Improving precision of vaccine efficacy evaluation using immune correlate data in time-to-event models
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39528514
PubMed Central
PMC11554669
DOI
10.1038/s41541-024-00937-6
PII: 10.1038/s41541-024-00937-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Understanding potential differences in vaccine-induced protection between demographic subgroups is key for vaccine development. Vaccine efficacy evaluation across these subgroups in phase 2b or 3 clinical trials presents challenges due to lack of precision: such trials are typically designed to demonstrate overall efficacy rather than to differentiate its value between subgroups. This study proposes a method for estimating vaccine efficacy using immunogenicity (instead of vaccination status) as a predictor in time-to-event models. The method is applied to two datasets from immunogenicity sub-studies of vaccine phase 3 clinical trials for zoster and dengue vaccines. Results show that using immunogenicity-based estimation of efficacy in subgroups using time-to-event models is more precise than the standard estimation. Incorporating immune correlate data in time-to-event models improves precision in estimating efficacy (i.e., yields narrower confidence intervals), which can assist vaccine developers and public health authorities in making informed decisions.
1st Faculty of Medicine Charles University Prague Czechia
Institute of Computer Science of the Czech Academy of Sciences Prague Czechia
Quantitative Pharmacology and Pharmacometrics Merck and Co Inc Rahway NJ USA
Quantitative Pharmacology and Pharmacometrics MSD Prague Czechia
Zobrazit více v PubMed
Halloran, M. E., Longini Jr., I. M. & Struchiner, C. J. Design and Analysis of Vaccine Studies 1–18 (Springer, 2010).
Pocock, S. J., Assmann, S. E., Enos, L. E. & Kasten, L. E. Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems. Stat. Med.21, 2917–2930 (2002). PubMed
Colantuoni, E. & Rosenblum, M. Leveraging prognostic baseline variables to gain precision in randomized trials. Stat. Med.34, 2602–2617 (2015). PubMed PMC
Benkeser, D. et al. Improving precision and power in randomized trials for COVID-19 treatments using covariate adjustment, for binary, ordinal, and time-to-event outcomes. Biometrics77, 1467–1481 (2021). PubMed PMC
U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Guidance for industry: Adjusting for covariates in randomized clinical trials for drugs and biological products. (2023).
Halloran, M. E., Haber, M. & Longini, I. M. Jr. Interpretation and estimation of vaccine efficacy under heterogeneity. Am. J. Epidemiol.136, 328–343 (1992). PubMed
Plotkin, S. A. & Gilbert, P. B. Correlates of protection. Plotkin’s Vaccines 7th edn, 35–40 (Elsevier, 2017).
Dudasova, J. et al. A method to estimate probability of disease and vaccine efficacy from clinical trial immunogenicity data. NPJ Vaccines6, 133 (2021). PubMed PMC
Dudasova, J., Valenta, Z. & Sachs, J. R. Elucidating vaccine efficacy using a correlate of protection, demographics, and logistic regression. BMC Med. Res. Methodol.24, 101 (2024). PubMed PMC
Dunning, A. J. A model for immunological correlates of protection. Stat. Med.25, 1485–1497 (2006). PubMed
Coudeville, L., Andre, P., Bailleux, F., Weber, F. & Plotkin, S. A new approach to estimate vaccine efficacy based on immunogenicity data applied to influenza vaccines administered by the intradermal or intramuscular routes. Hum. Vaccine6, 841–848 (2010). PubMed PMC
Dunning, A. J., Kensler, J., Coudeville, L. & Bailleux, F. Some extensions in continuous models for immunological correlates of protection. BMC Med. Res. Methodol.15, 107 (2015). PubMed PMC
