Using Polycaprolactone Nanofibers for the Proof-of-Concept Construction of the Alveolar-Capillary Interface
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1598/2023
Masarykova Univerzita
Ústav organické chemie a biochemie Akademie věd České republiky
Ministerstvo Školství, Mládeže a Tělovýchovy
857560
Horizon 2020 Framework Programme
LX22NPO5107
European Union - Next Generation EU
GA23-06675S
Grantová Agentura České Republiky
LM2023050
MEYS CR
IOCB Tech Foundation
PubMed
39474705
DOI
10.1002/jbm.a.37824
Knihovny.cz E-zdroje
- Klíčová slova
- alveolar‐capillary interface, electrospinning, nanofibers, polycaprolactone (PCL), scaffold, tissue engineering,
- MeSH
- bazální membrána MeSH
- lidé MeSH
- nanovlákna * chemie MeSH
- ověření koncepční studie MeSH
- plicní alveoly * chemie cytologie MeSH
- polyestery * chemie MeSH
- tkáňové inženýrství * metody MeSH
- tkáňové podpůrné struktury * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polycaprolactone MeSH Prohlížeč
- polyestery * MeSH
The alveolar-capillary interface is the key functional element of gas exchange in the human lung, and disruptions to this interface can lead to significant medical complications. However, it is currently challenging to adequately model this interface in vitro, as it requires not only the co-culture of human alveolar epithelial and endothelial cells but mainly the preparation of a biocompatible scaffold that mimics the basement membrane. This scaffold should support cell seeding from both sides, and maintain optimal cell adhesion, growth, and differentiation conditions. Our study investigates the use of polycaprolactone (PCL) nanofibers as a versatile substrate for such cell cultures, aiming to model the alveolar-capillary interface more accurately. We optimized nanofiber production parameters, utilized polyamide mesh UHELON as a mechanical support for scaffold handling, and created 3D-printed inserts for specialized co-cultures. Our findings confirm that PCL nanofibrous scaffolds are manageable and support the co-culture of diverse cell types, effectively enabling cell attachment, proliferation, and differentiation. Our research establishes a proof-of-concept model for the alveolar-capillary interface, offering significant potential for enhancing cell-based testing and advancing tissue-engineering applications that require specific nanofibrous matrices.
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Computer Science Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital in Brno Brno Czech Republic
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
A. L. Mescher, Junqueira's Basic Histology: Text and Atlas, 16th ed. (New York, NY: McGraw Hill Professional, 2021), 574.
D. Huh, B. D. Matthews, A. Mammoto, M. Montoya‐Zavala, H. Y. Hsin, and D. E. Ingber, “Reconstituting Organ‐Level Lung Functions on a Chip,” Science 328, no. 5986 (2010): 1662–1668.
D. Huh, D. C. Leslie, B. D. Matthews, et al., “A Human Disease Model of Drug Toxicity‐Induced Pulmonary Edema in a Lung‐On‐a‐Chip Microdevice,” Science Translational Medicine 4, no. 159 (2012): 159ra147.
R. Nossa, J. Costa, L. Cacopardo, and A. Ahluwalia, “Breathing In Vitro: Designs and Applications of Engineered Lung Models,” Journal of Tissue Engineering 12 (2021): 20417314211008696.
C. Shao, T. Cao, X. Wang, Q. Fan, and F. Ye, “Reconstruction of the Alveolar–Capillary Barrier In Vitro Based on a Photo‐Responsive Stretchable Janus Membrane,” Smart Medicine 2, no. 1 (2023): e20220035.
P. Jain, S. B. Rauer, M. Möller, and S. Singh, “Mimicking the Natural Basement Membrane for Advanced Tissue Engineering,” Biomacromolecules 23, no. 8 (2022): 3081–3103.
V. Sedláková, Komponenty pro modelování struktury plic ‐ základy pro inženýrování plic (Brno, Czech republic: Masaryk University, Faculty of Medicine, 2018), https://is.muni.cz/th/x1g2r/?lang=en;zoomy_is=1#panelwiki.
Y. D. Xia, “Electrospinning of Nanofibers: Reinventing the Wheel?,” Advanced Materials 19, no. 16 (2004): 1151–1170.
Z. Jiang, Z. Zheng, S. Yu, et al., “Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing,” Pharmaceutics 15, no. 7 (2023): 1829.
M. Rahmati, D. K. Mills, A. M. Urbanska, et al., “Electrospinning for Tissue Engineering Applications,” Progress in Materials Science 117 (2021): 100721.
DEStech Publishing, Fundamentals of Fiber Science (Lancaster, PA: DEStech Publishing), January 11, 2024, https://www.destechpub.com/product/fundamentals‐of‐fiber‐science/.
