Recycling industrial waste polymer as a binder system for ceramic injection molding feedstock
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39498025
PubMed Central
PMC11532875
DOI
10.1016/j.heliyon.2024.e39610
PII: S2405-8440(24)15641-1
Knihovny.cz E-zdroje
- Klíčová slova
- Ceramic injection molding, Highly filled polymer, Industrial waste binder system, Recycling polymer,
- Publikační typ
- časopisecké články MeSH
Ceramic injection molding is a widely used manufacturing process for producing high-precision ceramic components. However, the high cost of traditional binder systems, as well as non-ecological aspects of these binders, may limit its broader applications. This study investigates the potential use of polyvinyl butyral industrial waste containing plasticizer as a sustainable alternative binder system for ceramic injection molding, utilizing alumina powder with a mean particle size of 0.7 μm. The mixing behavior of the binder-powder mixture was evaluated through torque measurements, identifying a critical solid loading point at 56 vol%. The rheological properties of the feedstocks were characterized, revealing that their viscosity remained below the recommended threshold of 1000 Pa s, suitable for ceramic injection molding. The activation energy, ranging from 18 kJ/mol to 45 kJ/mol, demonstrated favorable temperature sensitivity for the process. Subsequently, the feedstocks were successfully injection molded into test specimens, followed by the debinding and sintering processes to achieve the final density. Mechanical testing of the sintered ceramic parts indicated performance comparable to parts produced with traditional binder systems, with final densities exceeding 4 g/cm³, a bending modulus of approximately 15000 N/mm2, and bending strength up to 139 N/mm2. These findings suggest that incorporating industrial waste polymer as a binder system is a cost-effective, environmentally friendly alternative that maintains the quality of molded ceramic parts.
Zobrazit více v PubMed
German R., Bose A. Injection molding of metals and ceramics. Metal Powder Industries Federation; Princeton, New Jersey: 1997. pp. 11–24.
Kryachek V.M. Injection moulding (review), powder. Metall. Met. Ceram. 2004;43:336–348.
Moballegh L., Morshedian J., Esfandeh M. Copper injection molding using a thermoplastic binder based on paraffin wax. Mater. Lett. 2005;59:2832–2837.
Jardiel T., Sotomayor M.E., Levenfeld B., Varez A. Optimization of the processing of 8-YSZ powder by powder injection molding for SOFC electrolytes. Int. J. Appl. Ceram. 2008;5:574–581.
Thomas-Vielma P., Cervera A., Levenfeld B., Varez A. Production of alumina parts by powder injection molding with a binder system based on high density polyethylene. J. Eur. Ceram. Soc. 2008;28:763–771.
Bleyan D., Svoboda P., Hausnerova B. Specific interactions of low molecular weight analogues of carnauba wax and polyethylene glycol binders of ceramic injection moulding feedstocks. Ceram. Int. 2015;41:3975–3982.
Hausnerova B., Novak M. Environmentally efficient 316L stainless steel feedstocks for powder injection molding. Polymers. 2020;12:1296. PubMed PMC
Wen J., Xie Z., Cao W., Yang X. Effects of different backbone binders on the characteristics of zirconia parts using wax-based binder system via ceramic injection molding. J. Adv. Ceram. 2016;5:321–328.
Li H.w., Zhao Y.p., Chen G.q., Li M.h., Fu X.s., Zhou W.l. Synergy of low-and high-density polyethylene in a binder system for powder injection molding of SiC ceramics. Ceram. Int. 2022;48:25513–25520.
Liu Z.Y., Loh N.H., Tor S.B., Khor K.A., Murakoshi Y., Maeda R. Binder system for micropowder injection molding. Mater. Lett. 2001;48:31–38.
Thavanayagam G., Swan J.E. Aqueous debinding of polyvinyl butyral based binder system for titanium metal injection moulding. Powder Technol. 2018;326:402–410.
Song M., Park M., Kim J., Cho I., Kim K., Sung H., Ahn S. Water-soluble binder with high flexural modulus for powder injection molding. J. Mater. Sci. 2005;40:1105–1109.
Bakan H.I. Injection moulding of alumina with partially water soluble binder system and solvent debinding kinetics. Mater. Sci. Technol. 2007;23:787–791.
Hayat M.D., Li T., Wen G., Cao P. Suitability of PEG/PMMA-based metal injection moulding feedstock: an experimental study. Int. J. Adv. Manuf. Technol. 2015;80:1665–1671.
