TLR4-mediated chronic neuroinflammation has no effect on tangle pathology in a tauopathy mouse model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39503044
PubMed Central
PMC11536299
DOI
10.3389/fnagi.2024.1468602
Knihovny.cz E-zdroje
- Klíčová slova
- lipopolysaccharide, microglia, neuroinflammation, phosphorylation, tau,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Alzheimer's disease (AD) is marked by the accumulation of fibrillary aggregates composed of pathological tau protein. Although neuroinflammation is frequently observed in conjunction with tau pathology, current preclinical evidence does not sufficiently establish a direct causal role in tau tangle formation. This study aimed to evaluate whether chronic Toll-like receptor 4 (TLR4) stimulation, induced by a high dose of lipopolysaccharide (LPS, 5 mg/kg), exacerbates neurofibrillary tangle (NFT) pathology in a transgenic mouse model of tauopathy that expresses human truncated 151-391/3R tau, an early feature of sporadic AD. METHODS: We utilized a transgenic mouse model of tauopathy subjected to chronic TLR4 stimulation via weekly intraperitoneal injections of LPS over nine consecutive weeks. Neurofibrillary tangle formation, microglial activation, and tau hyperphosphorylation in the brainstem and hippocampus were assessed through immunohistochemistry, immunofluorescence, and detailed morphometric analysis of microglia. RESULTS: Chronic LPS treatment led to a significant increase in the number of Iba-1+ microglia in the LPS-treated group compared to the sham group (p < 0.0001). Notably, there was a 1.5- to 1.7-fold increase in microglia per tangle-bearing neuron in the LPS-treated group. These microglia exhibited a reactive yet exhausted phenotype, characterized by a significant reduction in cell area (p < 0.0001) without significant changes in other morphometric parameters, such as perimeter, circumference, solidity, aspect ratio, or arborization degree. Despite extensive microglial activation, there was no observed reduction in tau hyperphosphorylation or a decrease in tangle formation in the brainstem, where pathology predominantly develops in this model. DISCUSSION: These findings suggest that chronic TLR4 stimulation in tau-transgenic mice results in significant microglial activation but does not influence tau tangle formation. This underscores the complexity of the relationship between neuroinflammation and tau pathology, indicating that additional mechanisms may be required for neuroinflammation to directly contribute to tau tangle formation.
Institute of Histology and Embryology of Mendoza Mendoza Argentina
Institute of Mathematics and Statistics Faculty of Science Masaryk University Brno Czechia
Institute of Neuroimmunology Slovak Academy of Sciences Bratislava Slovakia
Zobrazit více v PubMed
Alafuzoff I., Arzberger T., Al-Sarraj S., Bodi I., Bogdanovic N., Braak H., et al. . (2008). Staging of neurofibrillary pathology in Alzheimer's disease: a study of the BrainNet Europe consortium. Brain Pathol. 18, 484–496. doi: 10.1111/j.1750-3639.2008.00147.x, PMID: PubMed DOI PMC
Andreasson K. I., Bachstetter A. D., Colonna M., Ginhoux F., Holmes C., Lamb B., et al. . (2016). Targeting innate immunity for neurodegenerative disorders of the central nervous system. J. Neurochem. 138, 653–693. doi: 10.1111/jnc.13667, PMID: PubMed DOI PMC
Ashton N. J., Brum W. S., Di Molfetta G., Benedet A. L., Arslan B., Jonaitis E., et al. . (2024). Diagnostic accuracy of a plasma phosphorylated tau 217 immunoassay for Alzheimer disease pathology. JAMA Neurol. 81, 255–263. doi: 10.1001/jamaneurol.2023.5319, PMID: PubMed DOI PMC
Bakdash J. Z., Marusich L. R. (2017). Repeated measures correlation. Front. Psychol. 8:456. doi: 10.3389/fpsyg.2017.00456, PMID: PubMed DOI PMC
