The Role of the LINC Complex in Sperm Development and Function
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
STE 892/20-1
German Research Foundation
GA-20-20217J
Grant Agency of the Czech Republic
CZ.1.05/1.1.00/02.0109
BIOCEV - Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University
86652036
Institute of Biotechnology RVO
PubMed
33260574
PubMed Central
PMC7730847
DOI
10.3390/ijms21239058
PII: ijms21239058
Knihovny.cz E-resources
- Keywords
- KASH, LINC complex, SUN, chromatin, cytoskeleton, male fertility, male germ cells, nucleoskeleton, sperm pathologies, spermatogenesis,
- MeSH
- Models, Biological MeSH
- Cell Nucleus metabolism MeSH
- Humans MeSH
- Multiprotein Complexes metabolism MeSH
- Infertility, Male metabolism pathology MeSH
- Spermatozoa metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Multiprotein Complexes MeSH
The LINC (LInker of Nucleoskeleton and Cytoskeleton) complex is localized within the nuclear envelope and consists of SUN (Sad1/UNc84 homology domain-containing) proteins located in the inner nuclear membrane and KASH (Klarsicht/Anc1/Syne1 homology domain-containing) proteins located in the outer nuclear membrane, hence linking nuclear with cytoplasmic structures. While the nucleoplasm-facing side acts as a key player for correct pairing of homolog chromosomes and rapid chromosome movements during meiosis, the cytoplasm-facing side plays a pivotal role for sperm head development and proper acrosome formation during spermiogenesis. A further complex present in spermatozoa is involved in head-to-tail coupling. An intact LINC complex is crucial for the production of fertile sperm, as mutations in genes encoding for complex proteins are known to be associated with male subfertility in both mice and men. The present review provides a comprehensive overview on our current knowledge of LINC complex subtypes present in germ cells and its central role for male reproduction. Future studies on distinct LINC complex components are an absolute requirement to improve the diagnosis of idiopathic male factor infertility and the outcome of assisted reproduction.
Department of Zoology Faculty of Science Charles University Vinicna 7 128 44 Prague 2 Czech Republic
See more in PubMed
Ungricht R., Kutay U. Mechanisms and functions of nuclear envelope remodelling. Nat. Rev. Mol. Cell Biol. 2017;18:229–245. doi: 10.1038/nrm.2016.153. PubMed DOI
Lee Y.L., Burke B. LINC complexes and nuclear positioning. Semin. Cell Dev. Biol. 2018;82:67–76. doi: 10.1016/j.semcdb.2017.11.008. PubMed DOI
Pereira C.D., Serrano J.B., Martins F., da Cruz e Silva O.A.B., Rebelo S. Nuclear envelope dynamics during mammalian spermatogenesis: New insights on male fertility. Biol. Rev. 2019;94:1195–1219. doi: 10.1111/brv.12498. PubMed DOI
Ding X., Xu R., Yu J., Xu T., Zhuang Y., Han M. SUN1 Is Required for Telomere Attachment to Nuclear Envelope and Gametogenesis in Mice. Dev. Cell. 2007;12:863–872. doi: 10.1016/j.devcel.2007.03.018. PubMed DOI
Chi Y.H., Cheng L.I., Myers T., Ward J.M., Williams E., Su Q., Faucette L., Wang J.Y., Jeang K.T. Requirement for Sun1 in the expression of meiotic reproductive genes and piRNA. Development. 2009;136:965–973. doi: 10.1242/dev.029868. PubMed DOI PMC
Shibuya H., Hernández-Hernández A., Morimoto A., Negishi L., Höög C., Watanabe Y. MAJIN Links Telomeric DNA to the Nuclear Membrane by Exchanging Telomere Cap. Cell. 2015;163:1252–1266. doi: 10.1016/j.cell.2015.10.030. PubMed DOI
