• This record comes from PubMed

High rate of macrolide resistance and closely genetically related Mycobacterium abscessus complex strains identified among both cystic fibrosis and non-cystic fibrosis patients within two countries

. 2024 Oct 23 ; 12 (12) : e0105624. [epub] 20241023

Status Publisher Language English Country United States Media print-electronic

Document type Journal Article

UNLABELLED: Mycobacterium abscessus is an emerging opportunistic pathogen affecting patients with chronic lung diseases, primarily cystic fibrosis (CF), or those under immunosuppression. Hence, investigations into the epidemiology and transmission of M. abscessus and accurate antibiotic susceptibility data are essential for the effective treatment of infections caused by this pathogen. This retrospective nationwide study included all clinical M. abscessus isolates (n = 59) from 29 patients diagnosed in the Czech Republic and Slovakia between 2018 and 2023. Whole genome sequencing (WGS) was performed to identify clusters and classify isolates into predominant circulating clones (DCC). Subspecies identification of unique isolates showed subspecies abscessus as the most prevalent (69.0%). The results of drug-susceptibility testing showed that 65.5% of all isolates were resistant to at least three antibiotics tested. CF patients under 24 years of age were the most at-risk group for M. abscessus infection. WGS identified seven clusters (including two cross-border) comprising CF and non-CF patients with a total clustering rate of 48.3%. One cluster involved patients infected with subspecies massiliense strains differing by 0 single nucleotide polymorphisms hospitalized in the same center. Furthermore, we identified representatives of all major DCCs. This study revealed predominant Mycobacterium abscessus complex clones circulating in the Czech Republic and Slovakia. The results show the high discriminatory power of WGS in the molecular epidemiology of M. abscessus and provide supporting evidence of direct or indirect cross-transmission of subspecies massiliense among both CF and non-CF patients. IMPORTANCE: This study highlights the importance of understanding Mycobacterium abscessus transmission because it poses a growing threat to vulnerable populations, especially young cystic fibrosis patients. Investigating how it spreads and which antibiotics work best is crucial for effective treatment. This research used whole genome sequencing to track M. abscessus and found evidence of potential transmission between patients, including across borders. The findings suggest that dominant strains are circulating and some patients may be infected through direct or indirect contact. This knowledge can inform infection control and treatment strategies.

See more in PubMed

Ratnatunga CN, Lutzky VP, Kupz A, Doolan DL, Reid DW, Field M, Bell SC, Thomson RM, Miles JJ. 2020. The rise of non-tuberculosis mycobacterial lung disease. Front Immunol 11:303. doi:10.3389/fimmu.2020.00303 PubMed DOI PMC

Prevots DR, Marras TK. 2015. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med 36:13–34. doi:10.1016/j.ccm.2014.10.002 PubMed DOI PMC

Brugha R, Spencer H. 2021. Mycobacterium abscessus in cystic fibrosis. Science 372:465–466. doi:10.1126/science.abi5695 PubMed DOI

Weill D, Benden C, Corris PA, Dark JH, Davis RD, Keshavjee S, Lederer DJ, Mulligan MJ, Patterson GA, Singer LG, Snell GI, Verleden GM, Zamora MR, Glanville AR. 2015. A consensus document for the selection of lung transplant candidates: 2014—an update from the pulmonary transplantation council of the international society for heart and lung transplantation. J Heart Lung Transplant 34:1–15. doi:10.1016/j.healun.2014.06.014 PubMed DOI

Kwak N, Dalcolmo MP, Daley CL, Eather G, Gayoso R, Hasegawa N, Jhun BW, Koh W-J, Namkoong H, Park J, Thomson R, van Ingen J, Zweijpfenning SMH, Yim J-J. 2019. Mycobacterium abscessus pulmonary disease: individual patient data meta-analysis. Eur Respir J:54. doi:10.1183/13993003.01991-2018 PubMed DOI

Gross JE, Caceres S, Poch K, Hasan NA, Jia F, Epperson LE, Lipner E, Vang C, Honda JR, Strand M, Calado Nogueira de Moura V, Daley CL, Strong M, Davidson RM, Nick JA. 2022. Investigating nontuberculous mycobacteria transmission at the colorado adult cystic fibrosis program. Am J Respir Crit Care Med 205:1064–1074. doi:10.1164/rccm.202108-1911OC PubMed DOI PMC

Guo Q, Chu H, Ye M, Zhang Z, Li B, Yang S, Ma W, Yu F. 2018. The clarithromycin susceptibility genotype affects the treatment outcome of patients with Mycobacterium abscessus lung disease. Antimicrob Agents Chemother 62:62. doi:10.1128/AAC.02360-17 PubMed DOI PMC