Bankhead P., Loughrey M. B., Fernandez J. A., Dombrowski Y., McArt D. G., Dunne P. D., et al. . (2017). QuPath: open source software for digital pathology image analysis. Sci. Rep. 7:16878. doi: 10.1038/s41598-017-17204-5, PMID: PubMed DOI PMC
Barron M., Gartlon J., Dawson L. A., Atkinson P. J., Pardon M. C. (2017). A state of delirium: deciphering the effect of inflammation on tau pathology in Alzheimer's disease. Exp. Gerontol. 94, 103–107. doi: 10.1016/j.exger.2016.12.006, PMID: PubMed DOI PMC
Batista C. R. A., Gomes G. F., Candelario-Jalil E., Fiebich B. L., de Oliveira A. C. P. (2019). Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int. J. Mol. Sci. 20:2293. doi: 10.3390/ijms20092293, PMID: PubMed DOI PMC
Beam A., Clinger E., Hao L. (2021). Effect of diet and dietary components on the composition of the gut microbiota. Nutrients 13:2795. doi: 10.3390/nu13082795, PMID: PubMed DOI PMC
Bellucci A., Bugiani O., Ghetti B., Spillantini M. G. (2011). Presence of reactive microglia and neuroinflammatory mediators in a case of frontotemporal dementia with P301S mutation. Neurodegener. Dis. 8, 221–229. doi: 10.1159/000322228, PMID: PubMed DOI PMC
Bolos M., Llorens-Martin M., Jurado-Arjona J., Hernandez F., Rabano A., Avila J. (2016). Direct evidence of internalization of tau by microglia in vitro and in vivo. J. Alzheimers Dis. 50, 77–87. doi: 10.3233/JAD-150704, PMID: PubMed DOI
Bolos M., Llorens-Martin M., Perea J. R., Jurado-Arjona J., Rabano A., Hernandez F., et al. . (2017). Absence of CX3CR1 impairs the internalization of tau by microglia. Mol. Neurodegener. 12:59. doi: 10.1186/s13024-017-0200-1, PMID: PubMed DOI PMC
Cani P. D., Amar J., Iglesias M. A., Poggi M., Knauf C., Bastelica D., et al. . (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772. doi: 10.2337/db06-1491, PMID: PubMed DOI
Catorce M. N., Gevorkian G. (2016). LPS-induced murine neuroinflammation model: main features and suitability for pre-clinical assessment of nutraceuticals. Curr. Neuropharmacol. 14, 155–164. doi: 10.2174/1570159X14666151204122017, PMID: PubMed DOI PMC
Clayton K., Delpech J. C., Herron S., Iwahara N., Ericsson M., Saito T., et al. . (2021). Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Mol. Neurodegener. 16:18. doi: 10.1186/s13024-021-00440-9, PMID: PubMed DOI PMC
Dutta D., Jana M., Paidi R. K., Majumder M., Raha S., Dasarathy S., et al. . (2023). Tau fibrils induce glial inflammation and neuropathology via TLR2 in Alzheimer's disease-related mouse models. J. Clin. Invest. 133:e161987. doi: 10.1172/JCI161987, PMID: PubMed DOI PMC
Eikelenboom P., van Exel E., Hoozemans J. J., Veerhuis R., Rozemuller A. J., van Gool W. A. (2010). Neuroinflammation - an early event in both the history and pathogenesis of Alzheimer's disease. Neurodegener. Dis. 7, 38–41. doi: 10.1159/000283480, PMID: PubMed DOI
Fernandez-Arjona M. D. M., Grondona J. M., Granados-Duran P., Fernandez-Llebrez P., Lopez-Avalos M. D. (2017). Microglia morphological categorization in a rat model of neuroinflammation by hierarchical cluster and principal components analysis. Front. Cell. Neurosci. 11:235. doi: 10.3389/fncel.2017.00235, PMID: PubMed DOI PMC
Filipcik P., Zilka N., Bugos O., Kucerak J., Koson P., Novak P., et al. . (2012). First transgenic rat model developing progressive cortical neurofibrillary tangles. Neurobiol. Aging 33, 1448–1456. doi: 10.1016/j.neurobiolaging.2010.10.015, PMID: PubMed DOI
Furube E., Morita M., Miyata S. (2015). Characterization of neural stem cells and their progeny in the sensory circumventricular organs of adult mouse. Cell Tissue Res. 362, 347–365. doi: 10.1007/s00441-015-2201-0, PMID: PubMed DOI
