Environmentally Efficient 316L Stainless Steel Feedstocks for Powder Injection Molding
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Program NPU I (LO1504)
Ministerstvo Školství, Mládeže a Tělovýchovy
IGA/CPS/2018/006 and IGA/FT/2019/001
Tomas Bata University in Zlin
PubMed
32516982
PubMed Central
PMC7362016
DOI
10.3390/polym12061296
PII: polym12061296
Knihovny.cz E-zdroje
- Klíčová slova
- 316L stainless steel powder, feedstock, powder injection molding, processability, wax binder,
- Publikační typ
- časopisecké články MeSH
In this study, environmentally convenient highly metal powder filled feedstocks intended for powder injection molding is presented. The composition of 60 vol % 316L stainless steel gas atomized powder feedstocks containing semicrystalline waxes: acrawax or carnauba wax and paraffin wax, combined with polyethylene glycol and modifier, was optimized to provide defect-free parts. Rheological as well as thermogravimetric analyses supported with scanning electron microscopy and metallography were employed to set up optimum conditions for molding, debinding and sintering. The performance of the novel feedstock was compared with currently available polyolefines-based materials, and results showed an efficiency enhancement due to the substantially lower (about 100 °C) mixing and molding temperatures as well as a reduction of debinding and sintering times at the simultaneous achievement of better mechanical properties in terms of elongation and tensile strength, in comparison to the mass production feedstock.
Zobrazit více v PubMed
Wu A.S., Brown D.W., Kumar M., Gallegos G.F., King W.E. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Metall. Mater. Trans. A. 2014;45:6260–6270. doi: 10.1007/s11661-014-2549-x. DOI
Guo P., Zou B., Huang C., Gao H. Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition. J. Mater. Process. Technol. 2017;240:12–22. doi: 10.1016/j.jmatprotec.2016.09.005. DOI
Hinojos A., Mireles J., Reichardt A., Frigola P., Hosemann P., Murr L.E., Wicker R.B. Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology. Mater. Des. 2016;94:17–27. doi: 10.1016/j.matdes.2016.01.041. DOI
Quinard C., Barriere T., Gelin J.C. Development and property identification of 316L stainless steel feedstock for PIM and µPIM. Powder Technol. 2009;190:123–128. doi: 10.1016/j.powtec.2008.04.044. DOI
Sotomayor M.E., Levenfeld B., Várez A. Powder injection moulding of premixed ferritic and austenitic stainless steel powders. Mater. Sci. Eng. A. 2011;528:3480–3488. doi: 10.1016/j.msea.2011.01.038. DOI
Huang M.-S., Hsu H.-C. Effect of backbone polymer on properties of 316L stainless steel MIM compact. J. Mater. Process. Technol. 2009;209:5527–5535. doi: 10.1016/j.jmatprotec.2009.05.011. DOI
Hausnerova B., Bleyan D., Kasparkova V., Pata V. Surface adhesion between ceramic injection molding feedstocks and processing tools. Ceram. Int. 2016;42:460–465. doi: 10.1016/j.ceramint.2015.08.132. DOI
Checot-Moinard D., Rigollet C., Lourdin P. Powder injection moulding PIM of feedstock based on hydrosoluble binder and submicronic powder to manufacture parts having micro-details. Powder Technol. 2011;208:472–479. doi: 10.1016/j.powtec.2010.08.045. DOI
Bleyan D., Svoboda P., Hausnerova B. Specific interactions of low molecular weight analogues of carnauba wax and polyethylene glycol binders of ceramic injection moulding feedstocks. Ceram. Int. 2015;41:3975–3982. doi: 10.1016/j.ceramint.2014.11.082. DOI
Hausnerova B., Kuritka I., Bleyan D. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks. Molecules. 2014;19:2748–2760. doi: 10.3390/molecules19032748. PubMed DOI PMC
Yang W.-W., Yang K.-Y., Hon M.-H. Effects of PEG molecular weights on rheological behavior of alumina injection molding feedstocks. Mater. Chem. Phys. 2003;78:416–424. doi: 10.1016/S0254-0584(02)00203-1. DOI
Krauss V.A., Oliveira A.A.M., Klein A.N., Al-Qureshi H.A., Fredel M.C. A model for PEG removal from alumina injection moulded parts by solvent debinding. J. Mater. Process. Technol. 2007;182:268–273. doi: 10.1016/j.jmatprotec.2006.08.004. DOI
Bernardo E., Hidalgo J., Jiménez-Morales A., Torralba J.M. Powder Injection Moulding: Feedstock Development: Feedstock Development for Powder Injection Moulding of Zirconium Silicate; Proceedings of the European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings; Barcelona, Spain. 9–12 October 2011; pp. 1–6.
Abajo C., Jiménez-Morales A., Torralba J.M. New processing route for ZrSiO4 by powder injection moulding using an eco-friendly binder system. Bol. Soc. Esp. Ceram. Vidrio. 2015;54:93–100. doi: 10.1016/j.bsecv.2015.05.003. DOI
Bleyan D., Hausnerova B., Svoboda P. The development of powder injection moulding binders: A quantification of individual components’ interactions. Powder Technol. 2015;286:84–89. doi: 10.1016/j.powtec.2015.07.046. DOI
Hauf G., Hütter M. Data Sheet—polyMIM® 316L. Polymer-Chemie GmbH; Bad Sobernheim, Germany: 2009.
