Identification of the N-terminal residues responsible for the differential microdomain localization of CYP1A1 and CYP1A2
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39447873
PubMed Central
PMC11603000
DOI
10.1016/j.jbc.2024.107891
PII: S0021-9258(24)02393-7
Knihovny.cz E-resources
- Keywords
- CYP1A1, CYP1A2, cytochrome P450, membrane charge depth, membrane protein, microdomain localization, microdomain-targeting motif, protein chimera, protein-lipid interaction, structure-function,
- MeSH
- Cytochrome P-450 CYP1A1 * genetics metabolism chemistry MeSH
- Cytochrome P-450 CYP1A2 * metabolism genetics chemistry MeSH
- Endoplasmic Reticulum metabolism MeSH
- HEK293 Cells MeSH
- Rabbits MeSH
- Humans MeSH
- Membrane Microdomains metabolism genetics MeSH
- Protein Domains MeSH
- Amino Acid Sequence MeSH
- Molecular Dynamics Simulation MeSH
- Amino Acid Substitution MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cytochrome P-450 CYP1A1 * MeSH
- Cytochrome P-450 CYP1A2 * MeSH
The endoplasmic reticulum is organized into ordered regions enriched in cholesterol and sphingomyelin, and disordered microdomains characterized by more fluidity. Rabbit CYP1A1 and CYP1A2 localize into disordered and ordered microdomains, respectively. Previously, a CYP1A2 chimera containing the first 109 amino acids of CYP1A1 showed altered microdomain localization. The goal of this study was to identify specific residues responsible for CYP1A microdomain localization. Thus, CYP1A2 chimeras containing substitutions from homologous regions of CYP1A1 were expressed in HEK 293T/17 cells, and the localization was examined after solubilization with Brij 98. A CYP1A2 mutant with the three amino acids from CYP1A1 (VAG) at positions 27 to 29 of CYP1A2 was generated that showed a distribution pattern similar to those of CYP1A1/1A2 chimeras containing both the first 109 amino acids and the first 31 amino acids of CYP1A1 followed by remaining amino acids of CYP1A2. Similarly, the reciprocal substitution of three amino acids from CYP1A2 (AVR) into CYP1A1 resulted in a partial redistribution of the chimera into ordered microdomains. Molecular dynamic simulations indicate that the positive charges of the CYP1A1 and CYP1A2 linker regions between the N termini and catalytic domains resulted in different depths of immersion of the N termini in the membrane. The overlap of the distribution of positively charged residues in CYP1A2 (AVR) and negatively charged phospholipids was higher in the ordered than in the disordered microdomain. These findings identify three residues in the CYP1AN terminus as a novel microdomain-targeting motif of the P450s and provide a mechanistic explanation for the differential microdomain localization of CYP1A.
