BioMOF@cellulose Glycerogel Scaffold with Multifold Bioactivity: Perspective in Bone Tissue Repair
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PID2020-115631GB-I00
MICINN
PID2020-114086RB-100
MICINN
PID2019-106518RB-I00
MICINN
CB06/01/0013
MICINN
CZ 17/2023
OeAD
2021SGR01042
Generalitat de Catalunya
CA18125
AERoGELS Cost Action
PubMed
39451284
PubMed Central
PMC11507435
DOI
10.3390/gels10100631
PII: gels10100631
Knihovny.cz E-zdroje
- Klíčová slova
- bioMOF, cellulose, composite, glycerogel, scaffold, tissue repair,
- Publikační typ
- časopisecké články MeSH
The development of new biomaterials for musculoskeletal tissue repair is currently an important branch in biomedicine research. The approach presented here is centered around the development of a prototypic synthetic glycerogel scaffold for bone regeneration, which simultaneously features therapeutic activity. The main novelty of this work lies in the combination of an open meso and macroporous nanocrystalline cellulose (NCC)-based glycerogel with a fully biocompatible microporous bioMOF system (CaSyr-1) composed of calcium ions and syringic acid. The bioMOF framework is further impregnated with a third bioactive component, i.e., ibuprofen (ibu), to generate a multifold bioactive system. The integrated CaSyr-1(ibu) serves as a reservoir for bioactive compounds delivery, while the NCC scaffold is the proposed matrix for cell ingrowth, proliferation and differentiation. The measured drug delivery profiles, studied in a phosphate-buffered saline solution at 310 K, indicate that the bioactive components are released concurrently with bioMOF dissolution after ca. 30 min following a pseudo-first-order kinetic model. Furthermore, according to the semi-empirical Korsmeyer-Peppas kinetic model, this release is governed by a case-II mechanism, suggesting that the molecular transport is influenced by the relaxation of the NCC matrix. Preliminary in vitro results denote that the initial high concentration of glycerol in the NCC scaffold can be toxic in direct contact with human osteoblasts (HObs). However, when the excess of glycerol is diluted in the system (after the second day of the experiment), the direct and indirect assays confirm full biocompatibility and suitability for HOb proliferation.
Departament de Química Universitat Autònoma de Barcelona Campus UAB s n 08193 Bellaterra Spain
Institut de Ciència de Materials de Barcelona Campus UAB s n 08193 Bellaterra Spain
Instituto de Ciencia y Tecnología de Polímeros C Juan de la Cierva 3 28006 Madrid Spain
Zobrazit více v PubMed
Wu A.-M. Global, Regional, and National Burden of Bone Fractures in 204 Countries and Territories, 1990–2019: A Systematic Analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2021;2:e580–e592. doi: 10.1016/S2666-7568(21)00172-0. PubMed DOI PMC
Koons G.L., Diba M., Mikos A.G. Materials Design for Bone-Tissue Engineering. Nat. Rev. Mater. 2020;5:584–603. doi: 10.1038/s41578-020-0204-2. DOI
Chiarello E., Cadossi M. Autograft, Allograft and Bone Substitutes in Reconstructive Orthopedic Surgery. Aging Clin. Exp. Res. 2013;25:101–103. doi: 10.1007/s40520-013-0088-8. PubMed DOI
Roseti L., Parisi V., Petretta M., Cavallo C., Desando G., Bartolotti I., Grigolo B. Scaffolds for Bone Tissue Engineering: State of the Art and New Perspectives. Mater. Sci. Eng. C. 2017;78:1246–1262. doi: 10.1016/j.msec.2017.05.017. PubMed DOI
Zhu G., Zhang T., Chen M., Yao K., Huang X., Zhang B., Li Y., Liu J., Wang Y., Zhao Z. Bioactive Materials Bone Physiological Microenvironment and Healing Mechanism: Basis for Future Bone-Tissue Engineering Scaffolds. Bioact. Mater. 2021;6:4110–4140. PubMed PMC
Bose S., Roy M., Bandyopadhyay A. Recent Advances in Bone Tissue Engineering Scaffolds. Trends Biotechnol. 2012;30:546–554. doi: 10.1016/j.tibtech.2012.07.005. PubMed DOI PMC