Hayat M.D., Zhang H., Karumbaiah K.M., Singh H., Xu Y., Zou L., Qu X., Ray S., Cao P. A novel PEG/PMMA based binder composition for void-free metal injection moulding of Ti components. Powder Technol. 2021;382:431–440.
Medesi A.J., Notzel D., Hanemann T. PVB/PEG-Based feedstocks for injection molding of alumina microreactor components. Materials. 2019;12:1219. PubMed PMC
Thomas Y., Marple B.R. Partially water-soluble binder formulation for injection molding submicrometer zirconia. Adv. Perform. Mater. 1998;5:25–41.
Tripathy A.R., Chen W., Kukureka S.N., MacKnight W.J. Novel poly(butylene terephthalate)/poly(vinyl butyral) blends prepared by in situ polymerization of cyclic poly(butylene terephthalate) oligomers. Polymers. 2003;44:1835–1842.
Hausnerova B., Kitano T., Kuritka I., Prindis J., Marcanikova L. The role of powder particle size distribution in the processability of powder injection molding compounds. Int. J. Polym. Anal. Char. 2011;16:141–151.
Sanetrnik D., Hausnerova B., Novak M., Mukund B.N. Effect of particle size and shape on wall slip of highly filled powder feedstocks for material extrusion and powder injection molding. 3D Print. Addit. Manuf. 2023;10:236–244. PubMed PMC
Mityukov A.V., Govorov V.A., Malkin A.Y., Kulichikhin V.G. Rheology of highly concentrated suspensions with a bimodal size distribution of solid particles for powder injection molding. Polymers. 2021;13:2709. PubMed PMC
Mukund B.N., Hausnerova B., Shivashankar T.S. Development of 17-4PH stainless steel bimodal powder injection molding feedstock with the help of interparticle spacing/lubricating liquid concept. Powder Technol. 2015;283:24–31.
German R.M. Princeton; New Jersey: 2011. Metal Injection Molding, Metal Powder Industries Federation.
Hausnerova B., Sanetrnik D., Ponizil P. Surface structure analysis of injection molded highly filled polymer melts. Polym. Compos. 2013;34:1553–1558.
Vervoort P.J., Vetter R., Duszczyk J. Overview of powder injection molding. Adv. Perform. Mater. 1996;3:121–151.
Sanetrnik D., Hausnerova B., Filip P., Hnatková E. Influence of capillary die geometry on wall slip of highly filled powder injection molding compounds. Powder Technol. 2018;325:615–619.
Lin D., Sanetrnik D., Cho H., Chung S.T., Kwon Y.S., Kate K.H., Hausnerova B., Atre S.V., Park S.J. Rheological and thermal debinding properties of blended elemental Ti-6Al-4V powder injection molding feedstock. Powder Technol. 2017;311:357–363.
Nötzel D., Hanemann T. New feedstock system for fused filament fabrication of sintered alumina parts. Materials. 2020;13:4461. PubMed PMC
Hnatkova E., Hausnerova B., Filip P. Evaluation of powder loading and flow properties of Al2O3 ceramic injection molding feedstocks treated with stearic acid. Ceram. Int. 2019;45:20084–20090.
Duretek I., Holzer C. Material flow data for numerical simulation of powder injection molding. Univers. J. Mater. Sci. 2017;5:7–14.
Hausnerova B., Mukund B.N., Sanetrnik D. Rheological properties of gas and water atomized 17-4PH stainless steel MIM feedstocks: effect of powder shape and size. Powder Technol. 2017;312:152–158.
Hausnerova B., Marcanikova L., Filip P., Saha P. Rheological characterization of powder injection moulding using feedstock based on aluminium oxide and multicomponent water-soluble polymer binder. Recent Adv. Fluid Mech. Heat Mass Transfer. 2011:245–250.
Hausnerova B., Sanetrnik D., Pata V. Surface properties of powder injection moulded parts related to processing conditions. Manuf. Technol. 2018;18:895–899.
Wang Y., Li X., Liang R., Zhu H., Wu H., Liu F., Liu Y., Niu F. Effects of PVB addition on PbO ceramics used in lead-cooled fast reactors. Prog. Nucl. Energy. 2022;151
Liu W., Zhang W., Li J., Zhang D., Pan Y. Preparation of spray-dried powders leading to Nd:YAG ceramics: the effect of PVB adhesive. Ceram. Int. 2012;38:259–264.
Kosalwit T., Pakunthod P., Pinthong W., Sooksaen P., Chuankrerkkul N. Powder injection moulding of alumina using PEG/PVB binder systems. Key Eng. Mater. 2013;545:173–176.
