancer Res. 17, 199–211 (2018). PubMed
Bhat M., et al. , Targeting the translation machinery in cancer. Nat. Rev. Drug Discov. 14, 261–278 (2015). PubMed
Boussemart L., et al. , eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature 513, 105–109 (2014). PubMed
Feng Y., et al. , SBI-0640756 attenuates the growth of clinically unresponsive melanomas by disrupting the eIF4F translation initiation complex. Cancer Res. 75, 5211–5218 (2015). PubMed PMC
Shen S., et al. , An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells. Nat. Commun. 10, 1–14 (2019). PubMed PMC
Malka-Mahieu H., et al. , Synergistic effects of eIF4A and MEK inhibitors on proliferation of NRAS-mutant melanoma cell lines. Cell Cycle 15, 2405–2409 (2016). PubMed PMC
Behan F. M., et al. , Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019). PubMed
Dwane L., et al. , Project Score database: A resource for investigating cancer cell dependencies and prioritizing therapeutic targets. Nucleic Acids Res. 49, D1365–D1372 (2021). PubMed PMC
Chu J., et al. , Rocaglates induce gain-of-function alterations to eIF4A and eIF4F. Cell Rep. 30, 2481–2488.e5 (2020). PubMed PMC
Iwasaki S., Floor S., Ingolia N. T., Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor. Nature 534, 558–561 (2016). PubMed PMC
Ünal E. B., Uhlitz F., Blüthgen N., A compendium of ERK targets. FEBS Lett. 591, 2607–2615 (2017). PubMed
Flynn A., Proud G., Insulin-stimulated phosphorylation of initiation factor 4E is mediated by the MAP kinase pathway. FEBS Lett. 389, 162–166 (1996). PubMed
Waskiewicz A. J., et al. , Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol. Cell. Biol. 19, 1871–1880 (1999). PubMed PMC
Waskiewicz A. J., Flynn A., Proud C. G., Cooper J. A., Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16, 1909–1920 (1997). PubMed PMC
Scheper G. C., Morrice N. A., Kleijn M., Proud C. G., The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells. Mol. Cell. Biol. 21, 743–754 (2001). PubMed PMC
Pyronnet S., et al. , Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J. 18, 270–279 (1999). PubMed PMC
Chu J., Cencic R., Wang W., Porco J. A., Pelletier J., Translation inhibition by rocaglates is independent of eIF4E phosphorylation status. Mol. Cancer Ther. 15, 136–141 (2016). PubMed PMC
Kidger A. M., Keyse S. M., The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs). Semin. Cell Dev. Biol. 50, 125–132 (2016). PubMed PMC
Seternes O. M., Kidger A. M., Keyse S. M., Dual-specificity MAP kinase phosphatases in health and disease. Biochim. Biophys. Acta Mol. Cell Res. 1866, 124–143 (2019). PubMed PMC
Lu Z. J., Gloor J. W., Mathews D. H., Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA 15, 1805–1813 (2009). PubMed PMC
Ito T., et al. , Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK pathway-driven cancers. Nat. Genet. 53, 1664–1672 (2021). PubMed
Gudernova I., et al. , One reporter for in-cell activity profiling of majority of protein kinase oncogenes. Elife 6, e21536 (2017). PubMed PMC
West M. J., Stoneley M., Willis A. E., Translational induction of the c-myc oncogene via activation of the FRAP/TOR signalling pathway. Oncogene 17, 769–780 (1998). PubMed
Zhang X., et al. , Targeting translation initiation by synthetic rocaglates for treating MYC-driven lymphomas. Leukemia 34, 138–150 (2020). PubMed PMC
Goldman M. J., et al. , Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 38, 675–678 (2020). PubMed PMC
Buffet C., et al. , DUSP5 and DUSP6, two ERK specific phosphatases, are markers of a higher MAPK signaling activation in BRAF mutated thyroid cancers. PLoS One 12, 1–24 (2017). PubMed PMC
Verlande A., et al. , Metabolic stress regulates ERK activity by controlling KSR-RAF heterodimerization. EMBO Rep. 19, 320–336 (2018). PubMed PMC
Zhu X., et al. , AMP-activated protein kinase up-regulates mitogen-activated protein (MAP) kinaseinteracting serine/threonine kinase 1a-dependent phosphorylation of eukaryotic translation initiation factor 4E. J. Biol. Chem. 291, 17020–17027 (2016). PubMed PMC
Inoki K., Zhu T., Guan K.-L., TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003). PubMed
Gwinn D. M., et al. , AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008). PubMed PMC
Chan K., et al. , eIF4A supports an oncogenic translation program in pancreatic ductal adenocarcinoma. Nat. Commun. 10, 5151 (2019). PubMed PMC
Flaherty K. T., A twenty year perspective on melanoma therapy. Pigment Cell Melanoma Res. 36, 563–575 (2023). PubMed
Pelletier J., Graff J., Ruggero D., Sonenberg N., Targeting the eIF4F translation initiation complex: A critical nexus for cancer development. Cancer Res. 75, 250–263 (2015). PubMed PMC
Lito P., Rosen N., Solit D. B., Tumor adaptation and resistance to RAF inhibitors. Nat. Med. 19, 1401–1409 (2013). PubMed
Unni A. M., et al. , Hyperactivation of ERK by multiple mechanisms is toxic to RTK-RAS mutation-driven lung adenocarcinoma cells. Elife 7, 1–24 (2018). PubMed PMC
Ghaddar N., et al. , The integrated stress response is tumorigenic and constitutes a therapeutic liability in KRAS-driven lung cancer. Nat. Commun. 12, 4651 (2021). PubMed PMC
Dumaz N., et al. , In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res. 66, 9483–9491 (2006). PubMed
Polier G., et al. , The natural anticancer compounds rocaglamides inhibit the Raf-MEK-ERK pathway by targeting prohibitin 1 and 2. Chem. Biol. 19, 1093–1104 (2012). PubMed
Yurugi H., et al. , Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours. Oncogene 36, 4778–4789 (2017). PubMed
Singh K., et al. , Targeting eIF4A-dependent translation of KRAS signaling molecules. Cancer Res. 81, 2002–2014 (2021). PubMed PMC
Johannessen C. M., et al. , A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504, 138–142 (2013). PubMed PMC
Uldrijan S., Smolkova K., Tichy B., Blavet N., Data from “eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations.” Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE273721. Deposited 1 August 2024. PubMed PMC
eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations