Chemogenetics with PSAM4-GlyR decreases excitability and epileptiform activity in epileptic hippocampus
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Primus/26/MED/011
Charles University | Lékařská Fakulta v Plzni, Univerzita Karlova (Faculty of Medicine in Pilsen, Charles University)
H2020-WIDESPREAD-2020-5, Agreement ID 952455
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
H2020-MSCA-ITN-2016, Agreement ID 722779
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
2016-02605
Vetenskapsrådet (Swedish Research Council)
2017-00921
Vetenskapsrådet (Swedish Research Council)
PubMed
39455855
PubMed Central
PMC11946892
DOI
10.1038/s41434-024-00493-7
PII: 10.1038/s41434-024-00493-7
Knihovny.cz E-zdroje
- MeSH
- akční potenciály účinky léků MeSH
- chemogenetika MeSH
- epilepsie temporálního laloku * terapie genetika MeSH
- epilepsie * terapie genetika MeSH
- genetická terapie * metody MeSH
- hipokampus * metabolismus patofyziologie účinky léků MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Despite the availability of new drugs on the clinics in recent years, drug-resistant epilepsy remains an unresolved challenge for healthcare, and one-third of epilepsy patients remain refractory to anti-seizure medications. Gene therapy in experimental models has emerged as effective treatment targeting specific neuronal populations in the epileptogenic focus. When combined with an external chemical activator using chemogenetics, it also becomes an "on-demand" treatment. Here, we evaluate a targeted and specific chemogenetic therapy, the PSAM/PSEM system, which holds promise as a potential candidate for clinical application in treating drug-resistant epilepsy. We show that the inert ligand uPSEM817, which selectively activates the chloride-permeable channel PSAM4-GlyR, effectively reduces the number of depolarization-induced action potentials in vitro. This effect is likely due to the shunting of depolarizing currents, as evidenced by decreased membrane resistance in these cells. In organotypic slices, uPSEM817 decreased the number of bursts and peak amplitude of events of spontaneous epileptiform activity. Although administration of uPSEM817 in vivo did not significantly alter electrographic seizures in a male mouse model of temporal lobe epilepsy, it did demonstrate a strong trend toward reducing the frequency of interictal epileptiform discharges. These findings indicate that PSAM4-GlyR-based chemogenetics holds potential as an anti-seizure strategy, although further refinement is necessary to enhance its efficacy.
Department of Physiology 2nd Faculty of Medicine Charles University Prague Czech Republic
Epilepsy Center Department of Clinical Sciences Lund University Hospital Lund Sweden
Instituto de Medicina Molecular João Lobo Antunes Universidade de Lisboa Lisboa Portugal
Stanley Center for Psychiatric Research Broad Institute of MIT and Harvard Cambridge MA USA
Zobrazit více v PubMed
Collaborators GE. Global, regional, and national burden of epilepsy, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:357. PubMed PMC
Toda Y, Kobayashi K, Hayashi Y, Inoue T, Oka M, Ohtsukaet Y. Effects of intravenous diazepam on high-frequency oscillations in EEGs with CSWS. Brain Dev. 2013;35:540–7. PubMed
Peng B-W, Justice JA, Zhang K, Li J-X, He X-H, Sanchez RM. Gabapentin promotes inhibition by enhancing hyperpolarization-activated cation currents and spontaneous firing in hippocampal CA1 interneurons. Neurosci Lett. 2011;494:19–23. PubMed
Braga MF, Aroniadou-Anderjaska V, Li H, Rogawski MA. Topiramate reduces excitability in the basolateral amygdala by selectively inhibiting GluK1 (GluR5) kainate receptors on interneurons and positively modulating GABAA receptors on principal neurons. J Pharmacol Exp Ther. 2009;330:558–66. PubMed