Link J., Leubner M., Schmitt J., Göb E., Benavente R., Jeang K.T., Xu R., Alsheimer M. Analysis of Meiosis in SUN1 Deficient Mice Reveals a Distinct Role of SUN2 in Mammalian Meiotic LINC Complex Formation and Function. PLoS Genet. 2014;10:e1004099. doi: 10.1371/journal.pgen.1004099. PubMed DOI PMC
Göb E., Schmitt J., Benavente R., Alsheimer M. Mammalian Sperm Head Formation Involves Different Polarization of Two Novel LINC Complexes. PLoS ONE. 2010;5:e12072. doi: 10.1371/journal.pone.0012072. PubMed DOI PMC
Schmitt J., Benavente R., Hodzic D., Höög C., Stewart C.L., Alsheimer M. Transmembrane protein Sun2 is involved in tethering mammalian meiotic telomeres to the nuclear envelope. Proc. Natl. Acad. Sci. USA. 2007;104:7426–7431. doi: 10.1073/pnas.0609198104. PubMed DOI PMC
Lei K., Zhang X., Ding X., Guo X., Chen M., Zhu B., Xu T., Zhuang Y., Xu R., Han M. SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells in mice. Proc. Natl. Acad. Sci. USA. 2009;106:10207–10212. doi: 10.1073/pnas.0812037106. PubMed DOI PMC
Calvi A., Wong A.S.W., Wright G., Wong E.S.M., Loo T.H., Stewart C.L., Burke B. SUN4 is essential for nuclear remodeling during mammalian spermiogenesis. Dev. Biol. 2015;407:321–330. doi: 10.1016/j.ydbio.2015.09.010. PubMed DOI
Gao Q., Khan R., Yu C., Alsheimer M., Jiang X., Ma H., Shi Q. The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis. J. Biol. Chem. 2020;295:6289–6298. doi: 10.1074/jbc.RA119.012375. PubMed DOI PMC
Pasch E., Link J., Beck C., Scheuerle S., Alsheimer M. The LINC complex component Sun4 plays a crucial role in sperm head formation and fertility. Biol. Open. 2015;4:1792–1802. doi: 10.1242/bio.015768. PubMed DOI PMC
Shao X., Tarnasky H.A., Lee J.P., Oko R., van der Hoorn F.A. Spag4, a Novel Sperm Protein, Binds Outer Dense-Fiber Protein Odf1 and Localizes to Microtubules of Manchette and Axoneme. Dev. Biol. 1999;211:109–123. doi: 10.1006/dbio.1999.9297. PubMed DOI
Yeh C.H., Kuo P.L., Wang Y.Y., Wu Y.Y., Chen M.F., Lin D.Y., Lai T.H., Chiang H.S., Lin Y.H. SEPT12/SPAG4/LAMINB1 complexes are required for maintaining the integrity of the nuclear envelope in postmeiotic male germ cells. PLoS ONE. 2015;10:e120722. doi: 10.1371/journal.pone.0120722. PubMed DOI PMC
Yang K., Adham I.M., Meinhardt A., Hoyer-Fender S. Ultra-structure of the sperm head-to-tail linkage complex in the absence of the spermatid-specific LINC component SPAG4. Histochem. Cell Biol. 2018;150:49–59. doi: 10.1007/s00418-018-1668-7. PubMed DOI
Jiang X.-Z., Yang M.-G., Huang L.-H., Li C.-Q., Xing X.-W. SPAG4L, a Novel Nuclear Envelope Protein Involved in the Meiotic Stage of Spermatogenesis. DNA Cell Biol. 2011;30:875–882. doi: 10.1089/dna.2010.1161. PubMed DOI
Yassine S., Escoffier J., Nahed R.A., Pierre V., Karaouzene T., Ray P.F., Arnoult C. Dynamics of Sun5 localization during spermatogenesis in wild type and Dpy19l2 knock-out mice indicates that Sun5 is not involved in acrosome attachment to the nuclear envelope. PLoS ONE. 2015;10:e118698. doi: 10.1371/journal.pone.0118698. PubMed DOI PMC
Shang Y., Zhu F., Wang L., Ouyang Y.-C., Dong M.-Z., Liu C., Zhao H., Cui X., Ma D., Zhang Z., et al. Essential role for SUN5 in anchoring sperm head to the tail. eLife. 2017;6:e28199. doi: 10.7554/eLife.28199. PubMed DOI PMC
Zhang J., Felder A., Liu Y., Guo L.T., Lange S., Dalton N.D., Gu Y., Peterson K.L., Mizisin A.P., Shelton G.D., et al. Nesprin 1 is critical for nuclear positioning and anchorage. Hum. Mol. Genet. 2010;19:329–341. doi: 10.1093/hmg/ddp499. PubMed DOI PMC