S. Ramakrishna, An Introduction to Electrospinning and Nanofibers (Singapore: World Scientific, 2005), 396.
P. Gunatillake, R. Mayadunne, and R. Adhikari, “Recent Developments in Biodegradable Synthetic Polymers,” Biotechnology Annual Review 12 (2006): 301–347.
M. Okamoto and B. John, “Synthetic Biopolymer Nanocomposites for Tissue Engineering Scaffolds,” Progress in Polymer Science 38, no. 10 (2013): 1487–1503.
R. Dwivedi, S. Kumar, R. Pandey, et al., “Polycaprolactone as Biomaterial for Bone Scaffolds: Review of Literature,” Journal of Oral Biology and Craniofacial Research 10, no. 1 (2020): 381–388.
T. I. Hwang, J. I. Kim, M. K. Joshi, C. H. Park, and C. S. Kim, “Simultaneous Regeneration of Calcium Lactate and Cellulose Into PCL Nanofiber for Biomedical Application,” Carbohydrate Polymers 212 (2019): 21–29.
A. Elamparithi, A. M. Punnoose, S. Kuruvilla, M. Ravi, S. Rao, and S. F. D. Paul, “Electrospun Polycaprolactone Matrices With Tensile Properties Suitable for Soft Tissue Engineering,” Artificial Cells, Nanomedicine, and Biotechnology 44, no. 3 (2016): 878–884.
P. Ginestra, E. Ceretti, and A. Fiorentino, “Electrospinning of Poly‐Caprolactone for Scaffold Manufacturing: Experimental Investigation on the Process Parameters Influence,” Procedia CIRP 49 (2016): 8–13.
H. Kotasová, M. Capandová, V. Pelková, et al., “Expandable Lung Epithelium Differentiated From Human Embryonic Stem Cells,” Tissue Engineering and Regenerative Medicine 19, no. 5 (2022): 1033–1050.
“Síta—Technická Data: Silk & Progress,” September 14, 2023, https://www.silkandprogress.cz/cs/sita‐technicka‐data.
ISO 11137‐2:2013(en), “Sterilization of Health Care Products—Radiation—Part 2: Establishing the Sterilization Dose,” September 8, 2024, https://www.iso.org/obp/ui#iso:std:iso:11137:‐2:ed‐3:v1:en.
M. V. Paula, L. A. de Azevedo, I. D. de Silva, C. A. B. da Silva, G. M. Vinhas, and S. Alves, “Gamma Radiation Effect on the Chemical, Mechanical and Thermal Properties of PCL/MCM‐48‐PVA Nanocomposite Films,” Heliyon 9, no. 7 (2023): e18091, https://www.cell.com/heliyon/abstract/S2405‐8440(23)05299‐4.
P. Bhaskar, L. A. Bosworth, R. Wong, et al., “Cell Response to Sterilized Electrospun Poly(ɛ‐Caprolactone) Scaffolds to Aid Tendon Regeneration In Vivo,” Journal of Biomedical Materials Research Part A 105, no. 2 (2017): 389–397.
L. A. Bosworth, A. Gibb, and S. Downes, “Gamma Irradiation of Electrospun Poly(ε‐Caprolactone) Fibers Affects Material Properties But Not Cell Response,” Journal of Polymer Science Part B: Polymer Physics 50, no. 12 (2012): 870–876.
T. Dvir, B. P. Timko, D. S. Kohane, and R. Langer, “Nanotechnological Strategies for Engineering Complex Tissues,” Nature Nanotechnology 6, no. 1 (2011): 13–22.
C. T. L. Nair and S. Lakshmi, Nanotechnology and Tissue Engineering: The Scaffold (Boca Raton, FL: CRC Press, 2008).
R. Vasita and D. S. Katti, “Nanofibers and Their Applications in Tissue Engineering,” International Journal of Nanomedicine 1, no. 1 (2006): 15–30.
“Patented Needle‐Free Nanospider™ Technology,” Elmarco, September 18, 2023, https://www.elmarco.com/nanospider.
V. S. Reddy, Y. Tian, C. Zhang, et al., “A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices,” Polymers 13, no. 21 (2021): 3746.
“Biodegradable Systems in Tissue Engineering and Regenerative Medicine,” September 26, 2023, https://www.routledge.com/Biodegradable‐Systems‐in‐Tissue‐Engineering‐and‐Regenerative‐Medicine/Reis‐Roman/p/book/9780849319365.
E. Malikmammadov, T. E. Tanir, A. Kiziltay, V. Hasirci, and N. Hasirci, “PCL and PCL‐Based Materials in Biomedical Applications,” Journal of Biomaterials Science. Polymer Edition 29, no. 7–9 (2018): 863–893.