Callegaro, A. & Tibaldi, F. Assessing correlates of protection in vaccine trials: statistical solutions in the context of high vaccine efficacy. BMC Med. Res. Methodol.19, 47 (2019). PubMed PMC
Callegaro, A., Zahaf, T. & Tibaldi, F. Assurance in vaccine efficacy clinical trial design based on immunological responses. Biom. J.63, 1347–1547 (2021). PubMed PMC
Coudeville, L. et al. Relationship between haemagglutinationinhibiting antibody titres and clinical protection against influenza: development and application of a Bayesian random-effects model. BMC Med. Res. Methodol.10, 18 (2010). PubMed PMC
Black, S. et al. Hemagglutination inhibition antibody titers as a correlate of protection for inactivated influenza vaccines in children. Pediatr. Infect. Dis. J.30, 1081–1085 (2011). PubMed
Jin, P. et al. Validation and evaluation of serological correlates of protection for inactivated enterovirus 71 vaccine in children aged 6–35 months. Hum. Vaccine Imunother.12, 916–921 (2016). PubMed PMC
Zhu, W., Jin, P., Li, J.-X., Zhu, F.-C. & Liu, P. Correlates of protection for inactivated enterovirus 71 vaccine: the analysis of immunological surrogate endpoints. Expert Rev. Vaccines16, 945–949 (2017). PubMed
Habib, M. A. et al. Correlation of protection against varicella in a randomized Phase III varicella-containing vaccine efficacy trial in healthy infants. Vaccine39, 3445–3454 (2021). PubMed
Dudasova, J. vaxpmx, R package, https://cran.r-project.org/web/packages/vaxpmx/index.html (2024).
Oxman, M. N. et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N. Engl. J. Med.352, 2271–2284 (2005). PubMed
Sridhar, S. et al. Effect of dengue serostatus on dengue vaccine safety and efficacy. N. Engl. J. Med.379, 327–340 (2018). PubMed
Thomas, S. J. & Yoon, I.-K. A review of Dengvaxia®: development to deployment. Hum. Vaccines Immunother.15, 2295–2314 (2019). PubMed PMC
Prentice, R. L. Surrogate endpoints in clinical trials: definition and operational criteria. Stat. Med.8, 431–440 (1989). PubMed
Levin, M. J. et al. Varicella-zoster virus-specific immune responses in elderly recipients of a herpes zoster vaccine. J. Infect. Dis.197, 825–835 (2008). PubMed PMC
Gilbert, P. B. et al. Fold rise in antibody titers by measured by glycoprotein-based enzyme-linked immunosorbent assay is an excellent correlate of protection for a herpes zoster vaccine, demonstrated via the vaccine efficacy curve. J. Infect. Dis.210, 1573–1581 (2014). PubMed PMC
Schwarz, G. Estimating the dimension of a model. Ann. Stat.6, 461–464 (1978).
Schoenfeld, D. Partial residuals for the proportional hazards regression model. Biometrika69, 239–241 (1982).
Salje, H. et al. Evaluation of the extended efficacy of the Dengvaxia vaccine against symptomatic and subclinical dengue infection. Nat. Med.27, 1395–1400 (2021). PubMed PMC
Capeding, M. R. et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet384, 1358–1365 (2014). PubMed
Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model. (Springer-Verlag, 2000).
Austin, P. C., Lee, D. S. & Fine, J. P. Introduction to the analysis of survival data in the presence of competing risks. Circulation133, 601–609 (2016). PubMed PMC
Fine, J. P. & Gray, R. J. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc.94, 496–509 (1999).
Buddhari, D. et al. Dengue virus neutralizing antibody levels associated with protection from infection in Thai cluster studies. PLoS Negl. Trop. Dis.8, e3230 (2014). PubMed PMC
Henein, S. et al. Dengue vaccine breakthrough infections reveal properties of neutralizing antibodies linked to Protection. J. Clin. Invest.131, e147066 (2021). PubMed PMC
Plotkin, S. A. Recent updates on correlates of vaccine-induced protection. Front. Immunol.13, 1081107 (2023). PubMed PMC
James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning 101–114 (Springer, 2017).