See more in PubMed
McDonnell A.M., Dang C.H. Basic review of the cytochrome P450 system. J. Adv. Pract. Oncol. 2013;4:263–268. PubMed PMC
Seliskar M., Rozman D. Mammalian cytochromes P450--importance of tissue specificity. Biochim. Biophys. Acta. 2007;1770:458–466. PubMed
Neve E.P., Eliasson E., Pronzato M.A., Albano E., Marinari U., Ingelman-Sundberg M. Enzyme-specific transport of rat liver cytochrome P450 to the Golgi apparatus. Arch. Biochem. Biophys. 1996;333:459–465. PubMed
Neve E.P., Ingelman-Sundberg M. Cytochrome P450 proteins: retention and distribution from the endoplasmic reticulum. Curr. Opin. Drug Discov. Devel. 2010;13:78–85. PubMed
Otyepka M., Skopalik J., Anzenbacherova E., Anzenbacher P. What common structural features and variations of mammalian P450s are known to date? Biochim. Biophys. Acta. 2007;1770:376–389. PubMed
Park J.W., Reed J.R., Backes W.L. The localization of cytochrome P450s CYP1A1 and CYP1A2 into different lipid microdomains is governed by their NH2-terminal and internal protein regions. J. Biol. Chem. 2015;290:29449–29460. PubMed PMC
Sakaguchi M., Mihara K., Sato R. A short amino-terminal segment of microsomal cytochrome P-450 functions both as an insertion signal and as a stop-transfer sequence. EMBO J. 1987;6:2425–2431. PubMed PMC
Szczesna-Skorupa E., Kemper B. The signal-anchor sequence of CYP2C1 inserts into the membrane as a hairpin structure. Biochem. Biophys. Res. Commun. 2011;415:405–409. PubMed PMC
Srejber M., Navratilova V., Paloncyova M., Bazgier V., Berka K., Anzenbacher P., et al. Membrane-attached mammalian cytochromes P450: an overview of the membrane’s effects on structure, drug binding, and interactions with redox partners. J. Inorg. Biochem. 2018;183:117–136. PubMed
Vergeres G., Winterhalter K.H., Richter C. Identification of the membrane anchor of microsomal rat liver cytochrome P-450. Biochemistry. 1989;28:3650–3655. PubMed
Williams P.A., Cosme J., Sridhar V., Johnson E.F., McRee D.E. Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol. Cell. 2000;5:121–131. PubMed
Baylon J.L., Lenov I.L., Sligar S.G., Tajkhorshid E. Characterizing the membrane-bound state of cytochrome P450 3A4: structure, depth of insertion, and orientation. J. Am. Chem. Soc. 2013;135:8542–8551. PubMed PMC
Pernecky S.J., Larson J.R., Philpot R.M., Coon M.J. Expression of truncated forms of liver microsomal P450 cytochromes 2B4 and 2E1 in Escherichia coli: influence of NH2-terminal region on localization in cytosol and membranes. Proc. Natl. Acad. Sci. U. S. A. 1993;90:2651–2655. PubMed PMC
Berka K., Paloncyova M., Anzenbacher P., Otyepka M. Behavior of human cytochromes P450 on lipid membranes. J. Phys. Chem. B. 2013;117:11556–11564. PubMed
Schlebach J.P., Barrett P.J., Day C.A., Kim J.H., Kenworthy A.K., Sanders C.R. Topologically diverse human membrane proteins partition to liquid-disordered domains in phase-separated lipid vesicles. Biochemistry. 2016;55:985–988. PubMed PMC
Pike L.J. Lipid rafts: heterogeneity on the high seas. Biochem. J. 2004;378:281–292. PubMed PMC
Brignac-Huber L.M., Reed J.R., Backes W.L. Organization of NADPH-cytochrome P450 reductase and CYP1A2 in the endoplasmic reticulum – microdomain localization affects monooxygenase function. Mol. Pharmacol. 2011;79:549–557. PubMed PMC
Brignac-Huber L.M., Park J.W., Reed J.R., Backes W.L. Cytochrome P450 organization and function are modulated by endoplasmic reticulum phospholipid heterogeneity. Drug Metab. Dispos. 2016;44:1859–1866. PubMed PMC