Grubman A., Chew G., Ouyang J. F., Sun G., Choo X. Y., McLean C., et al. . (2019). A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097. doi: 10.1038/s41593-019-0539-4, PMID: PubMed DOI
Grundke-Iqbal I., Iqbal K., Tung Y. C., Quinlan M., Wisniewski H. M., Binder L. I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 83, 4913–4917. doi: 10.1073/pnas.83.13.4913, PMID: PubMed DOI PMC
Hornung V., Latz E. (2010). Critical functions of priming and lysosomal damage for NLRP3 activation. Eur. J. Immunol. 40, 620–623. doi: 10.1002/eji.200940185, PMID: PubMed DOI PMC
Ishizawa K., Dickson D. W. (2001). Microglial activation parallels system degeneration in progressive supranuclear palsy and corticobasal degeneration. J. Neuropathol. Exp. Neurol. 60, 647–657. doi: 10.1093/jnen/60.6.647, PMID: PubMed DOI
Ising C., Venegas C., Zhang S., Scheiblich H., Schmidt S. V., Vieira-Saecker A., et al. . (2019). NLRP3 inflammasome activation drives tau pathology. Nature 575, 669–673. doi: 10.1038/s41586-019-1769-z, PMID: PubMed DOI PMC
Ittner A., Chua S. W., Bertz J., Volkerling A., van der Hoven J., Gladbach A., et al. . (2016). Site-specific phosphorylation of tau inhibits amyloid-beta toxicity in Alzheimer's mice. Science 354, 904–908. doi: 10.1126/science.aah6205, PMID: PubMed DOI
Jaworski T., Lechat B., Demedts D., Gielis L., Devijver H., Borghgraef P., et al. . (2011). Dendritic degeneration, neurovascular defects, and inflammation precede neuronal loss in a mouse model for tau-mediated neurodegeneration. Am. J. Pathol. 179, 2001–2015. doi: 10.1016/j.ajpath.2011.06.025, PMID: PubMed DOI PMC
Jayashree B., Bibin Y. S., Prabhu D., Shanthirani C. S., Gokulakrishnan K., Lakshmi B. S., et al. . (2014). Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol. Cell. Biochem. 388, 203–210. doi: 10.1007/s11010-013-1911-4, PMID: PubMed DOI
Joshi Y. B., Giannopoulos P. F., Chu J., Pratico D. (2014). Modulation of lipopolysaccharide-induced memory insult, gamma-secretase, and neuroinflammation in triple transgenic mice by 5-lipoxygenase. Neurobiol. Aging 35, 1024–1031. doi: 10.1016/j.neurobiolaging.2013.11.016, PMID: PubMed DOI PMC
Keren-Shaul H., Spinrad A., Weiner A., Matcovitch-Natan O., Dvir-Szternfeld R., Ulland T. K., et al. . (2017). A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169, 1276–1290.e17. doi: 10.1016/j.cell.2017.05.018 PubMed DOI
Kinney J. W., Bemiller S. M., Murtishaw A. S., Leisgang A. M., Salazar A. M., Lamb B. T. (2018). Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement. (N Y) 4, 575–590. doi: 10.1016/j.trci.2018.06.014, PMID: PubMed DOI PMC
Kitazawa M., Oddo S., Yamasaki T. R., Green K. N., LaFerla F. M. (2005). Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J. Neurosci. 25, 8843–8853. doi: 10.1523/JNEUROSCI.2868-05.2005, PMID: PubMed DOI PMC
Kloss C. U., Bohatschek M., Kreutzberg G. W., Raivich G. (2001). Effect of lipopolysaccharide on the morphology and integrin immunoreactivity of ramified microglia in the mouse brain and in cell culture. Exp. Neurol. 168, 32–46. doi: 10.1006/exnr.2000.7575, PMID: PubMed DOI
Kondo S., Kohsaka S., Okabe S. (2011). Long-term changes of spine dynamics and microglia after transient peripheral immune response triggered by LPS in vivo. Mol. Brain 4:27. doi: 10.1186/1756-6606-4-27, PMID: PubMed DOI PMC
Koson P., Zilka N., Kovac A., Kovacech B., Korenova M., Filipcik P., et al. . (2008). Truncated tau expression levels determine life span of a rat model of tauopathy without causing neuronal loss or correlating with terminal neurofibrillary tangle load. Eur. J. Neurosci. 28, 239–246. doi: 10.1111/j.1460-9568.2008.06329.x, PMID: PubMed DOI
Laurent C., Buee L., Blum D. (2018). Tau and neuroinflammation: what impact for Alzheimer's disease and tauopathies? Biom. J. 41, 21–33. doi: 10.1016/j.bj.2018.01.003 PubMed DOI PMC