Vuluga Z., Corobea M.C., Elizetxea C., Ordonez M., Ghiurea M., Raditoiu V., Nicolae C.A., Florea D., Iorga M., Somoghi R., et al. Morphological and Tribological Properties of PMMA/Halloysite Nanocomposites. Polymers. 2018;10:816. doi: 10.3390/polym10080816. PubMed DOI PMC
MPIF Standard 50 . Standard Test Methods for Metal Powders and Powder Metallurgy Products. Metal Powder Industries Federation; Princeton, NJ, USA: 2012. pp. 91–93.
Hoffman R.L. Discontinuous and Dilatant Viscosity Behavior in Concentrated Suspensions. I. Observation of a Flow Instability. Trans. Soc. Rheol. 1972;16:155–173. doi: 10.1122/1.549250. DOI
Barnes H.A. A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: Its cause, character, and cure. J. Non-Newtonian Fluid Mech. 1995;56:221–251. doi: 10.1016/0377-0257(94)01282-M. DOI
Hausnerova B., Kasparkova V., Hnatkova E. Effect of backbone binders on rheological performance of ceramic injection molding feedstocks. Polym. Eng. Sci. 2017;57:739–745. doi: 10.1002/pen.24621. DOI
Hausnerova B., Marcanikova L., Filip P., Saha P. Optimization of powder injection molding of feedstock based on aluminum oxide and multicomponent water-soluble polymer binder. Polym. Eng. Sci. 2011;51:1376–1382. doi: 10.1002/pen.21928. DOI
Hnatkova E., Hausnerova B., Filip P. Evaluation of powder loading and flow properties of Al2O3 ceramic injection molding feedstocks treated with stearic acid. Ceram. Int. 2019;45:20084–20090. doi: 10.1016/j.ceramint.2019.06.273. DOI
Memon S.A., Liao W.Y., Yang S., Cui H., Shah S.F.A. Development of Composite PCMs by Incorporation of Paraffin into Various Building Materials. Materials. 2015;8:499–518. doi: 10.3390/ma8020499. PubMed DOI PMC
Lin S.C., Al-Kayiem H.H. Evaluation of copper nanoparticles—Paraffin wax compositions for solar thermal energy storage. Sol. Energy. 2016;132:267–278. doi: 10.1016/j.solener.2016.03.004. DOI
Zaky M.T., Soliman F.S., Farag A.S. Influence of paraffin wax characteristics on the formulation of wax-based binders and their debinding from green molded parts using two comparative techniques. J. Mater. Process. Technol. 2009;209:5981–5989. doi: 10.1016/j.jmatprotec.2009.07.018. DOI
Chen Z., Cao L., Shan F., Fang G. Preparation and characteristics of microencapsulated stearic acid as composite thermal energy storage material in buildings. Energy Build. 2013;62:469–474. doi: 10.1016/j.enbuild.2013.03.025. DOI
Oh M.C., Seok H., Kim H.-J., Ahn B. De-Lubrication Behavior of Novel EBS Based Admixed Lubricant in Aluminum P/M Alloy. Arch. Metall. Mater. 2015;60:1427–1431. doi: 10.1515/amm-2015-0146. DOI
Zhang J., Li H., Tu J., Shi R., Luo Z., Xiong C., Jiang M. Shape Stability of Polyethylene Glycol/Acetylene Black Phase Change Composites for Latent Heat Storage. Adv. Mater. Sci. Eng. 2018;2018:1–9. doi: 10.1155/2018/3954163. DOI
Ni J., Yu M., Han K. Debinding and Sintering of an Injection-Moulded Hypereutectic Al–Si Alloy. Materials. 2018;11:807. doi: 10.3390/ma11050807. PubMed DOI PMC
Craig R.G., Powers J.M., Peyton F.A. Thermogravimetric Analysis of Waxes. J. Dent. Res. 1971;50:450–454. doi: 10.1177/00220345710500025601. PubMed DOI
Raza M.R., Ahmad F., Muhamad N., Sulong A.B., Omar M.A., Akhtar M.N., Aslam M., Shrazi I. Effects of Debinding and Sintering Atmosphere on Properties and Corrosion Resistance of Powder Injection Molded 316 L—Stainless Steel. Sains Malays. 2017;46:285–293. doi: 10.17576/jsm-2017-4602-13. DOI
Chinnathaypgal V.N., Rangarasaiah R.M., Desai V., Samanta S.K. Evaluation of Wear Behaviour of Metal Injection Moulded Nickel Based Metal Matrix Composite. Silicon. 2019;11:175–185. doi: 10.1007/s12633-018-9843-y. DOI
Shang F., Qiao B., Dong Y.F., Cao Z.-W., Sun W., He Y.-Q. Simulation on the Two-phase Separation of Powder Injection Molding 316L Stainless Steel. Mater. Sci. 2019;25:246–251. doi: 10.5755/j01.ms.25.3.19137. DOI
Natali S., Brotzu A., Pilone D. Comparison between Mechanical Properties and Structures of a Rolled and a 3D-Printed Stainless Steel. Materials. 2019;12:3867. doi: 10.3390/ma12233867. PubMed DOI PMC
Kanchanomai C., Saengwichian B., Manonukul A. Delamination wear of metal injection moulded 316L stainless steel. Wear. 2009;267:1665–1672. doi: 10.1016/j.wear.2009.06.019. DOI
Sulima I., Ratuszek W., Zielińska-Lipiec A., Jaworska L. Microstructural Evolution of 316L Austenitic Stainless Steel with 2%TiB2 Addition during the HP-HT Sintering. Steel Res. Int. 2017;88:1700047. doi: 10.1002/srin.201700047. DOI
Lee Y.-H., Ahn S., Lee J., Lee C.S. Effects of Sintering Conditions on the Mechanical Properties of Metal Injection Molded 316L Stainless Steel. ISIJ Int. 2003;43:119–126. doi: 10.2355/isijinternational.43.119. DOI