Pike L.J. Lipid rafts: bringing order to chaos. J. Lipid Res. 2003;44:655–667. PubMed
Babiychuk E.B., Draeger A. Biochemical characterization of detergent-resistant membranes: a systematic approach. Biochem. J. 2006;397:407–416. PubMed PMC
Park J.W., Reed J.R., Brignac-Huber L.M., Backes W.L. Cytochrome P450 system proteins reside in different regions of the endoplasmic reticulum. Biochem. J. 2014;464:241–249. PubMed PMC
Reed J.R., Guidry J.J., Backes W.L. Proteomic and bioinformatics analysis of membrane lipid domains after Brij 98 solubilization of uninduced and phenobarbital-induced rat liver microsomes: defining the membrane localization of the P450 enzyme system. Drug Metab. Dispos. 2022;50:374–385. PubMed
Reed J.R., Guidry J.J., Backes W.L. The influence of lipid microdomain heterogeneity on protein-protein interactions: proteomic analysis of co-immunoprecipitated binding partners of P450 1A2 and P450 3A in rat liver microsomes. Drug Metab. Dispos. 2023;51:1196–1206. PubMed PMC
Brignac-Huber L.M., Reed J.R., Eyer M.K., Backes W.L. Relationship between CYP1A2 localization and lipid microdomain formation as a function of lipid composition. Drug Metab. Dispos. 2013;41:1896–1905. PubMed PMC
van Meer G., Voelker D.R., Feigenson G.W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008;9:112–124. PubMed PMC
Strobel H.W., Lu A.Y.H., Heidema J., Coon M.J. Phosphatidylcholine requirement in the enzymatic reduction of hemoprotein P-450 and in fatty acid, hydrocarbon, and drug hydroxylation. J. Biol. Chem. 1970;245:4851–4854. PubMed
Muller-Enoch D., Churchill P., Fleischer S., Guengerich F.P. Interaction of liver microsomal cytochrome P-450 and NADPH- cytochrome P-450 reductase in the presence and absence of lipid. J. Biol. Chem. 1984;259:8174–8182. PubMed
Ingelman-Sundberg M., Haaparanta T., Rydstrom J. Membrane charge as effector of cytochrome P-450LM2 catalyzed reactions in reconstituted liposomes. Biochemistry. 1981;20:4100–4106. PubMed
Taniguchi H., Pyerin W. Phospholipid bilayer membranes play decisive roles in the cytochrome P-450-dependent monooxygenase system. J. Cancer Res. Clin. Oncol. 1988;114:335–340. PubMed
Robin M.A., Anandatheerthavarada H.K., Fang J.K., Cudic M., Otvos L., Avadhani N.G. Mitochondrial targeted cytochrome P450 2E1 (P450 MT5) contains an intact N terminus and requires mitochondrial specific electron transfer proteins for activity. J. Biol. Chem. 2001;276:24680–24689. PubMed
Robin M.A., Anandatheerthavarada H.K., Biswas G., Sepuri N.B., Gordon D.M., Pain D., et al. Bimodal targeting of microsomal CYP2E1 to mitochondria through activation of an N-terminal chimeric signal by cAMP-mediated phosphorylation. J. Biol. Chem. 2002;277:40583–40593. PubMed PMC
Neve E.P., Ingelman-Sundberg M. A soluble NH(2)-terminally truncated catalytically active form of rat cytochrome P450 2E1 targeted to liver mitochondria(1) FEBS Lett. 1999;460:309–314. PubMed
Isenman L., Liebow C., Rothman S. Transport of proteins across membranes--a paradigm in transition. Biochim. Biophys. Acta. 1995;1241:341–370. PubMed
Walter P., Johnson A.E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell Biol. 1994;10:87–119. PubMed
Addya S., Anandatheerthavarada H.K., Biswas G., Bhagwat S.V., Mullick J., Avadhani N.G. Targeting of NH2-terminal-processed microsomal protein to mitochondria: a novel pathway for the biogenesis of hepatic mitochondrial P450MT2. J. Cell Biol. 1997;139:589–599. PubMed PMC
