Chemogenetics with PSAM4-GlyR decreases excitability and epileptiform activity in epileptic hippocampus

. 2025 Mar ; 32 (2) : 106-120. [epub] 20241025

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39455855

Grantová podpora
Primus/26/MED/011 Charles University | Lékařská Fakulta v Plzni, Univerzita Karlova (Faculty of Medicine in Pilsen, Charles University)
H2020-WIDESPREAD-2020-5, Agreement ID 952455 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
H2020-MSCA-ITN-2016, Agreement ID 722779 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
2016-02605 Vetenskapsrådet (Swedish Research Council)
2017-00921 Vetenskapsrådet (Swedish Research Council)

Odkazy

PubMed 39455855
PubMed Central PMC11946892
DOI 10.1038/s41434-024-00493-7
PII: 10.1038/s41434-024-00493-7
Knihovny.cz E-zdroje

Despite the availability of new drugs on the clinics in recent years, drug-resistant epilepsy remains an unresolved challenge for healthcare, and one-third of epilepsy patients remain refractory to anti-seizure medications. Gene therapy in experimental models has emerged as effective treatment targeting specific neuronal populations in the epileptogenic focus. When combined with an external chemical activator using chemogenetics, it also becomes an "on-demand" treatment. Here, we evaluate a targeted and specific chemogenetic therapy, the PSAM/PSEM system, which holds promise as a potential candidate for clinical application in treating drug-resistant epilepsy. We show that the inert ligand uPSEM817, which selectively activates the chloride-permeable channel PSAM4-GlyR, effectively reduces the number of depolarization-induced action potentials in vitro. This effect is likely due to the shunting of depolarizing currents, as evidenced by decreased membrane resistance in these cells. In organotypic slices, uPSEM817 decreased the number of bursts and peak amplitude of events of spontaneous epileptiform activity. Although administration of uPSEM817 in vivo did not significantly alter electrographic seizures in a male mouse model of temporal lobe epilepsy, it did demonstrate a strong trend toward reducing the frequency of interictal epileptiform discharges. These findings indicate that PSAM4-GlyR-based chemogenetics holds potential as an anti-seizure strategy, although further refinement is necessary to enhance its efficacy.

Zobrazit více v PubMed

Collaborators GE. Global, regional, and national burden of epilepsy, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:357. PubMed PMC

Toda Y, Kobayashi K, Hayashi Y, Inoue T, Oka M, Ohtsukaet Y. Effects of intravenous diazepam on high-frequency oscillations in EEGs with CSWS. Brain Dev. 2013;35:540–7. PubMed

Peng B-W, Justice JA, Zhang K, Li J-X, He X-H, Sanchez RM. Gabapentin promotes inhibition by enhancing hyperpolarization-activated cation currents and spontaneous firing in hippocampal CA1 interneurons. Neurosci Lett. 2011;494:19–23. PubMed

Braga MF, Aroniadou-Anderjaska V, Li H, Rogawski MA. Topiramate reduces excitability in the basolateral amygdala by selectively inhibiting GluK1 (GluR5) kainate receptors on interneurons and positively modulating GABAA receptors on principal neurons. J Pharmacol Exp Ther. 2009;330:558–66. PubMed

Ylinen A, Valjakka A, Lahtinen H, Miettinen R, Freund TF, Riekkinen P. Vigabatrin pre-treatment prevents hilar somatostatin cell loss and the development of interictal spiking activity following sustained simulation of the perforant path. Neuropeptides. 1991;19:205–11. PubMed

O’Brien TJ, Ben-Menachem E, Bertram EH 3rd, Collins SD, Kokaia M, Lerche H, et al. Proposal for a “phase II” multicenter trial model for preclinical new antiepilepsy therapy development. Epilepsia. 2013;54:70–4. PubMed

Chen Z, Brodie MJ, Liew D, Kwan P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol. 2018;75:279–86. 10.1001/jamaneurol.2017.3949. PubMed PMC

Lhatoo SD, Solomon JK, McEvoy AW, Kitchen ND, Shorvon SD, Sander JW. A prospective study of the requirement for and the provision of epilepsy surgery in the United Kingdom. Epilepsia. 2003;44:673–6. PubMed