Wallace RJ Jr, Meier A, Brown BA, Zhang Y, Sander P, Onyi GO, Böttger EC. 1996. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother 40:1676–1681. doi:10.1128/AAC.40.7.1676 PubMed DOI PMC

Prammananan T, Sander P, Brown BA, Frischkorn K, Onyi GO, Zhang Y, Böttger EC, Wallace RJ Jr. 1998. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J Infect Dis 177:1573–1581. doi:10.1086/515328 PubMed DOI

Wong YL, Ong CS, Ngeow YF. 2012. Molecular typing of Mycobacterium abscessus based on tandem-repeat polymorphism. J Clin Microbiol 50:3084–3088. doi:10.1128/JCM.00753-12 PubMed DOI PMC

Harris KA, Kenna DTD, Blauwendraat C, Hartley JC, Turton JF, Aurora P, Dixon GLJ. 2012. Molecular fingerprinting of Mycobacterium abscessus strains in a cohort of pediatric cystic fibrosis patients. J Clin Microbiol 50:1758–1761. doi:10.1128/JCM.00155-12 PubMed DOI PMC

Ruis C, Bryant JM, Bell SC, Thomson R, Davidson RM, Hasan NA, van Ingen J, Strong M, Floto RA, Parkhill J. 2021. Dissemination of Mycobacterium abscessus via global transmission networks. Nat Microbiol 6:1279–1288. doi:10.1038/s41564-021-00963-3 PubMed DOI PMC

Aitken ML, Limaye A, Pottinger P, Whimbey E, Goss CH, Tonelli MR, Cangelosi GA, Dirac MA, Olivier KN, Brown-Elliott BA, McNulty S, Wallace RJ. 2012. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med 185:231–232. doi:10.1164/ajrccm.185.2.231 PubMed DOI

Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T, Reacher M, Haworth CS, Curran MD, Harris SR, Peacock SJ, Parkhill J, Floto RA. 2013. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. The Lancet 381:1551–1560. doi:10.1016/S0140-6736(13)60632-7 PubMed DOI PMC

Davidson RM. 2018. A closer look at the genomic variation of geographically diverse Mycobacterium abscessus clones that cause human infection and disease. Front Microbiol 9:2988. doi:10.3389/fmicb.2018.02988 PubMed DOI PMC

Davidson RM, Hasan NA, Reynolds PR, Totten S, Garcia B, Levin A, Ramamoorthy P, Heifets L, Daley CL, Strong M. 2014. Genome sequencing of Mycobacterium abscessus isolates from patients in the united states and comparisons to globally diverse clinical strains. J Clin Microbiol 52:3573–3582. doi:10.1128/JCM.01144-14 PubMed DOI PMC

Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall I, Brown KP, Moreno P, Verma D, Hill E, Drijkoningen J, Gilligan P, et al. . 2016. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 354:751–757. doi:10.1126/science.aaf8156 PubMed DOI PMC

Woods GL, Brown-Elliott BA, Conville PS, Desmond EP, Hall GS, Lin G, Pfyffer GE, Ridderhof JC, Siddiqi SH, Wallace Jr RJ, Warren NG, Witebsky FG. 2011. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes PubMed

Kohl TA, Utpatel C, Schleusener V, De Filippo MR, Beckert P, Cirillo DM, Niemann S. 2018. MTBseq: a comprehensive pipeline for whole genome sequence analysis of Mycobacterium tuberculosis complex isolates. PeerJ 6:e5895. doi:10.7717/peerj.5895 PubMed DOI PMC

Zhou Z, Alikhan N-F, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, Carriço JA, Achtman M. 2018. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 28:1395–1404. doi:10.1101/gr.232397.117 PubMed DOI PMC

Gustavsen JA, Pai S, Isserlin R, Demchak B, Pico AR. 2019. RCy3: network biology using cytoscape from within R. F1000Res 8:1774. doi:10.12688/f1000research.20887.3 PubMed DOI PMC

Yang D, Li S, Stabenow J, Zalduondo L, Kong Y. 2019. Mycobacterium tuberculosis LipE has a lipase/esterase activity and is important for intracellular growth and in vivo infection. Infect Immun 88:88. doi:10.1128/IAI.00750-19 PubMed DOI PMC