Shenoy A.V. Springer; 1999. Rheology of Filled Polymer Systems.
Heaney D.F. Woodhead Publishing; Duxford, United Kingdom: 2019. Handbook of Metal Injection Molding.
Yang W., Yang K., Hon M. Effects of PEG molecular weights on rheological behavior of alumina injection molding feedstocks. Mater. Chem. Phys. 2003;78:416–424.
Hayat M.D., Wen G., Zulkifli M.F., Cao P. Effect of PEG molecular weight on rheological properties of Ti-MIM feedstocks and water debinding behaviour. Powder Technol. 2015;270:296–301.
Liau L.C.K., Yang T.C.K., Viswanath D.S. Mechanism of degradation of poly(vinyl butyral) using thermogravimetry/fourier transform infrared spectrometry. Polym. Eng. Sci. 1996;36:2589–2600.
Seo J.J., Kuk S.T., Kim K. Thermal decomposition of PVB (polyvinyl butyral) binder in the matrix and electrolyte of molten carbonate fuel cells. J. Power Sources. 1997;69:61–68.
Dhaliwal A.K., Hay J.N. The characterization of polyvinyl butyral by thermal analysis. Thermochim. Acta. 2002;391:245–255.
Thian E.S., Loh N.H., Khor K.A., Tor S.B. Effects of debinding parameters on powder injection molded Ti-6Al-4V/HA composite parts. Adv. Powder Technol. 2001;12:361–370.
Supriadi S., Baek E.R., Maulana G., Hidayatullah R., Suharno B. Thermal debinding process of SS 17-4 PH in metal injection molding process with variation of heating rates, temperatures, and holding times. Solid State Phenom. 2017;266:238–244.
Gu J., Qiao L., Cai W., Zheng J., Ying Y., Yu J., Li W., Che S. Effects of heating rate in thermal debinding on the microstructure and property of sintered NiCuZn ferrite prepared by powder injection molding. J. Magn. Magn Mater. 2021;530
Mao Q., Qiao L., Zheng J., Ying Y., Yu J., Li W., Che S., Cai W. Injection molding and sintering of ZrO2 ceramic powder modified by a zirconate coupling agent. Materials. 2022;15:7014. PubMed PMC
Jiang X., Li D., Lu R., Yang Z., Liu Z. Study of hyperbranched polymer on POM-based binder in metal injection molding. Mater. Res. Express. 2019;6
Ogunbiyi O., Salifu S., Sadiku R., Jamiru T., Adesina O., Adesina O.S. Influence of sintering temperature on microstructure and mechanical properties of graphene-reinforced Inconel 738 LC composites. Mater. Today Proc. 2021;38:743–748.
Oketola A., Jamiru T., Adegbola A.T., Ogunbiyi O., Sadiku R., Salifu S. Influence of sintering temperature on the microstructure, mechanical and tribological properties of ZrO2 reinforced spark plasma sintered Ni–Cr. Int. J. Lightweight Mater. Manuf. 2022;5:188–196.
Jana D.C., Barick P., Saha B.P. Effect of sintering temperature on density and mechanical properties of solid-state sintered silicon carbide ceramics and evaluation of failure origin. J. Mater. Eng. Perform. 2018;27:2960–2966.
Yu T., Zhao Z., Li J. Effect of sintering temperature and sintering additives on the properties of alumina ceramics fabricated by binder jetting. Ceram. Int. 2023;49:9948–9955.
Shao Y., Yu W., Wu J., Ma H. Effect of sintering temperatures on grain coarsening behaviors and mechanical properties of W-NiTi heavy tungsten alloys. Materials. 2022;15:8035. PubMed PMC
Adam A.A., Bakar H.A., Amani U.A., Paijan L.H., Wahab N.A., Mamat M.F., Ali M.B., Herawan S.G., Ahmad Z. Effect of sintering parameters on the mechanical properties and wear performance of alumina inserts. Lubricants. 2022;10:325.
Vogt J., Friedrich H., Stepanyan M., Eckardt C., Lam M., Lau D., Chen B., Shan R., Chan J. Improved green and sintered density of alumina parts fabricated by binder jetting and subsequent slurry infiltration. Prog. Addit. Manuf. 2022;7:161–171.
Kim J., Ha J., Lee J., Song I. Optimization for permeability and electrical resistance of porous alumina-based ceramics. J. Korean Ceram. Soc. 2016;53:548–556.