Protamine 2 deficiency results in Septin 12 abnormalities
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R15 HD110863
NICHD NIH HHS - United States
PubMed
39524225
PubMed Central
PMC11543461
DOI
10.3389/fcell.2024.1447630
PII: 1447630
Knihovny.cz E-zdroje
- Klíčová slova
- Protamine 2 deficiency, Septin 12, annulus, asthenozoospermia, sperm, sperm immotility,
- Publikační typ
- časopisecké články MeSH
There is a well-established link between abnormal sperm chromatin states and poor motility, however, how these two processes are interdependent is unknown. Here, we identified a possible mechanistic insight by showing that Protamine 2, a nuclear DNA packaging protein in sperm, directly interacts with cytoskeletal protein Septin 12, which is associated with sperm motility. Septin 12 has several isoforms, and we show, that in the Prm2 -/- sperm, the short one (Mw 36 kDa) is mis-localized, while two long isoforms (Mw 40 and 41 kDa) are unexpectedly lost in Prm2 -/- sperm chromatin-bound protein fractions. Septin 12 co-immunoprecipitated with Protamine 2 in the testicular cell lysate of WT mice and with Lamin B1/2/3 in co-transfected HEK cells despite we did not observe changes in Lamin B2/B3 proteins or SUN4 expression in Prm2 -/- testes. Furthermore, the Prm2 -/- sperm have on average a smaller sperm nucleus and aberrant acrosome biogenesis. In humans, patients with low sperm motility (asthenozoospermia) have imbalanced histone-protamine 1/2 ratio, modified levels of cytoskeletal proteins and we detected retained Septin 12 isoforms (Mw 40 and 41 kDa) in the sperm membrane, chromatin-bound and tubulin/mitochondria protein fractions. In conclusion, our findings present potential interaction between Septin 12 and Protamine 2 or Lamin B2/3 and describe a new connection between their expression and localization, contributing likely to low sperm motility and morphological abnormalities.
Department of Developmental Pathology Institute of Pathology University Hospital Bonn Bonn Germany
Department of Human Genetics University of Michigan Ann Arbor MI United States
Department of Physiology Faculty of Science Charles University Prague Czechia
Department of Zoology Faculty of Science Charles University Prague Czechia
Zobrazit více v PubMed
Ammer H., Henschen A., Lee C. H. (1986). Isolation and amino-acid sequence analysis of human sperm protamines P1 and P2. Occurrence of two forms of protamine P2. Biol. Chem. Hoppe Seyler 367, 515–522. 10.1515/bchm3.1986.367.1.515 PubMed DOI
Arévalo L., Merges G. E., Schneider S., Oben F. E., Neumann I. S., Schorle H. (2022a). Loss of the cleaved-protamine 2 domain leads to incomplete histone-to-protamine exchange and infertility in mice. PLoS Genet. 18, e1010272. 10.1371/journal.pgen.1010272 PubMed DOI PMC
Arévalo L., Merges G. E., Schneider S., Schorle H. (2022b). Protamines: lessons learned from mouse models. Reproduction 164, R57–R74. 10.1530/REP-22-0107 PubMed DOI
Avidor-Reiss T., Carr A., Fishman E. L. (2020). The sperm centrioles. Mol. Cell Endocrinol. 518, 110987. 10.1016/j.mce.2020.110987 PubMed DOI PMC
Balhorn R. (1982). A model for the structure of chromatin in mammalian sperm. J. Cell Biol. 93, 298–305. 10.1083/jcb.93.2.298 PubMed DOI PMC
Bastos H., Lassalle B., Chicheportiche A., Riou L., Testart J., Allemand I., et al. (2005). Flow cytometric characterization of viable meiotic and postmeiotic cells by Hoechst 33342 in mouse spermatogenesis. Cytom. Part A 65A, 40–49. 10.1002/cyto.a.20129 PubMed DOI