Ghassemi T., Shahroodi A., Ebrahimzadeh M.H., Mousavian A., Movaffagh J., Moradi A. Current Concepts in Scaffolding for Bone Tissue Engineering. Arch. Bone Jt. Surg. 2018;6:90–99. PubMed PMC
Nikolova M.P., Chavali M.S. Bioactive Materials Recent Advances in Biomaterials for 3D Scaffolds: A Review. Bioact. Mater. 2020;4:271–292. PubMed PMC
Janmohammadi M., Nazemi Z., Orash A., Salehi M., Seyfoori A., John J.V., Sadegh M., Akbari M. Bioactive Materials Cellulose-Based Composite Scaffolds for Bone Tissue Engineering and Localized Drug Delivery. Bioact. Mater. 2023;20:137–163. PubMed PMC
Iravani S., Varma R.S. Cellulose-Based Composites as Scaffolds for Tissue Engineering: Recent Advances. Molecules. 2022;27:8830. doi: 10.3390/molecules27248830. PubMed DOI PMC
Matsumura K. Controlling the Degradation of Cellulose Scaffolds with Malaprade Oxidation for Tissue Engineering. J. Mater. Chem. B. 2020;8:7825–8088. PubMed
Ferracini R., Martinez Herreros I., Russo A., Casalini T., Rossi F., Perale G. Scaffolds as Structural Tools for Bone-Targeted Drug Delivery. Pharmaceutics. 2018;10:122. doi: 10.3390/pharmaceutics10030122. PubMed DOI PMC
Lawson H.D., Walton S.P., Chan C. Metal—Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces. 2021;13:7004–7020. doi: 10.1021/acsami.1c01089. PubMed DOI PMC
Wu M., Yang Y. Metal–Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017;29:1606134. doi: 10.1002/adma.201606134. PubMed DOI
Mckinlay A.C., Morris R.E., Horcajada P., Férey G., Gref R., Couvreur P., Serre C. Minireviews BioMOFs: Metal–Organic Frameworks for Biological and Medical Applications. Angew. Chem. Int. Ed. 2010;49:6260–6266. doi: 10.1002/anie.201000048. PubMed DOI
Rojas S., Devic T., Horcajada P. Metal Organic Frameworks Based on Bioactive Components. J. Mater. Chem. B. 2017;5:2560–2573. doi: 10.1039/C6TB03217F. PubMed DOI
Fardjahromi M.A., Nazari H., Tafti S.M.A., Razmjou A., Mukhopadhyay S., Warkiani M.E. Metal-Organic Framework-Based Nanomaterials for Bone Tissue Engineering and Wound Healing. Mater. Today Chem. 2022;23:100670. doi: 10.1016/j.mtchem.2021.100670. DOI
Rosado A., Vallcorba O., Vázquez-Lasa B., García-fernández L., Ramírez-jiménez R.A., Aguilar M.R., López-Periago A.M., Domingo C., Ayllón J.A. Facile, Fast and Green Synthesis of a Highly Porous Calcium-Syringate BioMOF with Intriguing Triple. Inorg. Chem. Front. 2023;10:2165–2173. doi: 10.1039/D2QI02639B. DOI
Keith C.T., Borisy A.A., Stockwell B.R. Multicomponent Therapeutics for Networked Systems. Nat. Rev. Drug Discov. 2005;4:71–78. doi: 10.1038/nrd1609. PubMed DOI
Jeong J., Kim J.H., Shim J.H., Hwang N.S., Heo C.Y. Bioactive Calcium Phosphate Materials and Applications in Bone Regeneration. Biomater. Res. 2019;23:1–11. doi: 10.1186/s40824-018-0149-3. PubMed DOI PMC
Cheemanapalli S., Mopuri R., Golla R., Anuradha C.M., Chitta S.K. Biomedicine & Pharmacotherapy Syringic Acid (SA)—A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomed. Pharmacother. 2018;108:547–557. PubMed
Arumugam B., Balagangadharan K., Selvamurugan N. Syringic Acid, a Phenolic Acid, Promotes Osteoblast Differentiation by Stimulation of Runx2 Expression and Targeting of Smad7 by MiR-21 in Mouse Mesenchymal Stem Cells. J. Cell Commun. Signal. 2018;12:561–573. doi: 10.1007/s12079-018-0449-3. PubMed DOI PMC
Zhang Y., Jiang S., Xu D., Li Z., Guo J., Li Z., Cheng G. Application of Nanocellulose-Based Aerogels in Bone Tissue Engineering: Current Trends and Outlooks. Polymers. 2023;15:2323. doi: 10.3390/polym15102323. PubMed DOI PMC
Chavooshi R., Ranjkesh M.R., Hashemi B., Roshangar L. Cellulose and Lignin-Derived Scaffold and Their Biological Application in Tissue Engineering, Drug Delivery, and Wound Healing: A Review. Cell J. 2023;25:158–164. PubMed PMC
