Environmentally Efficient 316L Stainless Steel Feedstocks for Powder Injection Molding

. 2020 Jun 05 ; 12 (6) : . [epub] 20200605

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32516982

Grantová podpora
Program NPU I (LO1504) Ministerstvo Školství, Mládeže a Tělovýchovy
IGA/CPS/2018/006 and IGA/FT/2019/001 Tomas Bata University in Zlin

In this study, environmentally convenient highly metal powder filled feedstocks intended for powder injection molding is presented. The composition of 60 vol % 316L stainless steel gas atomized powder feedstocks containing semicrystalline waxes: acrawax or carnauba wax and paraffin wax, combined with polyethylene glycol and modifier, was optimized to provide defect-free parts. Rheological as well as thermogravimetric analyses supported with scanning electron microscopy and metallography were employed to set up optimum conditions for molding, debinding and sintering. The performance of the novel feedstock was compared with currently available polyolefines-based materials, and results showed an efficiency enhancement due to the substantially lower (about 100 °C) mixing and molding temperatures as well as a reduction of debinding and sintering times at the simultaneous achievement of better mechanical properties in terms of elongation and tensile strength, in comparison to the mass production feedstock.

Zobrazit více v PubMed

Wu A.S., Brown D.W., Kumar M., Gallegos G.F., King W.E. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Metall. Mater. Trans. A. 2014;45:6260–6270. doi: 10.1007/s11661-014-2549-x. DOI

Guo P., Zou B., Huang C., Gao H. Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition. J. Mater. Process. Technol. 2017;240:12–22. doi: 10.1016/j.jmatprotec.2016.09.005. DOI

Hinojos A., Mireles J., Reichardt A., Frigola P., Hosemann P., Murr L.E., Wicker R.B. Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology. Mater. Des. 2016;94:17–27. doi: 10.1016/j.matdes.2016.01.041. DOI

Quinard C., Barriere T., Gelin J.C. Development and property identification of 316L stainless steel feedstock for PIM and µPIM. Powder Technol. 2009;190:123–128. doi: 10.1016/j.powtec.2008.04.044. DOI

Sotomayor M.E., Levenfeld B., Várez A. Powder injection moulding of premixed ferritic and austenitic stainless steel powders. Mater. Sci. Eng. A. 2011;528:3480–3488. doi: 10.1016/j.msea.2011.01.038. DOI

Huang M.-S., Hsu H.-C. Effect of backbone polymer on properties of 316L stainless steel MIM compact. J. Mater. Process. Technol. 2009;209:5527–5535. doi: 10.1016/j.jmatprotec.2009.05.011. DOI

Hausnerova B., Bleyan D., Kasparkova V., Pata V. Surface adhesion between ceramic injection molding feedstocks and processing tools. Ceram. Int. 2016;42:460–465. doi: 10.1016/j.ceramint.2015.08.132. DOI

Checot-Moinard D., Rigollet C., Lourdin P. Powder injection moulding PIM of feedstock based on hydrosoluble binder and submicronic powder to manufacture parts having micro-details. Powder Technol. 2011;208:472–479. doi: 10.1016/j.powtec.2010.08.045. DOI

Bleyan D., Svoboda P., Hausnerova B. Specific interactions of low molecular weight analogues of carnauba wax and polyethylene glycol binders of ceramic injection moulding feedstocks. Ceram. Int. 2015;41:3975–3982. doi: 10.1016/j.ceramint.2014.11.082. DOI

Hausnerova B., Kuritka I., Bleyan D. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks. Molecules. 2014;19:2748–2760. doi: 10.3390/molecules19032748. PubMed DOI PMC

Yang W.-W., Yang K.-Y., Hon M.-H. Effects of PEG molecular weights on rheological behavior of alumina injection molding feedstocks. Mater. Chem. Phys. 2003;78:416–424. doi: 10.1016/S0254-0584(02)00203-1. DOI

Krauss V.A., Oliveira A.A.M., Klein A.N., Al-Qureshi H.A., Fredel M.C. A model for PEG removal from alumina injection moulded parts by solvent debinding. J. Mater. Process. Technol. 2007;182:268–273. doi: 10.1016/j.jmatprotec.2006.08.004. DOI

Bernardo E., Hidalgo J., Jiménez-Morales A., Torralba J.M. Powder Injection Moulding: Feedstock Development: Feedstock Development for Powder Injection Moulding of Zirconium Silicate; Proceedings of the European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings; Barcelona, Spain. 9–12 October 2011; pp. 1–6.

Abajo C., Jiménez-Morales A., Torralba J.M. New processing route for ZrSiO4 by powder injection moulding using an eco-friendly binder system. Bol. Soc. Esp. Ceram. Vidrio. 2015;54:93–100. doi: 10.1016/j.bsecv.2015.05.003. DOI

Bleyan D., Hausnerova B., Svoboda P. The development of powder injection moulding binders: A quantification of individual components’ interactions. Powder Technol. 2015;286:84–89. doi: 10.1016/j.powtec.2015.07.046. DOI

Hauf G., Hütter M. Data Sheet—polyMIM® 316L. Polymer-Chemie GmbH; Bad Sobernheim, Germany: 2009.

Vuluga Z., Corobea M.C., Elizetxea C., Ordonez M., Ghiurea M., Raditoiu V., Nicolae C.A., Florea D., Iorga M., Somoghi R., et al. Morphological and Tribological Properties of PMMA/Halloysite Nanocomposites. Polymers. 2018;10:816. doi: 10.3390/polym10080816. PubMed DOI PMC

MPIF Standard 50 . Standard Test Methods for Metal Powders and Powder Metallurgy Products. Metal Powder Industries Federation; Princeton, NJ, USA: 2012. pp. 91–93.