Brunner A. M., Nanni P., Mansuy I. M. (2014). Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics & Chromatin 7, 2. 10.1186/1756-8935-7-2 PubMed DOI PMC
Calvi A., Wong A. S., Wright G., Wong E. S., Loo T. H., Stewart C. L., et al. (2015). SUN4 is essential for nuclear remodeling during mammalian spermiogenesis. Dev. Biol. 407, 321–330. 10.1016/j.ydbio.2015.09.010 PubMed DOI
Carrell D. T., Emery B. R., Hammoud S. (2008). The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome. Int. J. Androl. 31, 537–545. 10.1111/j.1365-2605.2008.00872.x PubMed DOI
Chung K., Wallace J., Kim S. Y., Kalyanasundaram S., Andalman A. S., Davidson T. J., et al. (2013). Structural and molecular interrogation of intact biological systems. Nature 497, 332–337. 10.1038/nature12107 PubMed DOI PMC
Chu Z., Gruss O. J. (2022). Mitotic maturation compensates for premature centrosome splitting and PCM loss in human cep135 knockout cells. Cells 11, 1189. 10.3390/cells11071189 PubMed DOI PMC
Coelingh J. P., Rozijn T. H., Monfoort C. H. (1969). Isolation and partial characterization of a basic protein from bovine sperm heads. Biochim. Biophys. Acta 188, 353–356. 10.1016/0005-2795(69)90091-9 PubMed DOI
Cooper T. G. (2005). Cytoplasmic droplets: the good, the bad or just confusing? Hum. Reprod. 20, 9–11. 10.1093/humrep/deh555 PubMed DOI
Corzett M., Mazrimas J., Balhorn R. (2002). Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol. Reprod. Dev. 61, 519–527. 10.1002/mrd.10105 PubMed DOI
Dammermann A., Merdes A. (2002). Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J. Cell Biol. 159, 255–266. 10.1083/jcb.200204023 PubMed DOI PMC
Desterke C., Gassama-Diagne A. (2019). Protein-protein interaction analysis highlights the role of septins in membrane enclosed lumen and mRNA processing. Adv. Biol. Regul. 73, 100635. 10.1016/j.jbior.2019.100635 PubMed DOI
De Yebra L., Ballescà J. L., Vanrell J. A., Bassas L., Oliva R. (1993). Complete selective absence of protamine P2 in humans. J. Biol. Chem. 268, 10553–10557. 10.1016/s0021-9258(18)82234-7 PubMed DOI
Dunleavy J. E. M., O’Bryan M. K., Stanton P. G., O’Donnell L. (2019). The cytoskeleton in spermatogenesis. Reproduction 157, R53–R72. 10.1530/REP-18-0457 PubMed DOI
Erkek S., Hisano M., Liang C.-Y., Gill M., Murr R., Dieker J., et al. (2013). Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat. Struct. & Mol. Biol. 20, 868–875. 10.1038/nsmb.2599 PubMed DOI
Frolikova M., Sebkova N., Ded L., Dvorakova-Hortova K. (2016). Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction. Sci. Rep. 6, 33714. 10.1038/srep33714 PubMed DOI PMC
Furukawa K., Hotta Y. (1993). cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. Embo J. 12, 97–106. 10.1002/j.1460-2075.1993.tb05635.x PubMed DOI PMC
Gatewood J. M., Cook G. R., Balhorn R., Bradbury E. M., Schmid C. W. (1987). Sequence-specific packaging of DNA in human sperm chromatin. Science 236, 962–964. 10.1126/science.3576213 PubMed DOI
Gaysinskaya V., Soh I. Y., Van Der Heijden G. W., Bortvin A. (2014). Optimized flow cytometry isolation of murine spermatocytes. Cytom. Part A 85, 556–565. 10.1002/cyto.a.22463 PubMed DOI PMC
Hall E. A., Kumar D., Prosser S. L., Yeyati P. L., Herranz-Pérez V., García-Verdugo J. M., et al. (2023). Centriolar satellites expedite mother centriole remodeling to promote ciliogenesis. eLife 12, e79299. 10.7554/eLife.79299 PubMed DOI PMC
Hammoud S. S., Nix D. A., Zhang H., Purwar J., Carrell D. T., Cairns B. R. (2009). Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478. 10.1038/nature08162 PubMed DOI PMC