Boeck L, Burbaud S, Skwark M, Pearson WH, Sangen J, Wuest AW, Marshall EKP, Weimann A, Everall I, Bryant JM, Malhotra S, Bannerman BP, Kierdorf K, Blundell TL, Dionne MS, Parkhill J, Andres Floto R. 2022. Mycobacterium abscessus pathogenesis identified by phenogenomic analyses. Nat Microbiol 7:1431–1441. doi:10.1038/s41564-022-01204-x PubMed DOI PMC

Wetzstein N, Diricks M, Kohl TA, Wichelhaus TA, Andres S, Paulowski L, Schwarz C, Lewin A, Kehrmann J, Kahl BC, Dichtl K, Hügel C, Eickmeier O, Smaczny C, Schmidt A, Zimmermann S, Nährlich L, Hafkemeyer S, Niemann S, Maurer FP, Hogardt M. 2022. Molecular epidemiology of Mycobacterium abscessus isolates recovered from German cystic fibrosis patients. Microbiol Spectr 10:e0171422. doi:10.1128/spectrum.01714-22 PubMed DOI PMC

Ruedas-López A, Tato M, Broncano-Lavado A, Esteban J, Ruiz-Serrano MJ, Sánchez-Cueto M, Toro C, Domingo D, Cacho J, Barrado L, López-Roa P. 2023. Subspecies distribution and antimicrobial susceptibility testing of Mycobacterium abscessus clinical isolates in madrid, Spain: a retrospective multicenter study. Microbiol Spectr 11:e0504122. doi:10.1128/spectrum.05041-22 PubMed DOI PMC

Minias A, Żukowska L, Lach J, Jagielski T, Strapagiel D, Kim S-Y, Koh W-J, Adam H, Bittner R, Truden S, Žolnir-Dovč M, Dziadek J. 2020. Subspecies-specific sequence detection for differentiation of Mycobacterium abscessus complex. Sci Rep 10:16415. doi:10.1038/s41598-020-73607-x PubMed DOI PMC

Tortoli E, Kohl TA, Trovato A, Baldan R, Campana S, Cariani L, Colombo C, Costa D, Cristadoro S, Di Serio MC, Manca A, Pizzamiglio G, Rancoita PMV, Rossolini GM, Taccetti G, Teri A, Niemann S, Cirillo DM. 2017. Mycobacterium abscessus in patients with cystic fibrosis: low impact of inter-human transmission in Italy. Eur Respir J 50:50. doi:10.1183/13993003.02525-2016 PubMed DOI

Jeon K, Kwon OJ, Lee NY, Kim B-J, Kook Y-H, Lee S-H, Park YK, Kim CK, Koh W-J. 2009. Antibiotic treatment of Mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am J Respir Crit Care Med 180:896–902. doi:10.1164/rccm.200905-0704OC PubMed DOI

Realegeno S, Mirasol R, Garner OB, Yang S. 2021. Clinical whole genome sequencing for clarithromycin and amikacin resistance prediction and subspecies identification of Mycobacterium abscessus. J Mol Diagn 23:1460–1467. doi:10.1016/j.jmoldx.2021.07.023 PubMed DOI

Guo Q, Wei J, Zou W, Li Q, Qian X, Zhu Z. 2021. Antimicrobial susceptibility profiles of Mycobacterium abscessus complex isolates from respiratory specimens in Shanghai, China. J Glob Antimicrob Resist 25:72–76. doi:10.1016/j.jgar.2021.02.024 PubMed DOI

Carneiro S, Pinto M, Silva S, Santos A, Rodrigues I, Santos D, Duarte S, Vieira L, Gomes JP, Macedo R. 2023. Genome-scale characterization of Mycobacterium abscessus complex isolates from Portugal. Int J Mol Sci 24:15402. doi:10.3390/ijms242015402 PubMed DOI PMC

Chouhan D, Retnakumar RJ, Devi TB, Dharmaseelan S, Alexander SM, Devadas K, Chattopadhyay S, Nair GB, Pillai MR. 2023. Unusually high clarithromycin resistance in Mycobacterium abscessus subsp. abscessus isolated from human gastric epithelium. Front Microbiol 14:1193380. doi:10.3389/fmicb.2023.1193380 PubMed DOI PMC

Mudde SE, Schildkraut JA, Ammerman NC, de Vogel CP, de Steenwinkel JEM, van Ingen J, Bax HI. 2022. Unraveling antibiotic resistance mechanisms in Mycobacterium abscessus: the potential role of efflux pumps. J Glob Antimicrob Resist 31:345–352. doi:10.1016/j.jgar.2022.10.015 PubMed DOI