Seo Y., Kim B.S., Ballance W.C., Aw N., Sutton B., Kong H. Transparent and Flexible Electronics Assembled with Metallic Nanowire-Layered Nondrying Glycerogel. ACS Appl. Mater. Interfaces. 2020;12:13040–13050. doi: 10.1021/acsami.9b21697. PubMed DOI
Kuznetsova I.V., Gilmutdinov I.I., Gilmutdinov I.M., Mukhamadiev A.A., Sabirzyanov A.N. Solubility of Ibuprofen in Supercritical Carbon Dioxide. Russ. J. Phys. Chem. B. 2013;7:814–819. doi: 10.1134/S1990793113070105. DOI
López-Periago A.M., Domingo C. Features of Supercritical CO2 in the Delicate World of the Nanopores. J. Supercrit. Fluids. 2018;134:204–213. doi: 10.1016/j.supflu.2017.11.011. DOI
Tobiszewski M., Namieśnik J., Pena-pereira F. Environmental Risk-Based Ranking of Solvents Using the Combination of a Multimedia Model and Multi-Criteria Decision Analysis. Green Chem. 2017;19:1034–1042. doi: 10.1039/C6GC03424A. DOI
Chen M. Amended Final Report of the Safety Assessment of T-Butyl Alcohol as Used in Cosmetics. Int. J. Toxicol. 2005;24:1–20. PubMed
Dhua S., Mishra P. International Journal of Biological Macromolecules Development of Highly Reusable, Mechanically Stable Corn Starch-Based Aerogel Using Glycerol for Potential Application in the Storage of Fresh Spinach Leaves. Int. J. Biol. Macromol. 2023;242:125102. doi: 10.1016/j.ijbiomac.2023.125102. PubMed DOI
Smirnova I., Gurikov P. The Journal of Supercritical Fluids Aerogel Production: Current Status, Research Directions, and Future Opportunities. J. Supercrit. Fluids. 2018;134:228–233. doi: 10.1016/j.supflu.2017.12.037. DOI
Rechberger F., Niederberger M. Synthesis of Aerogels: From Molecular Routes to 3-Dimensional Nanoparticle Assembly. Nanoscale Horizons. 2017;2:6–30. doi: 10.1039/C6NH00077K. PubMed DOI
Mestre A.S., Pires J., Nogueira J.M.F., Carvalho A.P. Activated Carbons for the Adsorption of Ibuprofen. Carbon. 2007;45:1979–1988. doi: 10.1016/j.carbon.2007.06.005. DOI
Schneemann A., Bon V., Schwedler I., Senkovska I., Kaskel S., Fischer R.A. Flexible Metal–Organic Frameworks. Chem. Soc. Rev. 2014;43:6062–6096. doi: 10.1039/C4CS00101J. PubMed DOI
Bon V., Klein N., Senkovska I., Heerwig A., Getzschmann J., Wallacher D., Zizak I., Brzhezinskaya M., Muellerd U., Kaskel S. Exceptional Adsorption-Induced Cluster and Network Deformation in the Flexible Metal–Organic Framework DUT-8(Ni) Observed by in Situ X-Ray Diffraction and EXAFS. Phys. Chem. Chem. Phys. 2015;17:17471–17479. doi: 10.1039/C5CP02180D. PubMed DOI
Rosa M.F., Medeiros E.S., Malmonge J.A., Gregorski K.S., Wood D.F., Mattoso L.H.C., Glenn G., Orts W.J., Imam S.H. Cellulose Nanowhiskers from Coconut Husk Fibers: Effect of Preparation Conditions on Their Thermal and Morphological Behavior. Carbohydr. Polym. 2010;81:83–92. doi: 10.1016/j.carbpol.2010.01.059. DOI
Amini A.R., Laurencin C.T., Nukavarapu S.P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012;40:363–408. doi: 10.1615/CritRevBiomedEng.v40.i5.10. PubMed DOI PMC
Chen X., Hughes R., Mullin N., Hawkins R.J., Holen I., Brown N.J., Hobbs J.K. Mechanical Heterogeneity in the Bone Microenvironment as Characterized by Atomic Force Microscopy. Biophys. J. 2020;119:502–513. doi: 10.1016/j.bpj.2020.06.026. PubMed DOI PMC
Osorio D.A., Lee B.E.J., Kwiecien J.M., Wang X., Shahid I., Hurley A.L., Cranston E.D., Grandfield K. Acta Biomaterialia Cross-Linked Cellulose Nanocrystal Aerogels as Viable Bone Tissue Scaffolds. Acta Biomater. 2019;87:152–165. doi: 10.1016/j.actbio.2019.01.049. PubMed DOI
Wang C., Yue H., Liu J., Zhao Q., He Z., Li K., Lu B., Huang W., Wei Y., Tang Y., et al. Advanced Reconfigurable Scaffolds Fabricated by 4D Printing for Treating Critical-Size Bone Defects of Irregular Shapes. Biofabrication. 2020;12:045025. doi: 10.1088/1758-5090/abab5b. PubMed DOI
Chun H.J., Park C.H., Kwon I.K., Khang G. Cutting-Edge Enabling Technologies for Regenerative Medicine. Springer; Berlin/Heidelberg, Germany: 2018.