Hisano M., Erkek S., Dessus-Babus S., Ramos L., Stadler M. B., Peters A. H. (2013). Genome-wide chromatin analysis in mature mouse and human spermatozoa. Nat. Protoc. 8, 2449–2470. 10.1038/nprot.2013.145 PubMed DOI
Ihara M., Kinoshita A., Yamada S., Tanaka H., Tanigaki A., Kitano A., et al. (2005). Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev. Cell 8, 343–352. 10.1016/j.devcel.2004.12.005 PubMed DOI
Inagaki Y., Fukuhara S., Kuribayashi S., Okada K., Sekii Y., Takezawa K., et al. (2021). The expression of human testis-specific actin capping protein predicts in vitro fertilization outcomes: a novel biomarker of sperm function for assisted reproductive technology. Reprod. Med. Biol. 20, 537–542. 10.1002/rmb2.12407 PubMed DOI PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589. 10.1038/s41586-021-03819-2 PubMed DOI PMC
Khanal S., Jaiswal A., Chowdanayaka R., Puente N., Turner K., Assefa K. Y., et al. (2024). The evolution of centriole degradation in mouse sperm. Nat. Commun. 15, 117. 10.1038/s41467-023-44411-8 PubMed DOI PMC
Kierszenbaum A. L., Rivkin E., Tres L. L. (2003). Acroplaxome, an F-Actin–Keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol. Biol. Cell 14, 4628–4640. 10.1091/mbc.e03-04-0226 PubMed DOI PMC
Kierszenbaum A. L., Tres L. L., Rivkin E., Kang-Decker N., Van Deursen J. M. A. (2004). The acroplaxome is the docking site of Golgi-derived myosin Va/Rab27a/b-containing proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. Biol. Reproduction 70, 1400–1410. 10.1095/biolreprod.103.025346 PubMed DOI
Kmonickova V., Frolikova M., Steger K., Komrskova K. (2020). The role of the LINC complex in sperm development and function. Int. J. Mol. Sci. 21, 9058. 10.3390/ijms21239058 PubMed DOI PMC
Kuo Y.-C., Lin Y.-H., Chen H.-I., Wang Y.-Y., Chiou Y.-W., Lin H.-H., et al. (2012). SEPT12 mutations cause male infertility with defective sperm annulus. Hum. Mutat. 33, 710–719. 10.1002/humu.22028 PubMed DOI
Lhuillier P., Rode B., Escalier D., Lorès P., Dirami T., Bienvenu T., et al. (2009). Absence of annulus in human asthenozoospermia: case report. Hum. Reprod. 24, 1296–1303. 10.1093/humrep/dep020 PubMed DOI
Lin Y. H., Chou C. K., Hung Y. C., Yu I. S., Pan H. A., Lin S. W., et al. (2011a). SEPT12 deficiency causes sperm nucleus damage and developmental arrest of preimplantation embryos. Fertil. Steril. 95, 363–365. 10.1016/j.fertnstert.2010.07.1064 PubMed DOI
Lin Y. H., Kuo Y. C., Chiang H. S., Kuo P. L. (2011b). The role of the septin family in spermiogenesis. Spermatogenesis 1, 298–302. 10.4161/spmg.1.4.18326 PubMed DOI PMC
Lin Y. H., Lin Y. M., Wang Y. Y., Yu I. S., Lin Y. W., Wang Y. H., et al. (2009). The expression level of septin12 is critical for spermiogenesis. Am. J. Pathol. 174, 1857–1868. 10.2353/ajpath.2009.080955 PubMed DOI PMC
Lin Y. H., Wang Y. Y., Chen H. I., Kuo Y. C., Chiou Y. W., Lin H. H., et al. (2012). SEPTIN12 genetic variants confer susceptibility to teratozoospermia. PLoS One 7, e34011. 10.1371/journal.pone.0034011 PubMed DOI PMC
Maier W. M., Nussbaum G., Domenjoud L., Klemm U., Engel W. (1990). The lack of protamine 2 (P2) in boar and bull spermatozoa is due to mutations within the P2 gene. Nucleic Acids Res. 18, 1249–1254. 10.1093/nar/18.5.1249 PubMed DOI PMC
Martins C. S., Taveneau C., Castro-Linares G., Baibakov M., Buzhinsky N., Eroles M., et al. (2023). Human septins organize as octamer-based filaments and mediate actin-membrane anchoring in cells. J. Cell Biol. 222, e202203016. 10.1083/jcb.202203016 PubMed DOI PMC