Lee D. C., Rizer J., Selenica M. L., Reid P., Kraft C., Johnson A., et al. . (2010). LPS- induced inflammation exacerbates phospho-tau pathology in rTg4510 mice. J. Neuroinflammation 7:56. doi: 10.1186/1742-2094-7-56, PMID: PubMed DOI PMC
Leng F., Edison P. (2021). Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol. 17, 157–172. doi: 10.1038/s41582-020-00435-y, PMID: PubMed DOI
Leyns C. E. G., Holtzman D. M. (2017). Glial contributions to neurodegeneration in tauopathies. Mol. Neurodegener. 12:50. doi: 10.1186/s13024-017-0192-x, PMID: PubMed DOI PMC
Liddelow S. A., Guttenplan K. A., Clarke L. E., Bennett F. C., Bohlen C. J., Schirmer L., et al. . (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487. doi: 10.1038/nature21029, PMID: PubMed DOI PMC
López-González I., Schlüter A., Aso E., Garcia-Esparcia P., Ansoleaga B., LLorens F., et al. . (2015). Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J. Neuropathol. Exp. Neurol. 74, 319–344. doi: 10.1097/NEN.0000000000000176, PMID: PubMed DOI
Lykhmus O., Mishra N., Koval L., Kalashnyk O., Gergalova G., Uspenska K., et al. . (2016). Molecular mechanisms regulating LPS-induced inflammation in the brain. Front. Mol. Neurosci. 9:19. doi: 10.3389/fnmol.2016.00019, PMID: PubMed DOI PMC
Mahapatra S., Ying L., Ho P. P., Kurnellas M., Rothbard J., Steinman L., et al. . (2018). An amyloidogenic hexapeptide derived from amylin attenuates inflammation and acute lung injury in murine sepsis. PLoS One 13:e0199206. doi: 10.1371/journal.pone.0199206, PMID: PubMed DOI PMC
Mate V., Smolek T., Kazmerova Z. V., Jadhav S., Brezovakova V., Jurkanin B., et al. . (2022). Enriched environment ameliorates propagation of tau pathology and improves cognition in rat model of tauopathy. Front. Aging Neurosci. 14:935973. doi: 10.3389/fnagi.2022.935973, PMID: PubMed DOI PMC
Mathys H., Davila-Velderrain J., Peng Z., Gao F., Mohammadi S., Young J. Z., et al. . (2019). Single-cell transcriptomic analysis of Alzheimer's disease. Nature 570, 332–337. doi: 10.1038/s41586-019-1195-2, PMID: PubMed DOI PMC
McMurray L., Macdonald J. A., Ramakrishnan N. K., Zhao Y., Williamson D. W., Tietz O., et al. . (2021). Synthesis and assessment of novel probes for imaging tau pathology in transgenic mouse and rat models. ACS Chem. Neurosci. 12, 1885–1893. doi: 10.1021/acschemneuro.0c00790, PMID: PubMed DOI PMC
Millet A., Ledo J. H., Tavazoie S. F. (2024). An exhausted-like microglial population accumulates in aged and APOE4 genotype Alzheimer's brains. Immunity 57, 153–170.e6. doi: 10.1016/j.immuni.2023.12.001, PMID: PubMed DOI PMC
Mohammad S., Thiemermann C. (2020). Role of metabolic endotoxemia in systemic inflammation and potential interventions. Front. Immunol. 11:594150. doi: 10.3389/fimmu.2020.594150, PMID: PubMed DOI PMC
Momtazmanesh S., Perry G., Rezaei N. (2020). Toll-like receptors in Alzheimer's disease. J. Neuroimmunol. 348:577362. doi: 10.1016/j.jneuroim.2020.577362, PMID: PubMed DOI
Nilson A. N., English K. C., Gerson J. E., Barton Whittle T., Nicolas Crain C., Xue J., et al. . (2017). Tau oligomers associate with inflammation in the brain and retina of tauopathy mice and in neurodegenerative diseases. J. Alzheimers Dis. 55, 1083–1099. doi: 10.3233/JAD-160912, PMID: PubMed DOI PMC
Novak M., Kabat J., Wischik C. M. (1993). Molecular characterization of the minimal protease resistant tau unit of the Alzheimer's disease paired helical filament. EMBO J. 12, 365–370. doi: 10.1002/j.1460-2075.1993.tb05665.x, PMID: PubMed DOI PMC
Odfalk K. F., Bieniek K. F., Hopp S. C. (2022). Microglia: friend and foe in tauopathy. Prog. Neurobiol. 216:102306. doi: 10.1016/j.pneurobio.2022.102306, PMID: PubMed DOI PMC
Pinheiro J. C., Bates D. M. (2006). Mixed-effects models in S and S-PLUS. New York, NY: Springer.