Aviram N., Schuldiner M. Targeting and translocation of proteins to the endoplasmic reticulum at a glance. J. Cell Sci. 2017;130:4079–4085. PubMed
Sangar M.C., Bansal S., Avadhani N.G. Bimodal targeting of microsomal cytochrome P450s to mitochondria: implications in drug metabolism and toxicity. Expert Opin. Drug Metab. Toxicol. 2010;6:1231–1251. PubMed PMC
Bhagwat S.V., Biswas G., Anandatheerthavarada H.K., Addya S., Pandak W., Avadhani N.G. Dual targeting property of the N-terminal signal sequence of P4501A1. Targeting of heterologous proteins to endoplasmic reticulum and mitochondria. J. Biol. Chem. 1999;274:24014–24022. PubMed
Hayashi T., Fujimoto M. Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum-mitochondria junction. Mol. Pharmacol. 2010;77:517–528. PubMed PMC
Browman D.T., Resek M.E., Zajchowski L.D., Robbins S.M. Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J. Cell Sci. 2006;119:3149–3160. PubMed
Boyer A., Dreneau J., Dumans A., Burlaud-Gaillard J., Bull-Maurer A., Roingeard P., et al. Endoplasmic reticulum detergent-resistant membranes accommodate hepatitis C virus proteins for viral assembly. Cells. 2019;8:487. PubMed PMC
Smith D.C., Sillence D.J., Falguieres T., Jarvis R.M., Johannes L., Lord J.M., et al. The association of Shiga-like toxin with detergent-resistant membranes is modulated by glucosylceramide and is an essential requirement in the endoplasmic reticulum for a cytotoxic effect. Mol. Biol. Cell. 2006;17:1375–1387. PubMed PMC
Campana V., Sarnataro D., Fasano C., Casanova P., Paladino S., Zurzolo C. Detergent-resistant membrane domains but not the proteasome are involved in the misfolding of a PrP mutant retained in the endoplasmic reticulum. J. Cell Sci. 2006;119:433–442. PubMed
Sankarshanan M., Ma Z., Iype T., Lorenz U. Identification of a novel lipid raft-targeting motif in Src homology 2-containing phosphatase 1. J. Immunol. 2007;179:483–490. PubMed
Kimura A., Baumann C.A., Chiang S.H., Saltiel A.R. The sorbin homology domain: a motif for the targeting of proteins to lipid rafts. Proc. Natl. Acad. Sci. U. S. A. 2001;98:9098–9103. PubMed PMC
Razzaq T.M., Ozegbe P., Jury E.C., Sembi P., Blackwell N.M., Kabouridis P.S. Regulation of T-cell receptor signalling by membrane microdomains. Immunology. 2004;113:413–426. PubMed PMC
Zhang W., Trible R.P., Samelson L.E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity. 1998;9:239–246. PubMed
Cherukuri A., Carter R.H., Brooks S., Bornmann W., Finn R., Dowd C.S., et al. B cell signaling is regulated by induced palmitoylation of CD81. J. Biol. Chem. 2004;279:31973–31982. PubMed
Balamuth F., Brogdon J.L., Bottomly K. CD4 raft association and signaling regulate molecular clustering at the immunological synapse site. J. Immunol. 2004;172:5887–5892. PubMed
Arcaro A., Gregoire C., Bakker T.R., Baldi L., Jordan M., Goffin L., et al. CD8beta endows CD8 with efficient coreceptor function by coupling T cell receptor/CD3 to raft-associated CD8/p56(lck) complexes. J. Exp. Med. 2001;194:1485–1495. PubMed PMC
Harder T., Kuhn M. Selective accumulation of raft-associated membrane protein LAT in T cell receptor signaling assemblies. J. Cell Biol. 2000;151:199–208. PubMed PMC
Neame S.J., Uff C.R., Sheikh H., Wheatley S.C., Isacke C.M. CD44 exhibits a cell type dependent interaction with triton X-100 insoluble, lipid rich, plasma membrane domains. J. Cell Sci. 1995;108:3127–3135. PubMed