Qi, L. et al. Neutralizing antibody correlates of sequence specific dengue disease in a tetravalent dengue vaccine efficacy trial in Asia. Vaccine40, 5912–5923 (2022). PubMed PMC
Villar, L. et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med.372, 113–123 (2015). PubMed
Sabchareon, A. et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet380, 1559–1567 (2012). PubMed
Frangakis, C. E. & Rubin, D. B. Principal stratification in causal inference. Biometrics58, 21–29 (2002). PubMed PMC
Follmann, D. Augmented designs to assess immune response in vaccine trials. Biometrics62, 1161–1170 (2006). PubMed PMC
Hejazi, N. S., van der Laan, M. J., Janes, H. E., Gilbert, P. B. & Benkeser, D. C. Efficient nonparametric inference on the effects of stochastic interventions under two-phase sampling, with applications to vaccine efficacy trials. Biometrics77, 1241–1253 (2021). PubMed PMC
Khoury, D. S. et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med.27, 1205–1211 (2021). PubMed
Maas, B. M. et al. Forward and reverse translational approaches to predict efficacy of neutralizing respiratory syncytial virus (RSV) antibody prophylaxis. EBioMedicine73, 103651 (2021). PubMed PMC
Gilbert, P. B. et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science375, 43–50 (2022). PubMed PMC
Kandala, B. et al. Accelerating model-informed decisions for COVID-19 vaccine candidates using a model-based meta-analysis approach. EBioMedicine84, 104264 (2022). PubMed PMC
Ryman, J. et al. Predicting vaccine effectiveness against invasive pneumococcal disease in children using immunogenicity data. NPJ Vaccines7, 140 (2022). PubMed PMC
Khoury, D. S. et al. Predicting the efficacy of variant-modified COVID-19 vaccine boosters. Nat. Med.29, 574–578 (2023). PubMed
Berry, M. T. et al. Predicting vaccine effectiveness for mpox. Nat. Commun.15, 3856 (2024). PubMed PMC
Stoddard, M. et al. Heterogeneity in vaccinal immunity to SARS-CoV-2 can be addressed by a personalized booster strategy. Vaccines11, 806 (2023). PubMed PMC
Aalen, O. Nonparametric inference for a family of counting processes. Ann. Stat.6, 701–726 (1978).
Gray, R. J. Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis. J. Am. Stat. Assoc.87, 942–951 (1992).
Scheike, T. H. & Zhang, M.-J. An additive-multiplicative Cox-Aalen regression model. Scand. J. Stat.29, 75–88 (2002).
Russell, P. K., Nisalak, A., Sukhavachana, P. & Vivona, S. A plaque reduction test for dengue virus neutralizing antibodies. J. Immunol.99, 285–290 (1967). PubMed
Thomas, S. J. et al. Dengue plaque reduction neutralization test (PRNT) in primary and secondary dengue virus infections: how alterations in assay conditions impact performance. Am. J. Trop. Med. Hyg.81, 825–833 (2009). PubMed PMC
Qin, L., Gilbert, P. B., Corey, L., McElrath, M. J. & Self, S. G. A framework for assessing immunological correlates of protection in vaccine trials. J. Infect. Dis.196, 1304–1312 (2007). PubMed
Cox, D. R. Regression models and life-tables (with discussion). J. R. Stat. Soc. Ser. B34, 187–220 (1972).
Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control19, 716–723 (1974).
Gilbert, P. B., Qin, L. & Self, S. G. Response to Andrew Dunning’s comment on ‘Evaluating a surrogate endpoint at three levels, with application to vaccine development’. Stat. Med.28, 716–719 (2009). PubMed PMC
Xu, X. S. et al. Full covariate modelling approach in population pharmacokinetics: understanding the underlying hypothesis tests and implications of multiplicity. Br. J. Clin. Pharmacol.84, 1525–1534 (2018). PubMed PMC
Tartof, S. Y. et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet398, 1407–1416 (2021). PubMed PMC
Satagopan, J. M. et al. A note on competing risks in survival data analysis. Br. J. Cancer91, 1229–1235 (2004). PubMed PMC