Qin Y., Liu Y., Hao W., Decker Y., Tomic I., Menger M. D., et al. . (2016). Stimulation of TLR4 attenuates Alzheimer's disease-related symptoms and pathology in tau-transgenic mice. J. Immunol. 197, 3281–3292. doi: 10.4049/jimmunol.1600873, PMID: PubMed DOI
Qin L., Wu X., Block M. L., Liu Y., Breese G. R., Hong J. S., et al. . (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55, 453–462. doi: 10.1002/glia.20467, PMID: PubMed DOI PMC
R Development Core Team (2023). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. R Foundation for Staitsical Computing.
Redl H., Bahrami S., Schlag G., Traber D. L. (1993). Clinical detection of LPS and animal models of endotoxemia. Immunobiology 187, 330–345. doi: 10.1016/S0171-2985(11)80348-7, PMID: PubMed DOI
Sanchez-Tapia M., Mimenza-Alvarado A., Granados-Dominguez L., Flores-Lopez A., Lopez-Barradas A., Ortiz V., et al. . (2023). The gut microbiota-brain Axis during aging, mild cognitive impairment and dementia: role of tau protein, beta-amyloid and LPS in serum and curli protein in stool. Nutrients 15:932. doi: 10.3390/nu15040932, PMID: PubMed DOI PMC
Sasaki A., Kawarabayashi T., Murakami T., Matsubara E., Ikeda M., Hagiwara H., et al. . (2008). Microglial activation in brain lesions with tau deposits: comparison of human tauopathies and tau transgenic mice TgTauP301L. Brain Res. 1214, 159–168. doi: 10.1016/j.brainres.2008.02.084, PMID: PubMed DOI
Sauter C., Wolfensberger C. (1980). Interferon in human serum after injection of endotoxin. Lancet 2, 852–853. doi: 10.1016/s0140-6736(80)90189-0, PMID: PubMed DOI
Schneider A., Biernat J., von Bergen M., Mandelkow E., Mandelkow E. M. (1999). Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 38, 3549–3558. doi: 10.1021/bi981874p, PMID: PubMed DOI
Scholtzova H., Chianchiano P., Pan J., Sun Y., Goni F., Mehta P. D., et al. . (2014). Amyloid beta and tau Alzheimer's disease related pathology is reduced by toll-like receptor 9 stimulation. Acta Neuropathol. Commun. 2:101. doi: 10.1186/s40478-014-0101-2, PMID: PubMed DOI PMC
Seok J., Warren H. S., Cuenca A. G., Mindrinos M. N., Baker H. V., Xu W., et al. . (2013). Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 110, 3507–3512. doi: 10.1073/pnas.1222878110, PMID: PubMed DOI PMC
Serrano-Pozo A., Gomez-Isla T., Growdon J. H., Frosch M. P., Hyman B. T. (2013). A phenotypic change but not proliferation underlies glial responses in Alzheimer disease. Am. J. Pathol. 182, 2332–2344. doi: 10.1016/j.ajpath.2013.02.031, PMID: PubMed DOI PMC
Shankaran M., Marino M. E., Busch R., Keim C., King C., Lee J., et al. . (2007). Measurement of brain microglial proliferation rates in vivo in response to neuroinflammatory stimuli: application to drug discovery. J. Neurosci. Res. 85, 2374–2384. doi: 10.1002/jnr.21389, PMID: PubMed DOI
Simons M., Levin J., Dichgans M. (2023). Tipping points in neurodegeneration. Neuron 111, 2954–2968. doi: 10.1016/j.neuron.2023.05.031, PMID: PubMed DOI
Sobue A., Komine O., Hara Y., Endo F., Mizoguchi H., Watanabe S., et al. . (2021). Microglial gene signature reveals loss of homeostatic microglia associated with neurodegeneration of Alzheimer's disease. Acta Neuropathol. Commun. 9:1. doi: 10.1186/s40478-020-01099-x, PMID: PubMed DOI PMC