E. Bolaina‐Lorenzo, C. Martínez‐Ramos, M. Monleón‐Pradas, W. Herrera‐Kao, J. V. Cauich‐Rodríguez, and J. M. Cervantes‐Uc, “Electrospun Polycaprolactone/Chitosan Scaffolds for Nerve Tissue Engineering: Physicochemical Characterization and Schwann Cell Biocompatibility,” Biomedical Materials 12, no. 1 (2016): 015008.
P. Mosallanezhad, H. Nazockdast, Z. Ahmadi, and A. Rostami, “Fabrication and Characterization of Polycaprolactone/Chitosan Nanofibers Containing Antibacterial Agents of Curcumin and ZnO Nanoparticles for Use as Wound Dressing,” Frontiers in Bioengineering and Biotechnology 10 (2022): 1027351, https://doi.org/10.3389/fbioe.2022.1027351.
L. Streit, J. Jaros, V. Sedlakova, et al., “A Comprehensive In Vitro Comparison of Preparation Techniques for Fat Grafting,” Plastic and Reconstructive Surgery 139, no. 3 (2017): 670–682.
V. Sedláková, Z. Voráč, J. Jaroš, et al., “Enhanced Bioactivity of Electrospun PCL and PLLA Scaffolds Blended With Amino‐Phosphazene,” Materials Letters 228 (2018): 339–343.
D. Dolezalova, M. Mraz, T. Barta, et al., “MicroRNAs Regulate p21(Waf1/Cip1) Protein Expression and the DNA Damage Response in Human Embryonic Stem Cells,” Stem Cells 30, no. 7 (2012): 1362–1372.
M. H. Ross and M. D. Pawlina, Histology: A Text and Atlas, With Correlated Cell and Molecular Biology, 6th ed. (Philadelphia, PA: Lippincott Williams & Wilkins, 2010).
S. Y. Lee, T. Fujioka, M. Osuga, T. Nishimura, and S. Suetsugu, “Lamellipodia and Filopodia,” in Plasma Membrane Shaping, ed. S. Suetsugu (Cambridge, UK: Academic Press, 2023), 245–263, https://www.sciencedirect.com/science/article/pii/B9780323899116000194.
P. Y. Collart‐Dutilleul, I. Panayotov, E. Secret, et al., “Initial Stem Cell Adhesion on Porous Silicon Surface: Molecular Architecture of Actin Cytoskeleton and Filopodial Growth,” Nanoscale Research Letters 9, no. 1 (2014): 564.
Wiley.com, The Pulmonary Epithelium in Health and Disease (Hoboken, NJ: Wiley, 2023).
EU Elsevier Health, Murray & Nadel's Textbook of Respiratory Medicin (msterdam, the Netherlands: Elsevier Health, 2023).
D. J. Medina‐Leyte, M. Domínguez‐Pérez, I. Mercado, M. T. Villarreal‐Molina, and L. Jacobo‐Albavera, “Use of Human Umbilical Vein Endothelial Cells (HUVEC) as a Model to Study Cardiovascular Disease: A Review,” Applied Sciences 10, no. 3 (2020): 938.
Synthego, “Everything You Need To Know About A549 Cells,” October 12, 2023, https://www.synthego.com/a549‐cells.
R. Langer and J. P. Vacanti, “Tissue Engineering,” Science 260, no. 5110 (1993): 920–926.
X. Zhang, Fundamentals of Fiber Science (Lancaster, PA: DEStech Publications, 2014).
J. Xie, X. Li, and Y. Xia, “Putting Electrospun Nanofibers to Work for Biomedical Research,” Macromolecular Rapid Communications 29, no. 22 (2008): 1775–1792.
F. Sanetrník, V. Kotek, C. M. L. Ing, and J. I. Chaloupek, “Process for Producing Nanofibers From Polymeric Solution by Electrostatic Spinning and Apparatus for Making the Same” (2004), https://patents.google.com/patent/CZ294274B6/en.
F. Yalcinkaya, “Preparation of Various Nanofiber Layers Using Wire Electrospinning System,” Arabian Journal of Chemistry 12, no. 8 (2019): 5162–5172.
I. Partheniadis, I. Nikolakakis, I. Laidmäe, and J. Heinämäki, “A Mini‐Review: Needleless Electrospinning of Nanofibers for Pharmaceutical and Biomedical Applications,” PRO 8, no. 6 (2020): 673.
“Nanofibers: A Current Era in Drug Delivery System—PMC,” February 7, 2024, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477438/.