Fu Y., Kao W.J. Drug Release Kinetics and Transport Mechanisms of Non-Degradable and Degradable Polymeric Delivery Systems Drug Release Kinetics and Transport Mechanisms of Non-Degradable and Degradable Polymeric Delivery Systems. Expert Opin. Drug Deliv. 2010;7:429–444. doi: 10.1517/17425241003602259. PubMed DOI PMC
Charlier A., Leclerc B., Couarraze G. Release of Mifepristone from Biodegradable Matrices: Experimental and Theoretical Evaluations. Int. J. Pharm. 2000;200:115–120. doi: 10.1016/S0378-5173(00)00356-2. PubMed DOI
Trucillo P. Drug Carriers: A Review on the Most Used Mathematical Models for Drug Release. Processes. 2022;10:1094. doi: 10.3390/pr10061094. DOI
Ahmed L., Atif R., Eldeen T.S., Yahya I., Omara A., Eltayeb M. Study the Using of Nanoparticles as Drug Delivery System Based on Mathematical Models for Controlled Release. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2019;8:52–56.
Peppas N.A., Sahlin J.J. A Simple Equation for the Description of Solute Release. III. Coupling of Diffusion and Relaxation. Int. J. Pharm. 1989;57:169–172. doi: 10.1016/0378-5173(89)90306-2. DOI
Guo J., Liu D., Filpponen I., Johansson L., Malho J., Quraishi S., Liebner F., Rojas O.J. Photoluminescent Hybrids of Cellulose Nanocrystals and Carbon Quantum Dots as Cytocompatible Probes for in Vitro Bioimaging. Biomacromolecules. 2017;18:2045–2055. doi: 10.1021/acs.biomac.7b00306. PubMed DOI
Frank M.S.B., Nahata M.C., Hilty M.D. Glycerol: A Review of Its Pharmacology, Pharmacokinetics, Adverse Reactions, and Clinical Use. Pharmacotherapy. 1981;1:147–160. doi: 10.1002/j.1875-9114.1981.tb03562.x. PubMed DOI
Watanabe M., Li H., Masaya Y., Horinaka J., Tabata Y., Flake A.W. Addition of Glycerol Enhances the Flexibility of Gelatin Hydrogel Sheets; Application for in Utero Tissue Engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021;109:921–931. doi: 10.1002/jbm.b.34756. PubMed DOI
Lee J., Kim D., Jang C.H., Kim G.H. Highly Elastic 3D-Printed Gelatin/HA/Placental-Extract Scaffolds for Bone Tissue Engineering. Theranostics. 2022;12:4051–4066. doi: 10.7150/thno.73146. PubMed DOI PMC
Wiebe J.P., Dinsdale C.J. Inhibition of Cell Proliferation by Glycerol. Life Sci. 1991;48:1511–1517. doi: 10.1016/0024-3205(91)90275-G. PubMed DOI
Armitage W.J., Mazur P. Toxic and Osmotic Effects of Glycerol on Human Granulocytes. Am. J. Physiol. Physiol. 1984;247:382–389. doi: 10.1152/ajpcell.1984.247.5.C382. PubMed DOI
Armitage W.J. Osmotic Stress as a Factor in the Detrimental Effect of Glycerol on Human Platelets. Cryobiology. 1986;23:116–125. doi: 10.1016/0011-2240(86)90002-7. PubMed DOI
Chen H.J., Lee P.Y., Chen C.Y., Huang S.L., Huang B.W., Dai F.J., Chau C.F., Chen C.S., Lin Y.S. Moisture Retention of Glycerin Solutions with Various Concentrations: A Comparative Study. Sci. Rep. 2022;12:10232. doi: 10.1038/s41598-022-13452-2. PubMed DOI PMC
García J.I., García-Marín H., Mayoral J.A., Pérez P. Green Solvents from Glycerol. Synthesis and Physico-Chemical Properties of Alkyl Glycerol Ethers. Green Chem. 2010;12:426–434. doi: 10.1039/b923631g. DOI