Mastronarde D. N. (2005). Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51. 10.1016/j.jsb.2005.07.007 PubMed DOI
Mengual L., Ballescá J. L., Ascaso C., Oliva R. (2003). Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls. J. Androl. 24, 438–447. 10.1002/j.1939-4640.2003.tb02692.x PubMed DOI
Mostowy S., Cossart P. (2012). Septins: the fourth component of the cytoskeleton. Nat. Rev. Mol. Cell Biol. 13, 183–194. 10.1038/nrm3284 PubMed DOI
Mukherjee A., Saurabh S., Olive E., Jang Y. H., Lansac Y. (2021). Protamine binding site on DNA: molecular dynamics simulations and free energy calculations with full atomistic details. J. Phys. Chem. B 125, 3032–3044. 10.1021/acs.jpcb.0c09166 PubMed DOI
Nakos K., Alam M. N. A., Radler M. R., Kesisova I. A., Yang C., Okletey J., et al. (2022). Septins mediate a microtubule–actin crosstalk that enables actin growth on microtubules. Proc. Natl. Acad. Sci. 119, e2202803119. 10.1073/pnas.2202803119 PubMed DOI PMC
Nanassy L., Liu L., Griffin J., Douglas T. C. (2011). The clinical utility of the protamine 1/protamine 2 ratio in sperm, Protein Pept. Lett. 18, 772–777. 10.2174/092986611795713934 PubMed DOI
Oliva R. (2006). Protamines and male infertility. Hum. Reprod. Update 12, 417–435. 10.1093/humupd/dml009 PubMed DOI
Pereira C. D., Serrano J. B., Martins F., Da Cruz E. S. O. A. B., Rebelo S. (2019). Nuclear envelope dynamics during mammalian spermatogenesis: new insights on male fertility. Biol. Rev. Camb Philos. Soc. 94, 1195–1219. 10.1111/brv.12498 PubMed DOI
Petrusová J., Manning J., Kubovčiak J., Kolář M., Filipp D. (2022). Two complementary approaches for efficient isolation of Sertoli cells for transcriptomic analysis. Front. Cell Dev. Biol. 10, 972017. 10.3389/fcell.2022.972017 PubMed DOI PMC
Retief J. D., Dixon G. H. (1993). Evolution of pro-protamine P2 genes in primates. Eur. J. Biochem. 214, 609–615. 10.1111/j.1432-1033.1993.tb17960.x PubMed DOI
Rodríguez-Casuriaga R., Geisinger A. (2021). Contributions of flow cytometry to the molecular study of spermatogenesis in mammals. Int. J. Mol. Sci. 22, 1151. 10.3390/ijms22031151 PubMed DOI PMC
Rogenhofer N., Dansranjavin T., Schorsch M., Spiess A., Wang H., Von Schönfeldt V., et al. (2013). The sperm protamine mRNA ratio as a clinical parameter to estimate the fertilizing potential of men taking part in an ART programme. Hum. Reprod. 28, 969–978. 10.1093/humrep/des471 PubMed DOI
Rogenhofer N., Ott J., Pilatz A., Wolf J., Thaler C. J., Windischbauer L., et al. (2017). Unexplained recurrent miscarriages are associated with an aberrant sperm protamine mRNA content. Hum. Reprod. 32, 1574–1582. 10.1093/humrep/dex224 PubMed DOI
Schagdarsurengin U., Paradowska A., Steger K. (2012). Analysing the sperm epigenome: roles in early embryogenesis and assisted reproduction. Nat. Rev. Urol. 9, 609–619. 10.1038/nrurol.2012.183 PubMed DOI
Schagdarsurengin U., Steger K. (2016). Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health. Nat. Rev. Urol. 13, 584–595. 10.1038/nrurol.2016.157 PubMed DOI
Schatten H., Vanesa Y. R., Sun Q.-Y. (2011). The sperm centrosome: its role and significance in nature and human assisted reproduction. J. Reprod. Stem Cell Biotechno 2, 121–127. 10.1177/205891581100200206 DOI
Schneider S., Balbach M., Jan F. J., Fietz D., Nettersheim D., Jostes S., et al. (2016). Re-visiting the Protamine-2 locus: deletion, but not haploinsufficiency, renders male mice infertile. Sci. Rep. 6, 36764. 10.1038/srep36764 PubMed DOI PMC