Ylinen A, Valjakka A, Lahtinen H, Miettinen R, Freund TF, Riekkinen P. Vigabatrin pre-treatment prevents hilar somatostatin cell loss and the development of interictal spiking activity following sustained simulation of the perforant path. Neuropeptides. 1991;19:205–11. PubMed
O’Brien TJ, Ben-Menachem E, Bertram EH 3rd, Collins SD, Kokaia M, Lerche H, et al. Proposal for a “phase II” multicenter trial model for preclinical new antiepilepsy therapy development. Epilepsia. 2013;54:70–4. PubMed
Chen Z, Brodie MJ, Liew D, Kwan P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol. 2018;75:279–86. 10.1001/jamaneurol.2017.3949. PubMed PMC
Lhatoo SD, Solomon JK, McEvoy AW, Kitchen ND, Shorvon SD, Sander JW. A prospective study of the requirement for and the provision of epilepsy surgery in the United Kingdom. Epilepsia. 2003;44:673–6. PubMed
Fois C, Kovac S, Khalil A, Uzuner GT, Diehl B, Wehner T, et al. Predictors for being offered epilepsy surgery: 5-year experience of a tertiary referral centre. J Neurol, Neurosurg Psychiatry. 2016;87:209–11. 10.1136/jnnp-2014-310148. PubMed
Jetté N, Sander JW, Keezer MR. Surgical treatment for epilepsy: the potential gap between evidence and practice. Lancet Neurol. 2016;15:982–94. PubMed
Blumcke I, Cross JH, Spreafico R. The international consensus classification for hippocampal sclerosis: an important step towards accurate prognosis. Lancet Neurol. 2013;12:844–6. PubMed
Engel J Jr. Mesial temporal lobe epilepsy: what have we learned? Neuroscientist. 2001;7:340–52. 10.1177/107385840100700410. PubMed
Cendes F, Sakamoto AC, Spreafico R, Bingaman W, Becker AJ. Epilepsies associated with hippocampal sclerosis. Acta Neuropathol. 2014;128:21–37. 10.1007/s00401-014-1292-0. PubMed
Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE commission on diagnostic methods. Epilepsia. 2013;54:1315–29. 10.1111/epi.12220. PubMed
Sutula TP, Dudek FE. Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system. Prog Brain Res. 2007;163:541–63. PubMed
Andrioli A, Alonso-Nanclares L, Arellano JI, DeFelipe J. Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus. Neuroscience. 2007;149:131–43. PubMed
De Lanerolle N, Kim J, Robbins RJ, Spencer D. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res. 1989;495:387–95. PubMed
Robbins RJ, Brines ML, Kim JH, Adrian T, de Lanerolle N, Welsh S, et al. A selective loss of somatostatin in the hippocampus of patients with temporal lobe epilepsy. Ann Neurol. 1991;29:325–32. PubMed
Wittner L, Eross L, Czirják S, Halász P, Freund TF, Maglóczky Z. Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus. Brain. 2005;128:138–52. PubMed
Tóth K, Eross L, Vajda J, Halász P, Freund TF, Maglóczky Z. Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus. Brain. 2010;133:2763–77. PubMed PMC
Williamson A, Patrylo PR, Spencer DD. Decrease in inhibition in dentate granule cells from patients with medial temporal lobe epilepsy. Ann Neurol. 1999;45:92–9. PubMed
Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, et al. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci. 2005;8:1059–68. PubMed
Drexel M, Romanov RA, Wood J, Weger S, Heilbronn R, Wulff P, et al. Selective silencing of hippocampal parvalbumin interneurons induces development of recurrent spontaneous limbic seizures in mice. J Neurosci. 2017;37:8166–79. PubMed PMC
Baraban SC, Southwell DG, Estrada RC, Jones DL, Sebe JY, Alfaro-Cervello C, et al. Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice. Proc Natl Acad Sci USA. 2009;106:15472–7. 10.1073/pnas.0900141106. PubMed PMC