M. H. El‐Newehy, S. S. Al‐Deyab, E. R. Kenawy, and A. Abdel‐Megeed, “Nanospider Technology for the Production of Nylon‐6 Nanofibers for Biomedical Applications,” Journal of Nanomaterials 2011, no. 9 (2011): 1–8.
“Nanofibers are Changing the World for the Better | Elmarco,” February 7, 2024, https://www.elmarco.com/nanofibers.
H. Samadian, S. Farzamfar, A. Vaez, et al., “A Tailored Polylactic Acid/Polycaprolactone Biodegradable and Bioactive 3D Porous Scaffold Containing Gelatin Nanofibers and Taurine for Bone Regeneration,” Scientific Reports 10, no. 1 (2020): 13366.
T. Patrício, M. Domingos, A. Gloria, and P. Bártolo, “Characterisation of PCL and PCL/PLA Scaffolds for Tissue Engineering,” Procedia CIRP 5 (2013): 110–114.
S. Castañeda‐Rodríguez, M. González‐Torres, R. M. Ribas‐Aparicio, et al., “Recent Advances in Modified Poly (Lactic Acid) as Tissue Engineering Materials,” Journal of Biological Engineering 17, no. 1 (2023): 21.
Y. Tokiwa, B. P. Calabia, C. U. Ugwu, and S. Aiba, “Biodegradability of Plastics,” International Journal of Molecular Sciences 10, no. 9 (2009): 3722–3742.
H. Salehhudin, E. Mohamad, W. Mahadi, and A. Afifi, “Multiple‐Jet Electrospinning Methods for Nanofiber Processing: A Review,” Materials and Manufacturing Processes 33 (2017): 479–498.
A. Aminatun, D. Rudyardjo, S. Hadi, and T. Amrillah, “Fabrication and Compatibility Evaluation of Polycaprolactone/Hydroxyapatite/Collagen‐Based Fiber Scaffold for Anterior Cruciate Ligament Injury,” RSC Advances 13 (2023): 10459–10467.
P. Francavilla, D. P. Ferreira, J. C. Araújo, and R. Fangueiro, “Smart Fibrous Structures Produced by Electrospinning Using the Combined Effect of PCL/Graphene Nanoplatelets,” Applied Sciences 11, no. 3 (2021): 1124.
F. Liu, R. Guo, M. Shen, S. Wang, and X. Shi, “Effect of Processing Variables on the Morphology of Electrospun Poly[(Lactic Acid)‐Co‐(Glycolic Acid)] Nanofibers,” Macromolecular Materials and Engineering 294, no. 10 (2009): 666–672.
“CellCrown Sterile 24 Well Plate Inserts Sigma‐Aldrich,” March 13, 2024, http://www.sigmaaldrich.com/.
Y. R. V. Shih, C. N. Chen, S. W. Tsai, Y. J. Wang, and O. K. Lee, “Growth of Mesenchymal Stem Cells on Electrospun Type I Collagen Nanofibers,” Stem Cells 24, no. 11 (2006): 2391–2397.
T. L. Popielarczyk, A. S. Nain, and J. G. Barrett, “Aligned Nanofiber Topography Directs the Tenogenic Differentiation of Mesenchymal Stem Cells,” Applied Sciences 7, no. 1 (2017): 59.
R. Xue, Y. Qian, L. Li, G. Yao, L. Yang, and Y. Sun, “Polycaprolactone Nanofiber Scaffold Enhances the Osteogenic Differentiation Potency of Various Human Tissue‐Derived Mesenchymal Stem Cells,” Stem Cell Research & Therapy 8, no. 1 (2017): 148.
J. Xue, D. Pisignano, and Y. Xia, “Maneuvering the Migration and Differentiation of Stem Cells With Electrospun Nanofibers,” Advancement of Science 7, no. 15 (2020): 2000735.
N. Higuita‐Castro, M. Nelson, V. Shukla, et al., “Using a Novel Microfabricated Model of the Alveolar‐Capillary Barrier to Investigate the Effect of Matrix Structure on Atelectrauma,” Scientific Reports 7 (2017): 11623.
P. Jain, S. B. Rauer, D. Felder, et al., “Peptide‐Functionalized Electrospun Meshes for the Physiological Cultivation of Pulmonary Alveolar Capillary Barrier Models in a 3D‐Printed Micro‐Bioreactor,” ACS Biomaterials Science & Engineering 9, no. 8 (2023): 4878–4892.
A. C. Bean and R. S. Tuan, “Fiber Diameter and Seeding Density Influence Chondrogenic Differentiation of Mesenchymal Stem Cells Seeded on Electrospun Poly(ε‐Caprolactone) Scaffolds,” Biomedical Materials 10, no. 1 (2015): 015018.