Ketema M., Kreft M., Secades P., Janssen H., Sonnenberg A. Nesprin-3 connects plectin and vimentin to the nuclear envelope of Sertoli cells but is not required for Sertoli cell function in spermatogenesis. Mol. Biol. Cell. 2013;24:2454–2466. doi: 10.1091/mbc.e13-02-0100. PubMed DOI PMC
Horn H.F., Kim D.I., Wright G.D., Wong E.S.M., Stewart C.L., Burke B., Roux K.J. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. J. Cell Biol. 2013;202:1023–1039. doi: 10.1083/jcb.201304004. PubMed DOI PMC
Morimoto A., Shibuya H., Zhu X., Kim J., Ishiguro K., Han M., Watanabe Y. A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. J. Cell Biol. 2012;198:165–172. doi: 10.1083/jcb.201204085. PubMed DOI PMC
Crisp M., Liu Q., Roux K., Rattner J.B., Shanahan C., Burke B., Stahl P.D., Hodzic D. Coupling of the nucleus and cytoplasm: Role of the LINC complex. J. Cell Biol. 2006;172:41–53. doi: 10.1083/jcb.200509124. PubMed DOI PMC
Hao H., Starr D.A. SUN/KASH interactions facilitate force transmission across the nuclear envelope. Nucleus. 2019;10:73–80. doi: 10.1080/19491034.2019.1595313. PubMed DOI PMC
Haque F., Lloyd D.J., Smallwood D.T., Dent C.L., Shanahan C.M., Fry A.M., Trembath R.C., Shackleton S. SUN1 Interacts with Nuclear Lamin A and Cytoplasmic Nesprins To Provide a Physical Connection between the Nuclear Lamina and the Cytoskeleton. Mol. Cell. Biol. 2006;26:3738–3751. doi: 10.1128/MCB.26.10.3738-3751.2006. PubMed DOI PMC
Starr D.A., Fridolfsson H.N. Interactions Between Nuclei and the Cytoskeleton Are Mediated by SUN-KASH Nuclear-Envelope Bridges. Annu. Rev. Cell Dev. Biol. 2010;26:421–444. doi: 10.1146/annurev-cellbio-100109-104037. PubMed DOI PMC
Wang W., Shi Z., Jiao S., Chen C., Wang H., Liu G., Wang Q., Zhao Y., Greene M.I., Zhou Z. Structural insights into SUN-KASH complexes across the nuclear envelope. Cell Res. 2012;22:1440–1452. doi: 10.1038/cr.2012.126. PubMed DOI PMC
Zhou Z., Du X., Cai Z., Song X., Zhang H., Mizuno T., Suzuki E., Yee M.R., Berezov A., Murali R., et al. Structure of Sad1-UNC84 homology (SUN) domain defines features of molecular bridge in nuclear envelope. J. Biol. Chem. 2012;287:5317–5326. doi: 10.1074/jbc.M111.304543. PubMed DOI PMC
Nie S., Ke H., Gao F., Ren J., Wang M., Huo L., Gong W., Feng W. Coiled-Coil Domains of SUN Proteins as Intrinsic Dynamic Regulators. Structure. 2016;24:80–91. doi: 10.1016/j.str.2015.10.024. PubMed DOI
Sosa B.A., Rothballer A., Kutay U., Schwartz T.U. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell. 2012;149:1035–1047. doi: 10.1016/j.cell.2012.03.046. PubMed DOI PMC
Hodzic D.M., Yeater D.B., Bengtsson L., Otto H., Stahl P.D. Sun2 is a novel mammalian inner nuclear membrane protein. J. Biol. Chem. 2004;279:25805–25812. doi: 10.1074/jbc.M313157200. PubMed DOI
Kim D.I., Kc B., Roux K.J. Making the LINC: SUN and KASH protein interactions. Biol. Chem. 2015;396:295–310. doi: 10.1515/hsz-2014-0267. PubMed DOI PMC
Yang K., Meinhardt A., Zhang B., Grzmil P., Adham I.M., Hoyer-Fender S. The Small Heat Shock Protein ODF1/HSPB10 Is Essential for Tight Linkage of Sperm Head to Tail and Male Fertility in Mice. Mol. Cell. Biol. 2012;32:216–225. doi: 10.1128/MCB.06158-11. PubMed DOI PMC
Padmakumar V.C., Libotte T., Lu W., Zaim H., Abraham S., Noegel A.A., Gotzmann J., Foisner R., Karakesisoglou I. The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J. Cell Sci. 2005;118:3419–3430. doi: 10.1242/jcs.02471. PubMed DOI
Lee C.-Y., Horn H.F., Stewart C.L., Burke B., Bolcun-Filas E., Schimenti J.C., Dresser M.E., Pezza R.J. Mechanism and Regulation of Rapid Telomere Prophase Movements in Mouse Meiotic Chromosomes. Cell Rep. 2015;11:551–563. doi: 10.1016/j.celrep.2015.03.045. PubMed DOI PMC