Hoffman R.L. Discontinuous and Dilatant Viscosity Behavior in Concentrated Suspensions. I. Observation of a Flow Instability. Trans. Soc. Rheol. 1972;16:155–173. doi: 10.1122/1.549250. DOI

Barnes H.A. A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: Its cause, character, and cure. J. Non-Newtonian Fluid Mech. 1995;56:221–251. doi: 10.1016/0377-0257(94)01282-M. DOI

Hausnerova B., Kasparkova V., Hnatkova E. Effect of backbone binders on rheological performance of ceramic injection molding feedstocks. Polym. Eng. Sci. 2017;57:739–745. doi: 10.1002/pen.24621. DOI

Hausnerova B., Marcanikova L., Filip P., Saha P. Optimization of powder injection molding of feedstock based on aluminum oxide and multicomponent water-soluble polymer binder. Polym. Eng. Sci. 2011;51:1376–1382. doi: 10.1002/pen.21928. DOI

Hnatkova E., Hausnerova B., Filip P. Evaluation of powder loading and flow properties of Al2O3 ceramic injection molding feedstocks treated with stearic acid. Ceram. Int. 2019;45:20084–20090. doi: 10.1016/j.ceramint.2019.06.273. DOI

Memon S.A., Liao W.Y., Yang S., Cui H., Shah S.F.A. Development of Composite PCMs by Incorporation of Paraffin into Various Building Materials. Materials. 2015;8:499–518. doi: 10.3390/ma8020499. PubMed DOI PMC

Lin S.C., Al-Kayiem H.H. Evaluation of copper nanoparticles—Paraffin wax compositions for solar thermal energy storage. Sol. Energy. 2016;132:267–278. doi: 10.1016/j.solener.2016.03.004. DOI

Zaky M.T., Soliman F.S., Farag A.S. Influence of paraffin wax characteristics on the formulation of wax-based binders and their debinding from green molded parts using two comparative techniques. J. Mater. Process. Technol. 2009;209:5981–5989. doi: 10.1016/j.jmatprotec.2009.07.018. DOI

Chen Z., Cao L., Shan F., Fang G. Preparation and characteristics of microencapsulated stearic acid as composite thermal energy storage material in buildings. Energy Build. 2013;62:469–474. doi: 10.1016/j.enbuild.2013.03.025. DOI

Oh M.C., Seok H., Kim H.-J., Ahn B. De-Lubrication Behavior of Novel EBS Based Admixed Lubricant in Aluminum P/M Alloy. Arch. Metall. Mater. 2015;60:1427–1431. doi: 10.1515/amm-2015-0146. DOI

Zhang J., Li H., Tu J., Shi R., Luo Z., Xiong C., Jiang M. Shape Stability of Polyethylene Glycol/Acetylene Black Phase Change Composites for Latent Heat Storage. Adv. Mater. Sci. Eng. 2018;2018:1–9. doi: 10.1155/2018/3954163. DOI

Ni J., Yu M., Han K. Debinding and Sintering of an Injection-Moulded Hypereutectic Al–Si Alloy. Materials. 2018;11:807. doi: 10.3390/ma11050807. PubMed DOI PMC

Craig R.G., Powers J.M., Peyton F.A. Thermogravimetric Analysis of Waxes. J. Dent. Res. 1971;50:450–454. doi: 10.1177/00220345710500025601. PubMed DOI

Raza M.R., Ahmad F., Muhamad N., Sulong A.B., Omar M.A., Akhtar M.N., Aslam M., Shrazi I. Effects of Debinding and Sintering Atmosphere on Properties and Corrosion Resistance of Powder Injection Molded 316 L—Stainless Steel. Sains Malays. 2017;46:285–293. doi: 10.17576/jsm-2017-4602-13. DOI

Chinnathaypgal V.N., Rangarasaiah R.M., Desai V., Samanta S.K. Evaluation of Wear Behaviour of Metal Injection Moulded Nickel Based Metal Matrix Composite. Silicon. 2019;11:175–185. doi: 10.1007/s12633-018-9843-y. DOI

Shang F., Qiao B., Dong Y.F., Cao Z.-W., Sun W., He Y.-Q. Simulation on the Two-phase Separation of Powder Injection Molding 316L Stainless Steel. Mater. Sci. 2019;25:246–251. doi: 10.5755/j01.ms.25.3.19137. DOI

Natali S., Brotzu A., Pilone D. Comparison between Mechanical Properties and Structures of a Rolled and a 3D-Printed Stainless Steel. Materials. 2019;12:3867. doi: 10.3390/ma12233867. PubMed DOI PMC

Kanchanomai C., Saengwichian B., Manonukul A. Delamination wear of metal injection moulded 316L stainless steel. Wear. 2009;267:1665–1672. doi: 10.1016/j.wear.2009.06.019. DOI

Sulima I., Ratuszek W., Zielińska-Lipiec A., Jaworska L. Microstructural Evolution of 316L Austenitic Stainless Steel with 2%TiB2 Addition during the HP-HT Sintering. Steel Res. Int. 2017;88:1700047. doi: 10.1002/srin.201700047. DOI

Lee Y.-H., Ahn S., Lee J., Lee C.S. Effects of Sintering Conditions on the Mechanical Properties of Metal Injection Molded 316L Stainless Steel. ISIJ Int. 2003;43:119–126. doi: 10.2355/isijinternational.43.119. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Recycling industrial waste polymer as a binder system for ceramic injection molding feedstock

. 2024 Oct 30 ; 10 (20) : e39610. [epub] 20241019

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...