Hunt RF, Girskis KM, Rubenstein JL, Alvarez-Buylla A, Baraban SC. GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nat Neurosci. 2013;16:692–7. PubMed PMC
Cunningham M, Cho J-H, Leung A, Savvidis G, Ahn S, Moon M, et al. hPSC-derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice. Cell Stem Cell. 2014;15:559–73. 10.1016/j.stem.2014.10.006. PubMed PMC
Upadhya D, Hattiangady B, Castro OW, Shuai B, Kodali M, Attaluri S, et al. Human induced pluripotent stem cell-derived MGE cell grafting after status epilepticus attenuates chronic epilepsy and comorbidities via synaptic integration. Proc Natl Acad Sci USA. 2019;116:287–96. 10.1073/pnas.1814185115. PubMed PMC
Waloschková E, Gonzalez-Ramos A, Mikroulis A, Kudláček J, Andersson M, Ledri M, et al. Human stem sell-derived GABAergic interneurons establish efferent synapses onto host neurons in rat epileptic hippocampus and inhibit spontaneous recurrent seizures. Int J Mol Sci. 2021;22:13243. PubMed PMC
Cǎlin A, Stancu M, Zagrean A-M, Jefferys JGR, Ilie AS, Akerman C. Chemogenetic recruitment of specific interneurons suppresses seizure activity. Front Cell Neurosci. 2018;12:293 10.3389/fncel.2018.00293. PubMed PMC
Woldbye DPD, Angehagen M, Gøtzsche CR, Elbrønd-Bek H, Sørensen AT, Christiansen SH, et al. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures. Brain. 2010;133:2778–88. 10.1093/brain/awq219. PubMed
Haberman RP, Samulski RJ, McCown TJ. Attenuation of seizures and neuronal death by adeno-associated virus vector galanin expression and secretion. Nat Med. 2003;9:1076–80. 10.1038/nm901. PubMed
Noè F, Pool A-H, Nissinen J, Gobbi M, Bland R, Rizzi M, et al. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain. 2008;131:1506–15. 10.1093/brain/awn079. PubMed
Wykes RC, Heeroma J-H, Mantoan L, Zheng K, MacDonald DC, Deisseroth K, et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med. 2012;4:161ra152–161ra152. PubMed PMC
Castle MJ, Turunen HT, Vandenberghe LH, Wolfe JH. Controlling AAV tropism in the nervous system with natural and engineered capsids. Methods Mol Biol. 2016;1382:133–49. 10.1007/978-1-4939-3271-9_10. PubMed PMC
Wang Y, Liang J, Chen L, Shen Y, Zhao J, Xu C, et al. Pharmaco-genetic therapeutics targeting parvalbumin neurons attenuate temporal lobe epilepsy. Neurobiol Dis. 2018;117:149–60. PubMed
Cǎlin A, Stancu M, Zagrean A-M, Jefferys JGR, Ilie AS1, Akerman CJ. Chemogenetic recruitment of specific interneurons suppresses seizure activity. Front Cell Neurosci. 2018;12:293. PubMed PMC
Avaliani N, Andersson M, Runegaard A, Woldbye D, Kokaia M. DREADDs suppress seizure-like activity in a mouse model of pharmacoresistant epileptic brain tissue. Gene Ther. 2016;23:760–6. PubMed
Kätzel D, Nicholson E, Schorge S, Walker MC, Kullmann DM. Chemical–genetic attenuation of focal neocortical seizures. Nat Commun. 2014;5:1–9. PubMed PMC
Zhou Q-G, et al. Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits. J Clin Investig. 2019;129:310–23. PubMed PMC
Desloovere J, Boon P, Larsen LE, Merckx C, Goossens M-G, Van den Haute C, et al. Long‐term chemogenetic suppression of spontaneous seizures in a mouse model for temporal lobe epilepsy. Epilepsia. 2019;60:2314–24. PubMed
Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science. 2017;357:503–7. PubMed PMC
Alper K, Schwartz KA, Kolts RL, Khan A. Seizure incidence in psychopharmacological clinical trials: an analysis of Food and Drug Administration (FDA) summary basis of approval reports. Biol Psychiatry. 2007;62:345–54. PubMed
Magnus CJ, Lee PH, Atasoy D, Su HH, Looger LL, Sternson SM. Chemical and genetic engineering of selective ion channel-ligand interactions. Science. 2011;333:1292–6. 10.1126/science.1206606. PubMed PMC