Bock J., Gulbins E. The transmembranous domain of CD40 determines CD40 partitioning into lipid rafts. FEBS Lett. 2003;534:169–174. PubMed
Coffin W.F., 3rd, Geiger T.R., Martin J.M. Transmembrane domains 1 and 2 of the latent membrane protein 1 of Epstein-Barr virus contain a lipid raft targeting signal and play a critical role in cytostasis. J. Virol. 2003;77:3749–3758. PubMed PMC
Bassard J.E., Moller B.L., Laursen T. Assembly of dynamic P450-mediated metabolons-order versus chaos. Curr. Mol. Biol. Rep. 2017;3:37–51. PubMed PMC
Backes W.L., Batie C.J., Cawley G.F. Interactions among P450 enzymes when combined in reconstituted systems: formation of a 2B4-1A2 complex with a high affinity for NADPH-cytochrome P450 reductase. Biochemistry. 1998;37:12852–12859. PubMed
Cawley G.F., Zhang S., Kelley R.W., Backes W.L. Evidence supporting the interaction of CYP2B4 and CYP1A2 in microsomal preparations. Drug Metab. Dispos. 2001;29:1529–1534. PubMed
Backes W.L., Kelley R.W. Organization of multiple cytochrome P450s with NADPH-cytochrome P450 reductase in membranes. Pharmacol. Ther. 2003;98:221–233. PubMed
Kelley R.W., Reed J.R., Backes W.L. Effects of ionic strength on the functional interactions between CYP2B4 and CYP1A2. Biochemistry. 2005;44:2632–2641. PubMed PMC
Kelley R.W., Cheng D., Backes W.L. Heteromeric complex formation between CYP2E1 and CYP1A2: evidence for the involvement of electrostatic interactions. Biochemistry. 2006;45:15807–15816. PubMed PMC
Reed J.R., Eyer M., Backes W.L. Functional interactions between cytochromes P450 1A2 and 2B4 require both enzymes to reside in the same phospholipid vesicle: evidence for physical complex formation. J. Biol. Chem. 2010;285:8942–8952. PubMed PMC
Reed J.R., Backes W.L. Formation of P450·P450 complexes and their effect on P450 function. Pharmacol. Ther. 2012;133:299–310. PubMed PMC
Reed J.R., Connick J.P., Cheng D., Cawley G.F., Backes W.L. Effect of homomeric P450-P450 complexes on P450 function. Biochem. J. 2012;446:489–497. PubMed PMC
Reed J.R., Cawley G.F., Backes W.L. Interactions between cytochromes P450 2B4 (CYP2B4) and 1A2 (CYP1A2) lead to alterations in toluene disposition and P450 uncoupling. Biochemistry. 2013;52:4003–4013. PubMed PMC
Connick J.P., Reed J.R., Backes W.L. Characterization of interactions among CYP1A2, CYP2B4, and NADPH-cytochrome P450 reductase: identification of specific protein complexes. Drug Metab. Dispos. 2018;46:197–203. PubMed PMC
Davydov D.R., Petushkova N.A., Archakov A.I., Hoa G.H. Stabilization of P450 2B4 by its association with P450 1A2 revealed by high-pressure spectroscopy. Biochem. Biophys. Res. Commun. 2000;276:1005–1012. PubMed
Davydov D.R., Petushkova N.A., Bobrovnikova E.V., Knyushko T.V., Dansette P. Association of cytochromes P450 1A2 and 2B4: are the interactions between different P450 species involved in the control of the monooxygenase activity and coupling? Adv. Exp. Med. Biol. 2001;500:335–338. PubMed
Davydov D.R. Microsomal monooxygenase as a multienzyme system: the role of P450-P450 interactions. Expert Opin. Drug Metab. Toxicol. 2011;7:543–558. PubMed PMC
Davydov D.R., Davydova N.Y., Sineva E.V., Kufareva I., Halpert J.R. Pivotal role of P450-P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone. Biochem. J. 2013;453:219–230. PubMed PMC
Davydov D.R., Davydova N.Y., Sineva E.V., Halpert J.R. Interactions among cytochromes P450 in microsomal membranes: oligomerization of cytochromes P450 3A4, 3A5, and 2E1 and its functional consequences. J. Biol. Chem. 2015;290:3850–3864. PubMed PMC