Schneider S., Shakeri F., Trötschel C., Arévalo L., Kruse A., Buness A., et al. (2020a). Protamine-2 deficiency initiates a reactive oxygen species (ROS)-mediated destruction cascade during epididymal sperm maturation in mice. Cells 9, 1789. 10.3390/cells9081789 PubMed DOI PMC
Schneider S., Shakeri F., Trötschel C., Arévalo L., Kruse A., Buness A., et al. (2020b). Protamine-2 deficiency initiates a reactive oxygen species (ROS)-Mediated destruction cascade during epididymal sperm maturation in mice. Cells 9, 1789. 10.3390/cells9081789 PubMed DOI PMC
Schütz W., Alsheimer M., Ollinger R., Benavente R. (2005a). Nuclear envelope remodeling during mouse spermiogenesis: postmeiotic expression and redistribution of germline lamin B3. Exp. Cell Res. 307, 285–291. 10.1016/j.yexcr.2005.03.023 PubMed DOI
Schütz W., Benavente R., Alsheimer M. (2005b). Dynamic properties of germ line-specific lamin B3: the role of the shortened rod domain. Eur. J. Cell Biol. 84, 649–662. 10.1016/j.ejcb.2005.03.001 PubMed DOI
Shen Y.-R., Wang H.-Y., Kuo Y.-C., Shih S.-C., Hsu C.-H., Chen Y.-R., et al. (2017). SEPT12 phosphorylation results in loss of the septin ring/sperm annulus, defective sperm motility and poor male fertility. PLoS Genet. 13, e1006631. 10.1371/journal.pgen.1006631 PubMed DOI PMC
Soda T., Miyagawa Y., Ueda N., Takezawa K., Okuda H., Fukuhara S., et al. (2017). Systematic characterization of human testis-specific actin capping protein β3 as a possible biomarker for male infertility. Hum. Reprod. 32, 514–522. 10.1093/humrep/dew353 PubMed DOI
Spanò M., Evenson D. P. (1993). Flow cytometric analysis for reproductive biology. Biol. Cell. 78 (1–2), 53–62. 10.1016/0248-4900(93)90114-t PubMed DOI
Sugino Y., Ichioka K., Soda T., Ihara M., Kinoshita M., Ogawa O., et al. (2008). Septins as diagnostic markers for a subset of human asthenozoospermia. J. Urol. 180, 2706–2709. 10.1016/j.juro.2008.08.005 PubMed DOI
Thoma H., Grünewald L., Braune S., Pasch E., Alsheimer M. (2023). SUN4 is a spermatid type II inner nuclear membrane protein that forms heteromeric assemblies with SUN3 and interacts with lamin B3. J. Cell Sci. 136, jcs260155. 10.1242/jcs.260155 PubMed DOI PMC
Wang T., Gao H., Li W., Liu C. (2019). Essential role of histone replacement and modifications in male fertility. Front. Genet. 10, 962. 10.3389/fgene.2019.00962 PubMed DOI PMC
Ward W. S., Coffey D. S. (1991). DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol. Reprod. 44, 569–574. 10.1095/biolreprod44.4.569 PubMed DOI
Xiong Z., Zhang H., Huang B., Liu Q., Wang Y., Shi D., et al. (2018). Expression pattern of prohibitin, capping actin protein of muscle Z-line beta subunit and tektin-2 gene in Murrah buffalo sperm and its relationship with sperm motility. Asian-Australas J. Anim. Sci. 31, 1729–1737. 10.5713/ajas.18.0025 PubMed DOI PMC
Yeh C. H., Kuo P. L., Wang Y. Y., Wu Y. Y., Chen M. F., Lin D. Y., et al. (2015). SEPT12/SPAG4/LAMINB1 complexes are required for maintaining the integrity of the nuclear envelope in postmeiotic male germ cells. PLoS One 10, e0120722. 10.1371/journal.pone.0120722 PubMed DOI PMC
Yeh C. H., Wang Y. Y., Wee S. K., Chen M. F., Chiang H. S., Kuo P. L., et al. (2019). Testis-specific SEPT12 expression affects SUN protein localization and is involved in mammalian spermiogenesis. Int. J. Mol. Sci. 20, 1163. 10.3390/ijms20051163 PubMed DOI PMC
Zante J., Schumann J., Göhde W., Hacker U. (1977). DNA-fluorometry of mammalian sperm. Histochemistry 54, 1–7. 10.1007/BF00493324 PubMed DOI