Magnus CJ, Lee PH, Bonaventura J, Zemla R, Gomez JL Ramirez MH, et al. Ultrapotent chemogenetics for research and potential clinical applications. Science. 2019;364. 10.1126/science.aav5282. PubMed PMC
Kobayashi M, Buckmaster PS. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci. 2003;23:2440–52. 10.1523/jneurosci.23-06-02440.2003. PubMed PMC
Zhang W, Huguenard JR, Buckmaster PS. Increased excitatory synaptic input to granule cells from hilar and CA3 regions in a rat model of temporal lobe epilepsy. J Neurosci. 2012;32:1183–96. 10.1523/jneurosci.5342-11.2012. PubMed PMC
Hsu D. The dentate gyrus as a filter or gate: a look back and a look ahead. Prog Brain Res. 2007;163:601–13. 10.1016/s0079-6123(07)63032-5. PubMed
Bregestovski P, Bernard C. Excitatory GABA: how a correct observation may turn out to be an experimental artifact. Front Pharmacol. 2012;3:65. PubMed PMC
Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science. 2002;298:1418–21. PubMed
Krook-Magnuson E, Armstrong C, Oijala M, Soltesz I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun. 2013;4:1–8. PubMed PMC
Duveau V, Pouyatos B, Bressand K, Bouyssières C, Chabrol T, Roche Y, et al. Differential effects of antiepileptic drugs on focal seizures in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. CNS Neurosci Ther. 2016;22:497–506. 10.1111/cns.12523. PubMed PMC
Kole MH, Stuart GJ. Signal processing in the axon initial segment. Neuron. 2012;73:235–47. 10.1016/j.neuron.2012.01.007. PubMed
Magalhães DM, Pereira N, Rombo DM, Beltrão-Cavacas C, Sebastião AM, Valente CA. Ex vivo model of epilepsy in organotypic slices - a new tool for drug screening. J Neuroinflamm 2018;15:203 10.1186/s12974-018-1225-2. PubMed PMC
Valente CA, Meda FJ, Carvalho M, Sebastião AM. A model of epileptogenesis in rhinal cortex-hippocampus organotypic slice cultures. J Vis Exp 2021;169:e61330 10.3791/61330. PubMed
Mizuguchi H, Xu Z, Ishii-Watabe A, Uchida E, Hayakawa T. IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther. 2000;1:4. PubMed
de Curtis M, Avanzini G. Interictal spikes in focal epileptogenesis. Progr Neurobiol. 2001;63:541–67. PubMed
Smith EH, Liou J-Y, Merricks EM, Davis T, Thomson K, Greger B, et al. Human interictal epileptiform discharges are bidirectional traveling waves echoing ictal discharges. Elife. 2022;11:e73541. 10.7554/eLife.73541. PubMed PMC
Miles R, Blaesse P, Huberfeld G, Wittner L, Kaila K. In: Jasper’s Basic Mechanisms of the Epilepsies. Noebels JL, Michael AR, Antonio VD-E, Jeffrey LN, Massimo Avol, and Richard WO, editors. National Center for Biotechnology Information: US; 2012. PubMed
Lieb A, Qiu Y, Dixon CL, Heller JP, Walker MC, Schorge S, et al. Biochemical autoregulatory gene therapy for focal epilepsy. Nat Med. 2018;24:1324–9. 10.1038/s41591-018-0103-x. PubMed PMC
Desloovere J, Boon P, Larsen LE, Goossens M-G, Delbeke J, Carrette E, et al. Chemogenetic seizure control with clozapine and the novel ligand JHU37160 outperforms the effects of levetiracetam in the intrahippocampal Kainic Acid Mouse Model. Neurotherapeutics. 2021. 10.1007/s13311-021-01160-0. PubMed PMC
Hendricks WD, Westbrook GL, Schnell E. Early detonation by sprouted mossy fibers enables aberrant dentate network activity. Proc Natl Acad Sci. 2019;116:10994–9. 10.1073/pnas.1821227116. PubMed PMC
Stringer JL, Williamson JM, Lothman EW. Induction of paroxysmal discharges in the dentate gyrus: frequency dependence and relationship to afterdischarge production. J Neurophysiol. 1989;62:126–35. PubMed
Botterill JJ, Lu Y-L, LaFrancois JJ, Bernstein HL, Alcantara-Gonzalez D, Jain S, et al. An excitatory and epileptogenic effect of dentate gyrus mossy cells in a mouse model of epilepsy. Cell Rep. 2019;29:2875–89.e2876. 10.1016/j.celrep.2019.10.100. PubMed PMC