Davydov D.R., Davydova N.Y., Rodgers J.T., Rushmore T.H., Jones J.P. Toward a systems approach to the human cytochrome P450 ensemble: interactions between CYP2D6 and CYP2E1 and their functional consequences. Biochem. J. 2017;474:3523–3542. PubMed PMC
Davydova N.Y., Dangi B., Maldonado M.A., Vavilov N.E., Zgoda V.G., Davydov D.R. Toward a systems approach to cytochrome P450 ensemble: interactions of CYP2E1 with other P450 species and their impact on CYP1A2. Biochem. J. 2019;476:3661–3685. PubMed PMC
Taura K.I., Yamada H., Hagino Y., Ishii Y., Mori M.A., Oguri K. Interaction between cytochrome P450 and other drug-metabolizing enzymes: evidence for an association of CYP1A1 with microsomal epoxide hydrolase and UDP-glucuronosyltransferase. Biochem. Biophys. Res. Commun. 2000;273:1048–1052. PubMed
Takeda S., Ishii Y., Mackenzie P.I., Nagata K., Yamazoe Y., Oguri K., et al. Modulation of UDP-glucuronosyltransferase 2B7 function by cytochrome P450s in vitro: differential effects of CYP1A2, CYP2C9, CYP3A4. Biol. Pharm. Bull. 2005;28:2026–2027. PubMed
Ishii Y., Iwanaga M., Nishimura Y., Takeda S., Ikushiro S., Nagata K., et al. Protein-protein interactions between rat hepatic cytochromes P450 (P450s) and UDP-glucuronosyltransferases (UGTs): evidence for the functionally active UGT in P450-UGT complex. Drug Metab. Pharmacokinet. 2007;22:367–376. PubMed
Takeda S., Ishii Y., Iwanaga M., Nurrochmad A., Ito Y., Mackenzie P.I., et al. Interaction of cytochrome P450 3A4 and UDP-glucuronosyltransferase 2B7: evidence for protein-protein association and possible involvement of CYP3A4 J-helix in the interaction. Mol. Pharmacol. 2009;75:956–964. PubMed
Ishii Y., Takeda S., Yamada H. Modulation of UDP-glucuronosyltransferase activity by protein-protein association. Drug Metab. Rev. 2010;42:145–158. PubMed
Miyauchi Y., Nagata K., Yamazoe Y., Mackenzie P.I., Yamada H., Ishii Y. Suppression of cytochrome P450 3A4 function by UDP-glucuronosyltransferase 2B7 through a protein-protein interaction: cooperative roles of the cytosolic carboxyl-terminal domain and the luminal anchoring region. Mol. Pharmacol. 2015;88:800–812. PubMed
Miyauchi Y., Tanaka Y., Nagata K., Yamazoe Y., Mackenzie P.I., Yamada H., et al. UDP-glucuronosyltransferase (UGT)-mediated attenuations of cytochrome P450 3A4 activity: UGT isoform-dependent mechanism of suppression. Br. J. Pharmacol. 2020;177:1077–1089. PubMed PMC
Miyauchi Y., Takechi S., Ishii Y. Functional interaction between cytochrome P450 and UDP-glucuronosyltransferase on the endoplasmic reticulum membrane: one of post-translational factors which possibly contributes to their inter-individual differences. Biol. Pharm. Bull. 2021;44:1635–1644. PubMed
Orjuela Leon A.C., Marwosky A., Arand M. Evidence for a complex formation between CYP2J5 and mEH in living cells by FRET analysis of membrane protein interaction in the endoplasmic reticulum (FAMPIR) Arch. Toxicol. 2017;91:3561–3570. PubMed PMC
Davydov D.R., Dangi B., Yue G., Ahire D.S., Prasad B., Zgoda V.G. Exploring the interactome of cytochrome P450 2E1 in human liver microsomes with chemical crosslinking mass spectrometry. Biomolecules. 2022;12:185. PubMed PMC
Connick J.P. Lousiana State University Health Sciences Center; Louisiana, LA: 2020. The Cytochromes P450, Heme Oxygenase-1, and NADPH-Cytochrome P450 Reductase form Multiple Complexes that Influence Protein Function.