Fois C, Kovac S, Khalil A, Uzuner GT, Diehl B, Wehner T, et al. Predictors for being offered epilepsy surgery: 5-year experience of a tertiary referral centre. J Neurol, Neurosurg Psychiatry. 2016;87:209–11. 10.1136/jnnp-2014-310148. PubMed

Jetté N, Sander JW, Keezer MR. Surgical treatment for epilepsy: the potential gap between evidence and practice. Lancet Neurol. 2016;15:982–94. PubMed

Blumcke I, Cross JH, Spreafico R. The international consensus classification for hippocampal sclerosis: an important step towards accurate prognosis. Lancet Neurol. 2013;12:844–6. PubMed

Engel J Jr. Mesial temporal lobe epilepsy: what have we learned? Neuroscientist. 2001;7:340–52. 10.1177/107385840100700410. PubMed

Cendes F, Sakamoto AC, Spreafico R, Bingaman W, Becker AJ. Epilepsies associated with hippocampal sclerosis. Acta Neuropathol. 2014;128:21–37. 10.1007/s00401-014-1292-0. PubMed

Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE commission on diagnostic methods. Epilepsia. 2013;54:1315–29. 10.1111/epi.12220. PubMed

Sutula TP, Dudek FE. Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system. Prog Brain Res. 2007;163:541–63. PubMed

Andrioli A, Alonso-Nanclares L, Arellano JI, DeFelipe J. Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus. Neuroscience. 2007;149:131–43. PubMed

De Lanerolle N, Kim J, Robbins RJ, Spencer D. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res. 1989;495:387–95. PubMed

Robbins RJ, Brines ML, Kim JH, Adrian T, de Lanerolle N, Welsh S, et al. A selective loss of somatostatin in the hippocampus of patients with temporal lobe epilepsy. Ann Neurol. 1991;29:325–32. PubMed

Wittner L, Eross L, Czirják S, Halász P, Freund TF, Maglóczky Z. Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus. Brain. 2005;128:138–52. PubMed

Tóth K, Eross L, Vajda J, Halász P, Freund TF, Maglóczky Z. Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus. Brain. 2010;133:2763–77. PubMed PMC

Williamson A, Patrylo PR, Spencer DD. Decrease in inhibition in dentate granule cells from patients with medial temporal lobe epilepsy. Ann Neurol. 1999;45:92–9. PubMed

Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, et al. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci. 2005;8:1059–68. PubMed

Drexel M, Romanov RA, Wood J, Weger S, Heilbronn R, Wulff P, et al. Selective silencing of hippocampal parvalbumin interneurons induces development of recurrent spontaneous limbic seizures in mice. J Neurosci. 2017;37:8166–79. PubMed PMC

Baraban SC, Southwell DG, Estrada RC, Jones DL, Sebe JY, Alfaro-Cervello C, et al. Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice. Proc Natl Acad Sci USA. 2009;106:15472–7. 10.1073/pnas.0900141106. PubMed PMC

Hunt RF, Girskis KM, Rubenstein JL, Alvarez-Buylla A, Baraban SC. GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nat Neurosci. 2013;16:692–7. PubMed PMC

Cunningham M, Cho J-H, Leung A, Savvidis G, Ahn S, Moon M, et al. hPSC-derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice. Cell Stem Cell. 2014;15:559–73. 10.1016/j.stem.2014.10.006. PubMed PMC

Upadhya D, Hattiangady B, Castro OW, Shuai B, Kodali M, Attaluri S, et al. Human induced pluripotent stem cell-derived MGE cell grafting after status epilepticus attenuates chronic epilepsy and comorbidities via synaptic integration. Proc Natl Acad Sci USA. 2019;116:287–96. 10.1073/pnas.1814185115. PubMed PMC

Waloschková E, Gonzalez-Ramos A, Mikroulis A, Kudláček J, Andersson M, Ledri M, et al. Human stem sell-derived GABAergic interneurons establish efferent synapses onto host neurons in rat epileptic hippocampus and inhibit spontaneous recurrent seizures. Int J Mol Sci. 2021;22:13243. PubMed PMC