Raper J, Eldridge MAG, Sternson SM, Shim JY, Fomani GP, Richmond BJ, et al. Characterization of ultrapotent chemogenetic ligands for research applications in nonhuman primates. ACS Chem Neurosci. 2022;13:3118–25. 10.1021/acschemneuro.2c00525. PubMed PMC
Wacker D, Stevens RC, Roth BL. How ligands illuminate GPCR molecular pharmacology. Cell. 2017;170:414–27. 10.1016/j.cell.2017.07.009. PubMed PMC
Guettier JM, Gautam D, Scarselli M, Ruiz de Azua I, Li JH, et al. A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci. 2009;106:19197–202. 10.1073/pnas.0906593106. PubMed PMC
Aitchison KJ, Jann MW, Zhao JH, Sakai T, Zaher H, Wolff K, et al. Clozapine pharmacokinetics and pharmacodynamics studied with Cyp1A2-null mice. J Psychopharmacol. 2000;14:353–9. 10.1177/026988110001400403. PubMed
Boender AJ, de Jong JW, Boekhoudt L, Luijendijk MCM, van der Plasse G, Adan RAH. Combined use of the canine adenovirus-2 and DREADD-technology to activate specific neural pathways in vivo. PLoS One. 2014;9:e95392 10.1371/journal.pone.0095392. PubMed PMC
Roth BL. DREADDs for neuroscientists. Neuron. 2016;89:683–94. 10.1016/j.neuron.2016.01.040. PubMed PMC
Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci. 2007;104:5163–8. 10.1073/pnas.0700293104. PubMed PMC
Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC, Porter JH, et al. The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep. 2018;8:1–10. PubMed PMC
Yizhar O, Wiegert JS. Designer drugs for designer receptors: unlocking the translational potential of chemogenetics. Trends Pharmacol Sci. 2019;40:362–4. 10.1016/j.tips.2019.04.010. PubMed PMC
Lieb A, Weston M, Kullmann DM. Designer receptor technology for the treatment of epilepsy. EBioMedicine. 2019;43:641–9. 10.1016/j.ebiom.2019.04.059. PubMed PMC
Negrini M, Wang G, Heuer A, Björklund T, Davidsson M. AAV production everywhere: a simple, fast, and reliable protocol for in-house AAV vector production based on chloroform extraction. Curr Protoc Neurosci. 2020;93:e103 10.1002/cpns.103. PubMed
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev. 2020;72:606–38. 10.1124/pr.120.019539. PubMed PMC
Lentini C, d’Orange M, Marichal N, Trottmann M-M, Vignoles R, Foucault, L, et al. Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy. Cell Stem Cell. 2021;28:2104–21.e10. PubMed PMC
Arabadzisz D, Antal K, Parpan F, Emri Z, Fritschy J-M. Epileptogenesis and chronic seizures in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and selective neurochemical alterations in the contralateral hippocampus. Exp Neurol. 2005;194:76–90. PubMed
Riban V, Bouilleret V, Pham-Lê BT, Fritschy J-M, Marescaux C, Depaulis A. Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience. 2002;112:101–11. 10.1016/S0306-4522(02)00064-7. PubMed
Zeidler, Z, Brandt-Fontaine M, Leintz C, Krook-Magnuson C, Netoff T, Krook-Magnuson E. Targeting the mouse ventral hippocampus in the intrahippocampal Kainic Acid Model of temporal lobe epilepsy. eNeuro. 2018;5. 10.1523/eneuro.0158-18.2018. PubMed PMC
Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281–94. 10.1016/0013-4694(72)90177-0. PubMed
Hokanson J (2021). AD Instruments (LabChart) SDK. GitHub. 2021. https://github.com/JimHokanson/adinstruments_sdk_matlab.
Bischofberger J, Engel D, Li L, Geiger JRP, Jonas P. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Protoc. 2006;1:2075–81. 10.1038/nprot.2006.312. PubMed
Anderson WW, Collingridge GL. The LTP Program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events. J Neurosci Methods. 2001;108:71–83. PubMed
Berdichevsky Y, Dzhala V, Mail M, Staley KJ. Interictal spikes, seizures and ictal cell death are not necessary for post-traumatic epileptogenesis in vitro. Neurobiol Dis 2012;45:774–85. PubMed PMC