Stancu I. C., Cremers N., Vanrusselt H., Couturier J., Vanoosthuyse A., Kessels S., et al. . (2019). Aggregated tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded tau pathology in vivo. Acta Neuropathol. 137, 599–617. doi: 10.1007/s00401-018-01957-y, PMID: PubMed DOI PMC
Strang K. H., Sorrentino Z. A., Riffe C. J., Gorion K. M., Vijayaraghavan N., Golde T. E., et al. . (2019). Phosphorylation of serine 305 in tau inhibits aggregation. Neurosci. Lett. 692, 187–192. doi: 10.1016/j.neulet.2018.11.011, PMID: PubMed DOI PMC
Sy M., Kitazawa M., Medeiros R., Whitman L., Cheng D., Lane T. E., et al. . (2011). Inflammation induced by infection potentiates tau pathological features in transgenic mice. Am. J. Pathol. 178, 2811–2822. doi: 10.1016/j.ajpath.2011.02.012, PMID: PubMed DOI PMC
Tateda K., Matsumoto T., Miyazaki S., Yamaguchi K. (1996). Lipopolysaccharide-induced lethality and cytokine production in aged mice. Infect. Immun. 64, 769–774. doi: 10.1128/iai.64.3.769-774.1996, PMID: PubMed DOI PMC
Tukey J. W. (1962). The future of data analysis. Ann. Math. Stat. 33, 1–67. doi: 10.1214/aoms/1177704711, PMID: PubMed DOI
van Olst L., Verhaege D., Franssen M., Kamermans A., Roucourt B., Carmans S., et al. . (2020). Microglial activation arises after aggregation of phosphorylated-tau in a neuron-specific P301S tauopathy mouse model. Neurobiol. Aging 89, 89–98. doi: 10.1016/j.neurobiolaging.2020.01.003, PMID: PubMed DOI
Wang J. Z., Xia Y. Y., Grundke-Iqbal I., Iqbal K. (2013). Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J. Alzheimers Dis. 33, S123–S139. PubMed
Wegmann S., Biernat J., Mandelkow E. (2021). A current view on tau protein phosphorylation in Alzheimer's disease. Curr. Opin. Neurobiol. 69, 131–138. doi: 10.1016/j.conb.2021.03.003, PMID: PubMed DOI
Wendeln A. C., Degenhardt K., Kaurani L., Gertig M., Ulas T., Jain G., et al. . (2018). Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338. doi: 10.1038/s41586-018-0023-4, PMID: PubMed DOI PMC
Wiedermann C. J., Kiechl S., Dunzendorfer S., Schratzberger P., Egger G., Oberhollenzer F., et al. . (1999). Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck study. J. Am. Coll. Cardiol. 34, 1975–1981. doi: 10.1016/S0735-1097(99)00448-9, PMID: PubMed DOI
Yoshiyama Y., Higuchi M., Zhang B., Huang S. M., Iwata N., Saido T. C., et al. . (2007). Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351. doi: 10.1016/j.neuron.2007.01.010, PMID: PubMed DOI
Young K., Morrison H. (2018). Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ. J. Vis. Exp. 136:57648. doi: 10.3791/57648-v, PMID: PubMed DOI PMC
Zhou Y., Song W. M., Andhey P. S., Swain A., Levy T., Miller K. R., et al. . (2020). Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease. Nat. Med. 26, 131–142. doi: 10.1038/s41591-019-0695-9, PMID: PubMed DOI PMC
Zilka N., Kazmerova Z., Jadhav S., Neradil P., Madari A., Obetkova D., et al. . (2012). Who fans the flames of Alzheimer's disease brains? Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways. J. Neuroinflammation 9:47. PubMed PMC
Zimova I., Brezovakova V., Hromadka T., Weisova P., Cubinkova V., Valachova B., et al. . (2016). Human truncated tau induces mature neurofibrillary pathology in a mouse model of human tauopathy. J. Alzheimers Dis. 54, 831–843. doi: 10.3233/JAD-160347, PMID: PubMed DOI