Bacterial Degradation of Low-Density Polyethylene Preferentially Targets the Amorphous Regions of the Polymer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RGPIN-2023-04787
Natural Sciences and Engineering Research Council of Canada
No grant number
Rural Development Administration Collaborative Research program with the National Institute for Agricultural Sciences
PubMed
39458693
PubMed Central
PMC11511126
DOI
10.3390/polym16202865
PII: polym16202865
Knihovny.cz E-zdroje
- Klíčová slova
- LDPE, biodegradation, low-density polyethylene, microbial degradation, polymer structure,
- Publikační typ
- časopisecké články MeSH
Low-density polyethylene (LDPE) is among the most abundant synthetic plastics in the world, contributing significantly to the plastic waste accumulation problem. A variety of microorganisms, such as Cupriavidus necator H16, Pseudomonas putida LS46, and Pseudomonas chlororaphis PA2361, can form biofilms on the surface of LDPE polymers and cause damage to the exterior structure. However, the damage is not extensive and complete degradation has not been achieved. The changes in polymer structure were analyzed using Time-domain Nuclear Magnetic Resonance (TD-NMR), High-Temperature Size-Exclusion Chromatography (HT-SEC), Differential Scanning Calorimetry (DSC), and Gas Chromatography with a Flame Ionization Detector (GC-FID). Limited degradation of the LDPE powder was seen in the first 30 days of incubation with the bacteria. Degradation can be seen in the LDPE weight loss percentage, LDPE degradation products in the supernatant, and the decrease in the percentage of amorphous regions (from >47% to 40%). The changes in weight-average molar mass (Mw), number-average molar mass (Mn), and the dispersity ratio (Đ) indicate that the low-molar mass fractions of the LDPE were preferentially degraded. The results here confirmed that LDPE degradation is heavily dependent on the presence of amorphous content and that only the amorphous content was degraded via bacterial enzymatic action.
Department of Biosystems Engineering University of Manitoba Winnipeg MB R3T 5V6 Canada
Department of Polymers University of Chemistry and Technology 160 00 Prague Czech Republic
Zobrazit více v PubMed
Jaganmohan M. Plastic Production Forecast Worldwide 2025–2050. 2024. [(accessed on 17 July 2024)]. Available online: https://www.statista.com/statistics/664906/plastics-production-volume-forecast-worldwide/
Deloitte Economic Study of the Canadian Plastic Industry, Markets and Waste. 2019. [(accessed on 17 July 2024)]. Available online: https://publications.gc.ca/collections/collection_2019/eccc/En4-366-1-2019-eng.pdf.
Bertocchini F., Arias C.F. Why have we not Yet solved the challenge of plastic degradation by biological means? PLoS Biol. 2023;21:e3001979. doi: 10.1371/journal.pbio.3001979. PubMed DOI PMC
AgileIntel Research (ChemIntel360) Global Plastic Market Size 2023–2033. July 2023. [(accessed on 17 July 2024)]. Available online: https://www.statista.com/statistics/1245162/polyethylene-market-volume-worldwide/
Ackerman J., Levin D.B. Rethinking plastic recycling: A comparison between North America and Europe. J. Environ. Manag. 2023;340:117859. doi: 10.1016/j.jenvman.2023.117859. PubMed DOI
Andler R., Tiso T., Blank L., Andreeßen C., Zampolli J., D’afonseca V., Guajardo C., Díaz-Barrera A. Current progress on the biodegradation of synthetic plastics: From fundamentals to biotechnological applications. Rev. Environ. Sci. Bio/Technol. 2022;21:829–850. doi: 10.1007/s11157-022-09631-2. DOI
Paul M.B., Stock V., Cara-Carmona J., Lisicki E., Shopova S., Fessard V., Braeuning A., Sieg H., Böhmert L. Micro- and nanoplastics–current state of knowledge with the focus on oral uptake and toxicity. Nanoscale Adv. 2020;2:4350–4367. doi: 10.1039/D0NA00539H. PubMed DOI PMC