Haque F., Mazzeo D., Patel J.T., Smallwood D.T., Ellis J.A., Shanahan C.M., Shackleton S. Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J. Biol. Chem. 2010;285:3487–3498. doi: 10.1074/jbc.M109.071910. PubMed DOI PMC
Liu Q., Pante N., Misteli T., Elsagga M., Crisp M., Hodzic D., Burke B., Roux K.J. Functional association of Sun1 with nuclear pore complexes. J. Cell Biol. 2007;178:785–798. doi: 10.1083/jcb.200704108. PubMed DOI PMC
Frohnert C., Schweizer S., Hoyer-Fender S. SPAG4L/SPAG4L-2 are testis-specific SUN domain proteins restricted to the apical nuclear envelope of round spermatids facing the acrosome. Mol. Hum. Reprod. 2011;17:207–218. doi: 10.1093/molehr/gaq099. PubMed DOI
Starr D.A., Han M. Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science. 2002;298:406–409. doi: 10.1126/science.1075119. PubMed DOI
Gurusaran M., Davies O.R. LINC complex branching through structurally diverse SUN-KASH 6:6 assemblies. bioRxiv. 2020 doi: 10.1101/2020.03.21.001867. PubMed DOI PMC
Zhang Q., Skepper J.N., Yang F., Davies J.D., Hegyi L., Roberts R.G., Weissberg P.L., Ellis J.A., Shanahan C.M. Nesprins: A novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J. Cell Sci. 2001;114:4485–4498. PubMed
Taranum S., Sur I., Müller R., Lu W., Rashmi R.N., Munck M., Neumann S., Karakesisoglou I., Noegel A.A. Cytoskeletal Interactions at the Nuclear Envelope Mediated by Nesprins. Int. J. Cell Biol. 2012;2012:1–11. doi: 10.1155/2012/736524. PubMed DOI PMC
Horn H.F., Brownstein Z., Lenz D.R., Shivatzki S., Dror A.A., Dagan-Rosenfeld O., Friedman L.M., Roux K.J., Kozlov S., Jeang K.-T., et al. The LINC complex is essential for hearing. J. Clin. Investig. 2013;123:740–750. doi: 10.1172/JCI66911. PubMed DOI PMC
Shibuya H., Ishiguro K., Watanabe Y. The TRF1-binding protein TERB1 promotes chromosome movement and telomere rigidity in meiosis. Nat. Cell Biol. 2014;16:145–156. doi: 10.1038/ncb2896. PubMed DOI
Zhang J., Tu Z., Watanabe Y., Shibuya H. Distinct TERB1 Domains Regulate Different Protein Interactions in Meiotic Telomere Movement. Cell Rep. 2017;21:1715–1726. doi: 10.1016/j.celrep.2017.10.061. PubMed DOI
Wang Y., Chen Y., Chen J., Wang L., Nie L., Long J., Chang H., Wu J., Huang C., Lei M. The meiotic TERB1-TERB2-MAJIN complex tethers telomeres to the nuclear envelope. Nat. Commun. 2019;10:1–19. doi: 10.1038/s41467-019-08437-1. PubMed DOI PMC
Schroer T.A. Dynactin. Annu. Rev. Cell Dev. Biol. 2004;20:759–779. doi: 10.1146/annurev.cellbio.20.012103.094623. PubMed DOI
Spindler M.-C., Redolfi J., Helmprobst F., Kollmannsberger P., Stigloher C., Benavente R. Electron tomography of mouse LINC complexes at meiotic telomere attachment sites with and without microtubules. Commun. Biol. 2019;2:376. doi: 10.1038/s42003-019-0621-1. PubMed DOI PMC
Stewart C.L., Burke B. The missing LINC: A mammalian KASH-domain protein coupling meiotic chromosomes to the cytoskeleton. Nucleus. 2014;5:3–10. doi: 10.4161/nucl.27819. PubMed DOI PMC
Kierszenbaum A.L., Rivkin E., Tres L.L. Acroplaxome, an F-Actin–Keratin-containing Plate, Anchors the Acrosome to the Nucleus during Shaping of the Spermatid Head. Mol. Biol. Cell. 2003;14:4628–4640. doi: 10.1091/mbc.e03-04-0226. PubMed DOI PMC
Ketema M., Wilhelmsen K., Kuikman I., Janssen H., Hodzic D., Sonnenberg A. Requirements for the localization of nesprin-3 at the nuclear envelope and its interaction with plectin. J. Cell Sci. 2007;120:3384–3394. doi: 10.1242/jcs.014191. PubMed DOI