Cǎlin A, Stancu M, Zagrean A-M, Jefferys JGR, Ilie AS, Akerman C. Chemogenetic recruitment of specific interneurons suppresses seizure activity. Front Cell Neurosci. 2018;12:293 10.3389/fncel.2018.00293. PubMed PMC

Woldbye DPD, Angehagen M, Gøtzsche CR, Elbrønd-Bek H, Sørensen AT, Christiansen SH, et al. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures. Brain. 2010;133:2778–88. 10.1093/brain/awq219. PubMed

Haberman RP, Samulski RJ, McCown TJ. Attenuation of seizures and neuronal death by adeno-associated virus vector galanin expression and secretion. Nat Med. 2003;9:1076–80. 10.1038/nm901. PubMed

Noè F, Pool A-H, Nissinen J, Gobbi M, Bland R, Rizzi M, et al. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain. 2008;131:1506–15. 10.1093/brain/awn079. PubMed

Wykes RC, Heeroma J-H, Mantoan L, Zheng K, MacDonald DC, Deisseroth K, et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med. 2012;4:161ra152–161ra152. PubMed PMC

Castle MJ, Turunen HT, Vandenberghe LH, Wolfe JH. Controlling AAV tropism in the nervous system with natural and engineered capsids. Methods Mol Biol. 2016;1382:133–49. 10.1007/978-1-4939-3271-9_10. PubMed PMC

Wang Y, Liang J, Chen L, Shen Y, Zhao J, Xu C, et al. Pharmaco-genetic therapeutics targeting parvalbumin neurons attenuate temporal lobe epilepsy. Neurobiol Dis. 2018;117:149–60. PubMed

Cǎlin A, Stancu M, Zagrean A-M, Jefferys JGR, Ilie AS1, Akerman CJ. Chemogenetic recruitment of specific interneurons suppresses seizure activity. Front Cell Neurosci. 2018;12:293. PubMed PMC

Avaliani N, Andersson M, Runegaard A, Woldbye D, Kokaia M. DREADDs suppress seizure-like activity in a mouse model of pharmacoresistant epileptic brain tissue. Gene Ther. 2016;23:760–6. PubMed

Kätzel D, Nicholson E, Schorge S, Walker MC, Kullmann DM. Chemical–genetic attenuation of focal neocortical seizures. Nat Commun. 2014;5:1–9. PubMed PMC

Zhou Q-G, et al. Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits. J Clin Investig. 2019;129:310–23. PubMed PMC

Desloovere J, Boon P, Larsen LE, Merckx C, Goossens M-G, Van den Haute C, et al. Long‐term chemogenetic suppression of spontaneous seizures in a mouse model for temporal lobe epilepsy. Epilepsia. 2019;60:2314–24. PubMed

Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science. 2017;357:503–7. PubMed PMC

Alper K, Schwartz KA, Kolts RL, Khan A. Seizure incidence in psychopharmacological clinical trials: an analysis of Food and Drug Administration (FDA) summary basis of approval reports. Biol Psychiatry. 2007;62:345–54. PubMed

Magnus CJ, Lee PH, Atasoy D, Su HH, Looger LL, Sternson SM. Chemical and genetic engineering of selective ion channel-ligand interactions. Science. 2011;333:1292–6. 10.1126/science.1206606. PubMed PMC

Magnus CJ, Lee PH, Bonaventura J, Zemla R, Gomez JL Ramirez MH, et al. Ultrapotent chemogenetics for research and potential clinical applications. Science. 2019;364. 10.1126/science.aav5282. PubMed PMC

Kobayashi M, Buckmaster PS. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci. 2003;23:2440–52. 10.1523/jneurosci.23-06-02440.2003. PubMed PMC

Zhang W, Huguenard JR, Buckmaster PS. Increased excitatory synaptic input to granule cells from hilar and CA3 regions in a rat model of temporal lobe epilepsy. J Neurosci. 2012;32:1183–96. 10.1523/jneurosci.5342-11.2012. PubMed PMC