Connick J.P., Reed J.R., Cawley G.F., Backes W.L. Heme oxygenase-1 affects cytochrome P450 function through the formation of heteromeric complexes: interactions between CYP1A2 and heme oxygenase-1. J. Biol. Chem. 2021;296 PubMed PMC
Connick J.P., Reed J.R., Cawley G.F., Backes W.L. Heteromeric complex formation between human cytochrome P450 CYP1A1 and heme oxygenase-1. Biochem. J. 2021;478:377–388. PubMed PMC
Miyauchi Y., Kimura S., Kimura A., Kurohara K., Hirota Y., Fujimoto K., et al. Investigation of the endoplasmic reticulum localization of UDP-glucuronosyltransferase 2B7 with systematic deletion mutants. Mol. Pharmacol. 2019;95:551–562. PubMed
Ouweneel A.B., Thomas M.J., Sorci-Thomas M.G. The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes. J. Lipid Res. 2020;61:676–686. PubMed PMC
Mustafa G., Nandekar P.P., Mukherjee G., Bruce N.J., Wade R.C. The effect of force-field parameters on cytochrome P450-membrane interactions: structure and dynamics. Sci. Rep. 2020;10:7284. PubMed PMC
Webb B., Sali A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. 2016 doi: 10.1002/cpps.20. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., et al. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. PubMed
Schrodinger . Scientific Research; Wuhan: 2010. The PyMol Molecular Graphics System.
Wu E.L., Cheng X., Jo S., Rui H., Song K.C., Dávila-Contreras E.M., et al. CHARMM-GUI toward realistic biological membrane simulations. J. Comput. Chem. 2014;35:1997–2004. PubMed PMC
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.
Best R.B., Zhu X., Shim J., Lopes P.E.M., Mittal J., Feig M., et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ(1) and χ(2) dihedral angles. J. Chem. Theory Comput. 2012;8:3257–3273. PubMed PMC
Hoover W.G. Canonical dynamics - equilibrium phase-space distributions. Phys. Rev. A Gen. Phys. 1985;31:1695–1697. PubMed
Nose S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 1984;81:511–519.
Parrinello M., Rahman A. Polymorphic transitions in alkali-halides - a molecular-dynamics study. J. Phys. Collo. 1981;42:511–515.
Darden T., York D., Pedersen L. Particle mesh Ewald - an N Log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092.
Abraham M.J., Murtola T., Schulz R., pall S., Smith J.C., Hess B., et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25.
Qi Y., Ingolfsson H.I., Cheng X., Lee J., Marrink S.J., Im W. CHARMM-GUI Martini maker for coarse-grained simulations with the Martini force field. J. Chem. Theory Comput. 2015;11:4486–4494. PubMed
de Jong D.H., Singh G., Bennett W.F., Arnarez C., Wassenaar T.A., Schafer L.V., et al. Improved parameters for the Martini coarse-grained protein force field. J. Chem. Theory Comput. 2013;9:687–697. PubMed
Lopez C.A., Rzepiela A.J., de Vries A.H., Dijkhuizen L., Hunenberger P.H., Marrink S.J. Martini coarse-grained force field: extension to carbohydrates. J. Chem. Theory Comput. 2009;5:3195–3210. PubMed
Kumari R., Kumar R., Open Source Drug Discovery C., Lynn A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014;54:1951–1962. PubMed
Roe D.R., Cheatham T.E., 3rd PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013;9:3084–3095. PubMed
Guixa-Gonzalez R., Rodriguez-Espigares I., Ramirez-Anguita J.M., Carrio-Gaspar P., Martinez-Seara H., Giorgino T., et al. MEMBPLUGIN: studying membrane complexity in VMD. Bioinformatics. 2014;30:1478–1480. PubMed