Wilhelmsen K., Litjens S.H.M., Kuikman I., Tshimbalanga N., Janssen H., Van Bout I.D., Raymond K., Sonnenberg A. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J. Cell Biol. 2005;171:799–810. doi: 10.1083/jcb.200506083. PubMed DOI PMC
Rattner J.B., Brinkley B.R. Ultrastructure of mammalian spermiogenesis. J. Ultrastruct. Res. 1972;41:209–218. doi: 10.1016/S0022-5320(72)90065-2. PubMed DOI
Russell L.D., Russell J.A., MacGregor G.R., Meistrich M.L. Linkage of manchette microtubules to the nuclear envelope and observations of the role of the manchette in nuclear shaping during spermiogenesis in rodents. Am. J. Anat. 1991;192:97–120. doi: 10.1002/aja.1001920202. PubMed DOI
Kierszenbaum A.L. Intramanchette transport (IMT): Managing the making of the spermatid head, centrosome, and tail. Mol. Reprod. Dev. 2002;63:1–4. doi: 10.1002/mrd.10179. PubMed DOI
Zhang X., Lei K., Yuan X., Wu X., Zhuang Y., Xu T., Xu R., Han M. SUN1/2 and Syne/Nesprin-1/2 Complexes Connect Centrosome to the Nucleus during Neurogenesis and Neuronal Migration in Mice. Neuron. 2009;64:173–187. doi: 10.1016/j.neuron.2009.08.018. PubMed DOI PMC
Fan J. A role for the spectrin superfamily member Syne-1 and kinesin II in cytokinesis. J. Cell Sci. 2004;117:619–629. doi: 10.1242/jcs.00892. PubMed DOI
Lin Y.H., Lin Y.M., Wang Y.Y., Yu I.S., Lin Y.W., Wang Y.H., Wu C.M., Pan H.A., Chao S.C., Yen P.H., et al. The expression level of septin12 is critical for spermiogenesis. Am. J. Pathol. 2009;174:1857–1868. doi: 10.2353/ajpath.2009.080955. PubMed DOI PMC
Lin Y.H., Lin Y.M., Teng Y.N., Hsieh T.Y.T., Lin Y.S., Kuo P.L. Identification of ten novel genes involved in human spermatogenesis by microarray analysis of testicular tissue. Fertil. Steril. 2006;86:1650–1658. doi: 10.1016/j.fertnstert.2006.04.039. PubMed DOI
Elkhatib R., Longepied G., Paci M., Achard V., Grillo J.-M., Levy N., Mitchell M.J., Metzler-Guillemain C. Nuclear envelope remodelling during human spermiogenesis involves somatic B-type lamins and a spermatid-specific B3 lamin isoform. MHR Basic Sci. Reprod. Med. 2015;21:225–236. doi: 10.1093/molehr/gau111. PubMed DOI
Fawcett D.W., Phillips D.M. The fine structure and development of the neck region of the mammalian spermatozoon. Anat. Rec. 1969;165:153–183. doi: 10.1002/ar.1091650204. PubMed DOI
Shang Y., Yan J., Tang W., Liu C., Xiao S., Guo Y., Yuan L., Chen L., Jiang H., Guo X., et al. Mechanistic insights into acephalic spermatozoa syndrome–associated mutations in the human SUN5 gene. J. Biol. Chem. 2018;293:2395–2407. doi: 10.1074/jbc.RA117.000861. PubMed DOI PMC
Pierre V., Martinez G., Coutton C., Delaroche J., Yassine S., Novella C., Pernet-Gallay K., Hennebicq S., Ray P.F., Arnoult C. Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus. Development. 2012;139:2955–2965. doi: 10.1242/dev.077982. PubMed DOI
Méjat A., Misteli T. LINC complexes in health and disease. Nucleus. 2010;1:40–52. doi: 10.4161/nucl.1.1.10530. PubMed DOI PMC
Inhorn M.C., Patrizio P. Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century. Hum. Reprod. Update. 2015;21:411–426. doi: 10.1093/humupd/dmv016. PubMed DOI
Zhu F., Wang F., Yang X., Zhang J., Wu H., Zhang Z., Zhang Z., He X., Zhou P., Wei Z., et al. Biallelic SUN5 Mutations Cause Autosomal-Recessive Acephalic Spermatozoa Syndrome. Am. J. Hum. Genet. 2016;99:942–949. doi: 10.1016/j.ajhg.2016.08.004. PubMed DOI PMC
Fang J., Zhang J., Zhu F., Yang X., Cui Y., Liu J. Patients with acephalic spermatozoa syndrome linked to SUN5 mutations have a favorable pregnancy outcome from ICSI. Hum. Reprod. 2018;33:372–377. doi: 10.1093/humrep/dex382. PubMed DOI
Protamine 2 deficiency results in Septin 12 abnormalities