Hsu D. The dentate gyrus as a filter or gate: a look back and a look ahead. Prog Brain Res. 2007;163:601–13. 10.1016/s0079-6123(07)63032-5. PubMed

Bregestovski P, Bernard C. Excitatory GABA: how a correct observation may turn out to be an experimental artifact. Front Pharmacol. 2012;3:65. PubMed PMC

Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science. 2002;298:1418–21. PubMed

Krook-Magnuson E, Armstrong C, Oijala M, Soltesz I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun. 2013;4:1–8. PubMed PMC

Duveau V, Pouyatos B, Bressand K, Bouyssières C, Chabrol T, Roche Y, et al. Differential effects of antiepileptic drugs on focal seizures in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. CNS Neurosci Ther. 2016;22:497–506. 10.1111/cns.12523. PubMed PMC

Kole MH, Stuart GJ. Signal processing in the axon initial segment. Neuron. 2012;73:235–47. 10.1016/j.neuron.2012.01.007. PubMed

Magalhães DM, Pereira N, Rombo DM, Beltrão-Cavacas C, Sebastião AM, Valente CA. Ex vivo model of epilepsy in organotypic slices - a new tool for drug screening. J Neuroinflamm 2018;15:203 10.1186/s12974-018-1225-2. PubMed PMC

Valente CA, Meda FJ, Carvalho M, Sebastião AM. A model of epileptogenesis in rhinal cortex-hippocampus organotypic slice cultures. J Vis Exp 2021;169:e61330 10.3791/61330. PubMed

Mizuguchi H, Xu Z, Ishii-Watabe A, Uchida E, Hayakawa T. IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther. 2000;1:4. PubMed

de Curtis M, Avanzini G. Interictal spikes in focal epileptogenesis. Progr Neurobiol. 2001;63:541–67. PubMed

Smith EH, Liou J-Y, Merricks EM, Davis T, Thomson K, Greger B, et al. Human interictal epileptiform discharges are bidirectional traveling waves echoing ictal discharges. Elife. 2022;11:e73541. 10.7554/eLife.73541. PubMed PMC

Miles R, Blaesse P, Huberfeld G, Wittner L, Kaila K. In: Jasper’s Basic Mechanisms of the Epilepsies. Noebels JL, Michael AR, Antonio VD-E, Jeffrey LN, Massimo Avol, and Richard WO, editors. National Center for Biotechnology Information: US; 2012. PubMed

Lieb A, Qiu Y, Dixon CL, Heller JP, Walker MC, Schorge S, et al. Biochemical autoregulatory gene therapy for focal epilepsy. Nat Med. 2018;24:1324–9. 10.1038/s41591-018-0103-x. PubMed PMC

Desloovere J, Boon P, Larsen LE, Goossens M-G, Delbeke J, Carrette E, et al. Chemogenetic seizure control with clozapine and the novel ligand JHU37160 outperforms the effects of levetiracetam in the intrahippocampal Kainic Acid Mouse Model. Neurotherapeutics. 2021. 10.1007/s13311-021-01160-0. PubMed PMC

Hendricks WD, Westbrook GL, Schnell E. Early detonation by sprouted mossy fibers enables aberrant dentate network activity. Proc Natl Acad Sci. 2019;116:10994–9. 10.1073/pnas.1821227116. PubMed PMC

Stringer JL, Williamson JM, Lothman EW. Induction of paroxysmal discharges in the dentate gyrus: frequency dependence and relationship to afterdischarge production. J Neurophysiol. 1989;62:126–35. PubMed

Botterill JJ, Lu Y-L, LaFrancois JJ, Bernstein HL, Alcantara-Gonzalez D, Jain S, et al. An excitatory and epileptogenic effect of dentate gyrus mossy cells in a mouse model of epilepsy. Cell Rep. 2019;29:2875–89.e2876. 10.1016/j.celrep.2019.10.100. PubMed PMC

Raper J, Eldridge MAG, Sternson SM, Shim JY, Fomani GP, Richmond BJ, et al. Characterization of ultrapotent chemogenetic ligands for research applications in nonhuman primates. ACS Chem Neurosci. 2022;13:3118–25. 10.1021/acschemneuro.2c00525. PubMed PMC

