Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
24583880
PubMed Central
PMC6271047
DOI
10.3390/molecules19032748
PII: molecules19032748
Knihovny.cz E-resources
- MeSH
- Cold Temperature * MeSH
- Polymers chemistry MeSH
- Powders chemistry MeSH
- Thermogravimetry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Polymers MeSH
- Powders MeSH
This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al₂O₃ feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.
See more in PubMed
Onbattuvelli V.P., Vallury S., McCabe T., Park S.J., Atre S.V. Properties of SiC and AlN feedstocks for the powder injection moulding of thermal management devices. PIM Int. 2010;4:64–70.
Chung C., Rhee B., Cao M., Liu C. Requirements of binder for powder injection molding. In: Gasbarre T.G., Jandesca W.F., editors. Advances in Powder Metallurgy; Proceedings of Powder Metallurgy Conference and Exhibition; San Diego, USA. 11–14 June 1989; Princeton, NJ, USA: Metal Powder Industries Federation; 1989. pp. 67–78.
Tseng W.J., Hsu C.K. Cracking defect and porosity evolution during thermal debinding in ceramic injection moldings. Ceram. Int. 1999;25:461–466. doi: 10.1016/S0272-8842(98)00061-3. DOI
Zhang J., Edirisinghe M., Evans J. A catalogue of ceramic injection moulding defects and their causes. Ind. Ceram. 1989;9:72–82.
Hausnerova B., Vltavska P., Sedlacek T. Pressure-Affected Flow Properties of Powder Injection Moulding Compounds. Powder Technol. 2009;194:192–196. doi: 10.1016/j.powtec.2009.04.007. DOI
Onbattuvelli V.P., Enneti R.K., Park S., Atre S.V. The effects of nanoparticle addition on binder removal from injection molded aluminum nitride. Int. J. Refract. Metals Hard Mater. 2013;36:77–84. doi: 10.1016/j.ijrmhm.2012.07.003. DOI
Hausnerova B., Marcanikova L., Filip P., Saha P. Optimization of powder injection molding of feedstock based on aluminum oxide and multicomponent water-soluble polymer binder. Polym. Eng. Sci. 2011;51:1376–1382. doi: 10.1002/pen.21928. DOI
Trunec M., Cihlar J. Thermal removal of multicomponent binder from ceramic injection mouldings. J. Eur. Ceram. Soc. 2002;22:2231–2241. doi: 10.1016/S0955-2219(02)00015-8. DOI
Krauss V.A., Oliveira A.A.M., Klein A.N., Al-Qureshi H.A., Fredel M.C. A model for PEG removal from alumina injection moulded parts by solvent debinding. J. Mater. Process. Technol. 2007;182:268–273. doi: 10.1016/j.jmatprotec.2006.08.004. DOI
Voorhees K.J., Baugh S.F., Stevenson D.N. The thermal degradation of poly(ethylene glycol)/poly(vinyl alcohol) binder in alumina ceramics. Thermochim. Acta. 1996;274:187–207. doi: 10.1016/0040-6031(95)02583-9. DOI
Huang M.S., Hsu H.C. Effect of backbone polymer on properties of 316L stainless steel MIM compact. J. Mater. Process. Technol. 2009;209:5527–5535. doi: 10.1016/j.jmatprotec.2009.05.011. DOI
Hsu K.C., Lin C.C., Lo G.M. Effect of wax composition on injection moulding of 304L stainless steel powder. Powder Metall. 1994;37:272–276. doi: 10.1179/pom.1994.37.4.272. DOI
Yang W.W., Hon M.H. In situ evaluation of dimensional variations during water extraction from alumina injection-moulded parts. J. Eur. Ceram. Soc. 2000;20:851–858. doi: 10.1016/S0955-2219(99)00221-6. DOI
Yang W.W., Yang K.Y., Hon M.H. Effects of PEG molecular weights on rheological behavior of alumina injection molding feedstocks. Mater. Chem. Phys. 2003;78:416–424. doi: 10.1016/S0254-0584(02)00203-1. DOI
Ren S.B., He X.B., Qu X.H., Humail I.S., Li Y. Effects of binder compositions on characteristics of feedstocks of microsizedSiC ceramic injection moulding. Powder Metall. 2007;50:255–259. doi: 10.1179/174329007X178047. DOI
Persson H., Hausnerova B., Nyborg L., Rigdahl M. Rheological and thermal properties of a model system for PIM. Int. Polym. Proc. 2009;24:206–212. doi: 10.3139/217.2243. DOI
Knapp A.M., Halloran J.W. Binder removal from ceramic-filled thermoplastic blends. J. Am. Ceram. Soc. 2006;89:2776–2781. doi: 10.1111/j.1551-2916.2006.01179.x. DOI
Chartier T., Delhomme E., Baumard J.F. Mechanisms of binder removal involved in supercritical debinding of injection moulded ceramics. J. Phys. III. 1997;7:291–302.
Maximenko A., Biest O. Finite element modelling of binder removal from ceramic mouldings. J. Eur. Ceram. Soc. 1998;18:1001–1009. doi: 10.1016/S0955-2219(97)00193-3. DOI
Seeger M., Gritter R.J. Thermal decomposition and volatilization of poly(α-olefins) J. Polym. Sci.: Polym. Chem. 1977;15:1393–1402. doi: 10.1002/pol.1977.170150610. DOI
Wright J.K., Evans J.R.G. Kinetics of the oxidative degradation of ceramic injection-moulding vehicle. J. Mater. Sci. 1991;26:4897–4904. doi: 10.1007/BF00549868. DOI
Craig R.G., Eick J.D., Peyton F.A. Properties of natural waxes used in dentistry. J. Dent. Res. 1965;44:1308–1316. doi: 10.1177/00220345650440063301. DOI
Han S., Kim C., Kwon D. Thermal/oxidative degradation and stabilization of polyethylene glycol. Polymer. 1997;38:317–323. doi: 10.1016/S0032-3861(97)88175-X. DOI