Lorè NI, Saliu F, Spitaleri A, Schäfle D, Nicola F, Cirillo DM, Sander P. 2022. The aminoglycoside-modifying enzyme Eis2 represents a new potential in vivo target for reducing antimicrobial drug resistance in Mycobacterium abscessus complex. Eur Respir J 60:60. doi:10.1183/13993003.01541-2022 PubMed DOI

Chew KL, Cheng JWS, Hudaa Osman N, Lin RTP, Teo JWP. 2017. Predominance of clarithromycin-susceptible Mycobacterium massiliense subspecies: characterization of the Mycobacterium abscessus complex at a tertiary acute care hospital. J Med Microbiol 66:1443–1447. doi:10.1099/jmm.0.000576 PubMed DOI

Kim J, Sung H, Park JS, Choi SH, Shim TS, Kim MN. 2016. Subspecies distribution and macrolide and fluoroquinolone resistance genetics of Mycobacterium abscessus in Korea. Int J Tuberc Lung Dis 20:109–114. doi:10.5588/ijtld.15.0068 PubMed DOI

Jin P, Dai J, Guo Y, Wang X, Lu J, Zhu Y, Yu F. 2022. Genomic analysis of Mycobacterium abscessus complex isolates from patients with pulmonary infection in China. Microbiol Spectr 10:e0011822. doi:10.1128/spectrum.00118-22 PubMed DOI PMC

Kaewprasert O, Nonghanphithak D, Chetchotisakd P, Namwat W, Ong RTH, Faksri K. 2022. Whole-genome sequencing and drug-susceptibility analysis of serial Mycobacterium abscessus isolates from Thai patients. Biol (Basel) 11:1319. doi:10.3390/biology11091319 PubMed DOI PMC

Lipworth S, Hough N, Weston N, Muller-Pebody B, Phin N, Myers R, Chapman S, Flight W, Alexander E, Smith EG, Robinson E, Peto TEA, Crook DW, Walker AS, Hopkins S, Eyre DW, Walker TM. 2021. Epidemiology of Mycobacterium abscessus in England: an observational study. Lancet Microbe 2:e498–e507. doi:10.1016/S2666-5247(21)00128-2 PubMed DOI PMC

Fujiwara K, Yoshida M, Murase Y, Aono A, Furuuchi K, Tanaka Y, Ohta K, Ato M, Mitarai S, Morimoto K. 2022. Potential cross-transmission of Mycobacterium abscessus among non-cystic fibrosis patients at a tertiary hospital in Japan. Microbiol Spectr 10:e0009722. doi:10.1128/spectrum.00097-22 PubMed DOI PMC

Komiya K, Yoshida M, Uchida S, Takikawa S, Yamasue M, Matsumoto T, Morishige Y, Aono A, Hiramatsu K, Yamaoka Y, Nishizono A, Ato M, Kadota J-I, Mitarai S. 2023. Massive and lengthy clonal nosocomial expansion of Mycobacterium abscessus subsp. massiliense among patients who are ventilator dependent without cystic fibrosis. Microbiol Spectr 11:e0490822. doi:10.1128/spectrum.04908-22 PubMed DOI PMC

Davidson RM, Benoit JB, Kammlade SM, Hasan NA, Epperson LE, Smith T, Vasireddy S, Brown-Elliott BA, Nick JA, Olivier KN, Zelazny AM, Daley CL, Strong M, Wallace RJ Jr. 2021. Genomic characterization of sporadic isolates of the dominant clone of Mycobacterium abscessus subspecies massiliense. Sci Rep 11:15336. doi:10.1038/s41598-021-94789-y PubMed DOI PMC

Bronson RA, Gupta C, Manson AL, Nguyen JA, Bahadirli-Talbott A, Parrish NM, Earl AM, Cohen KA. 2021. Global phylogenomic analyses of Mycobacterium abscessus provide context for non cystic fibrosis infections and the evolution of antibiotic resistance. Nat Commun 12:5145. doi:10.1038/s41467-021-25484-9 PubMed DOI PMC

Doyle RM, Rubio M, Dixon G, Hartley J, Klein N, Coll P, Harris KA. 2020. Cross-transmission is not the source of new Mycobacterium abscessus infections in a multicenter cohort of cystic fibrosis patients. Clin Infect Dis 70:1855–1864. doi:10.1093/cid/ciz526 PubMed DOI PMC

Redondo N, Mok S, Montgomery L, Flanagan PR, McNamara E, Smyth EG, O’Sullivan N, Schaffer K, Rogers TR, Fitzgibbon MM. 2020. Genomic analysis of Mycobacterium abscessus complex isolates collected in Ireland between 2006 and 2017. J Clin Microbiol 58:58. doi:10.1128/JCM.00295-20 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...