Wacker D, Stevens RC, Roth BL. How ligands illuminate GPCR molecular pharmacology. Cell. 2017;170:414–27. 10.1016/j.cell.2017.07.009. PubMed PMC

Guettier JM, Gautam D, Scarselli M, Ruiz de Azua I, Li JH, et al. A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci. 2009;106:19197–202. 10.1073/pnas.0906593106. PubMed PMC

Aitchison KJ, Jann MW, Zhao JH, Sakai T, Zaher H, Wolff K, et al. Clozapine pharmacokinetics and pharmacodynamics studied with Cyp1A2-null mice. J Psychopharmacol. 2000;14:353–9. 10.1177/026988110001400403. PubMed

Boender AJ, de Jong JW, Boekhoudt L, Luijendijk MCM, van der Plasse G, Adan RAH. Combined use of the canine adenovirus-2 and DREADD-technology to activate specific neural pathways in vivo. PLoS One. 2014;9:e95392 10.1371/journal.pone.0095392. PubMed PMC

Roth BL. DREADDs for neuroscientists. Neuron. 2016;89:683–94. 10.1016/j.neuron.2016.01.040. PubMed PMC

Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci. 2007;104:5163–8. 10.1073/pnas.0700293104. PubMed PMC

Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC, Porter JH, et al. The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep. 2018;8:1–10. PubMed PMC

Yizhar O, Wiegert JS. Designer drugs for designer receptors: unlocking the translational potential of chemogenetics. Trends Pharmacol Sci. 2019;40:362–4. 10.1016/j.tips.2019.04.010. PubMed PMC

Lieb A, Weston M, Kullmann DM. Designer receptor technology for the treatment of epilepsy. EBioMedicine. 2019;43:641–9. 10.1016/j.ebiom.2019.04.059. PubMed PMC

Negrini M, Wang G, Heuer A, Björklund T, Davidsson M. AAV production everywhere: a simple, fast, and reliable protocol for in-house AAV vector production based on chloroform extraction. Curr Protoc Neurosci. 2020;93:e103 10.1002/cpns.103. PubMed

Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev. 2020;72:606–38. 10.1124/pr.120.019539. PubMed PMC

Lentini C, d’Orange M, Marichal N, Trottmann M-M, Vignoles R, Foucault, L, et al. Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy. Cell Stem Cell. 2021;28:2104–21.e10. PubMed PMC

Arabadzisz D, Antal K, Parpan F, Emri Z, Fritschy J-M. Epileptogenesis and chronic seizures in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and selective neurochemical alterations in the contralateral hippocampus. Exp Neurol. 2005;194:76–90. PubMed

Riban V, Bouilleret V, Pham-Lê BT, Fritschy J-M, Marescaux C, Depaulis A. Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience. 2002;112:101–11. 10.1016/S0306-4522(02)00064-7. PubMed

Zeidler, Z, Brandt-Fontaine M, Leintz C, Krook-Magnuson C, Netoff T, Krook-Magnuson E. Targeting the mouse ventral hippocampus in the intrahippocampal Kainic Acid Model of temporal lobe epilepsy. eNeuro. 2018;5. 10.1523/eneuro.0158-18.2018. PubMed PMC

Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281–94. 10.1016/0013-4694(72)90177-0. PubMed

Hokanson J (2021). AD Instruments (LabChart) SDK. GitHub. 2021. https://github.com/JimHokanson/adinstruments_sdk_matlab.

Bischofberger J, Engel D, Li L, Geiger JRP, Jonas P. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Protoc. 2006;1:2075–81. 10.1038/nprot.2006.312. PubMed

Anderson WW, Collingridge GL. The LTP Program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events. J Neurosci Methods. 2001;108:71–83. PubMed

Berdichevsky Y, Dzhala V, Mail M, Staley KJ. Interictal spikes, seizures and ictal cell death are not necessary for post-traumatic epileptogenesis in vitro. Neurobiol Dis 2012;45:774–85. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...