Balasubramanian V., Natarajan K., Hemambika B., Ramesh N., Sumathi C., Kottaimuthu R., Kannan V.R. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett. Appl. Microbiol. 2010;51:205–211. doi: 10.1111/j.1472-765X.2010.02883.x. PubMed DOI
Ferreira L., Falcão A., Gil M. Modification of LDPE molecular structure by gamma irradiation for bioapplications. Nucl. Instrum. Methods Phys. Res. B. 2005;236:513–520. doi: 10.1016/j.nimb.2005.04.030. DOI
Xavier S.F. Thermoplastic Polymer Composites. Scrivener Publishing LLC; Austin, TX, USA: 2022. Introduction: Technical Background; pp. 1–99. DOI
Andrady A.L., Neal M.A. Applications and societal benefits of plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009;364:1977–1984. doi: 10.1098/rstb.2008.0304. PubMed DOI PMC
Montazer Z., Najafi M.B.H., Levin D.B. Challenges with Verifying Microbial Degradation of Polyethylene. Polymers. 2020;12:123. doi: 10.3390/polym12010123. PubMed DOI PMC
Bhagwat G., O’connor W., Grainge I., Palanisami T. Understanding the Fundamental Basis for Biofilm Formation on Plastic Surfaces: Role of Conditioning Films. Front. Microbiol. 2021;12:687118. doi: 10.3389/fmicb.2021.687118. PubMed DOI PMC
Montazer Z., Najafi M.B.H., Levin D.B. Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can. J. Microbiol. 2019;65:224–234. doi: 10.1139/cjm-2018-0335. PubMed DOI
Albertsson A.-C., Andersson S.O., Karlsson S. The Mechanism of Biodegradation of Polyethylene. Polym. Degrad. Stab. 1987;18:73–87. doi: 10.1016/0141-3910(87)90084-X. DOI
Albertsson A.-C., Karlsson S. The Influence of Biotic and Abiotic Environments on the Degradation of Polyethylene. Prog. Polym. Sci. 1990;15:177–192. doi: 10.1016/0079-6700(90)90027-X. DOI
Sen S.K., Raut S. Microbial Degradation of Low Density Polyethylene (LDPE): A Review. J. Environ. Chem. Eng. 2015;3:462–473. doi: 10.1016/j.jece.2015.01.003. DOI
Fontanella S., Bonhomme S., Koutny M., Husarova L., Brusson J.-M., Courdavault J.-P., Pitteri S., Samuel G., Pichon G., Lemaire J., et al. Comparison of the Biodegradability of Various Polyethylene Films Containing Pro-Oxidant Additives. Polym. Degrad. Stab. 2010;95:1011–1021. doi: 10.1016/j.polymdegradstab.2010.03.009. DOI
Albertsson A.-C., Bánhidi Z.G. Microbial and oxidative effects in degradation of polyethene. J. Appl. Polym. Sci. 1980;25:1655–1671. doi: 10.1002/app.1980.070250813. DOI
Saci H., Bouhelal S., Bouzarafa B., López D., Fernández-García M. Reversible crosslinked low density polyethylenes: Structure and thermal properties. J. Polym. Res. 2016;23:68. doi: 10.1007/s10965-016-0965-x. DOI
Sharma P.K., Fu J., Cicek N., Sparling R., Levin D.B. Kinetics of medium-chain-length polyhydroxyalkanoate production by a novel isolate of Pseudomonas putida LS46. Can. J. Microbiol. 2012;58:982–989. doi: 10.1139/w2012-074. PubMed DOI
Selin C., Fernando W.G.D., de Kievit T. The PhzI/PhzR quorum-sensing system is required for pyrrolnitrin and phenazine production, and exhibits cross-regulation with RpoS in Pseudomonas chlororaphis PA23. Microbiology. 2012;158:896–907. doi: 10.1099/mic.0.054254-0. PubMed DOI
Wunderlich B. Thermal Analysis. Academic Press; Boston, MA, USA: 1990.
Shilpa, Basak N., Meena S.S. Biodegradation of low-density polythene (LDPE) by a novel strain of Pseudomonas aeruginosa WD4 isolated from plastic dumpsite. Biodegradation. 2023;35:641–655. doi: 10.1007/s10532-023-10061-2. PubMed DOI
Albertsson A.-C., Erlandsson B., Hakkarainen M., Karlsson S. Molecular Weight Changes and Polymeric Matrix Changes Correlated with the Formation of Degradation Products in Biodegraded Polyethylene. J. Environ. Polym. Degrad. 1998;6:187–195. doi: 10.1023/A:1021873631162. DOI
Albertsson A.-C., Barenstedt C., Karlsson S., Lindberg T. Degradation Product Pattern and Morphology Changes as Means to Differentiate Abiotically and Biotically Aged Degradable Polyethylene. Polymer. 1995;36:3075–3083. doi: 10.1016/0032-3861(95)97868-G. DOI