Improving precision of vaccine efficacy evaluation using immune correlate data in time-to-event models

. 2024 Nov 11 ; 9 (1) : 214. [epub] 20241111

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39528514
Odkazy

PubMed 39528514
PubMed Central PMC11554669
DOI 10.1038/s41541-024-00937-6
PII: 10.1038/s41541-024-00937-6
Knihovny.cz E-zdroje

Understanding potential differences in vaccine-induced protection between demographic subgroups is key for vaccine development. Vaccine efficacy evaluation across these subgroups in phase 2b or 3 clinical trials presents challenges due to lack of precision: such trials are typically designed to demonstrate overall efficacy rather than to differentiate its value between subgroups. This study proposes a method for estimating vaccine efficacy using immunogenicity (instead of vaccination status) as a predictor in time-to-event models. The method is applied to two datasets from immunogenicity sub-studies of vaccine phase 3 clinical trials for zoster and dengue vaccines. Results show that using immunogenicity-based estimation of efficacy in subgroups using time-to-event models is more precise than the standard estimation. Incorporating immune correlate data in time-to-event models improves precision in estimating efficacy (i.e., yields narrower confidence intervals), which can assist vaccine developers and public health authorities in making informed decisions.

Zobrazit více v PubMed

Halloran, M. E., Longini Jr., I. M. & Struchiner, C. J. Design and Analysis of Vaccine Studies 1–18 (Springer, 2010).

Pocock, S. J., Assmann, S. E., Enos, L. E. & Kasten, L. E. Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems. Stat. Med.21, 2917–2930 (2002). PubMed

Colantuoni, E. & Rosenblum, M. Leveraging prognostic baseline variables to gain precision in randomized trials. Stat. Med.34, 2602–2617 (2015). PubMed PMC

Benkeser, D. et al. Improving precision and power in randomized trials for COVID-19 treatments using covariate adjustment, for binary, ordinal, and time-to-event outcomes. Biometrics77, 1467–1481 (2021). PubMed PMC

U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Guidance for industry: Adjusting for covariates in randomized clinical trials for drugs and biological products. (2023).

Halloran, M. E., Haber, M. & Longini, I. M. Jr. Interpretation and estimation of vaccine efficacy under heterogeneity. Am. J. Epidemiol.136, 328–343 (1992). PubMed

Plotkin, S. A. & Gilbert, P. B. Correlates of protection. Plotkin’s Vaccines 7th edn, 35–40 (Elsevier, 2017).

Dudasova, J. et al. A method to estimate probability of disease and vaccine efficacy from clinical trial immunogenicity data. NPJ Vaccines6, 133 (2021). PubMed PMC

Dudasova, J., Valenta, Z. & Sachs, J. R. Elucidating vaccine efficacy using a correlate of protection, demographics, and logistic regression. BMC Med. Res. Methodol.24, 101 (2024). PubMed PMC

Dunning, A. J. A model for immunological correlates of protection. Stat. Med.25, 1485–1497 (2006). PubMed

Coudeville, L., Andre, P., Bailleux, F., Weber, F. & Plotkin, S. A new approach to estimate vaccine efficacy based on immunogenicity data applied to influenza vaccines administered by the intradermal or intramuscular routes. Hum. Vaccine6, 841–848 (2010). PubMed PMC

Dunning, A. J., Kensler, J., Coudeville, L. & Bailleux, F. Some extensions in continuous models for immunological correlates of protection. BMC Med. Res. Methodol.15, 107 (2015). PubMed PMC

Callegaro, A. & Tibaldi, F. Assessing correlates of protection in vaccine trials: statistical solutions in the context of high vaccine efficacy. BMC Med. Res. Methodol.19, 47 (2019). PubMed PMC

Callegaro, A., Zahaf, T. & Tibaldi, F. Assurance in vaccine efficacy clinical trial design based on immunological responses. Biom. J.63, 1347–1547 (2021). PubMed PMC

Coudeville, L. et al. Relationship between haemagglutinationinhibiting antibody titres and clinical protection against influenza: development and application of a Bayesian random-effects model. BMC Med. Res. Methodol.10, 18 (2010). PubMed PMC

Black, S. et al. Hemagglutination inhibition antibody titers as a correlate of protection for inactivated influenza vaccines in children. Pediatr. Infect. Dis. J.30, 1081–1085 (2011). PubMed

Jin, P. et al. Validation and evaluation of serological correlates of protection for inactivated enterovirus 71 vaccine in children aged 6–35 months. Hum. Vaccine Imunother.12, 916–921 (2016). PubMed PMC

Zhu, W., Jin, P., Li, J.-X., Zhu, F.-C. & Liu, P. Correlates of protection for inactivated enterovirus 71 vaccine: the analysis of immunological surrogate endpoints. Expert Rev. Vaccines16, 945–949 (2017). PubMed

Habib, M. A. et al. Correlation of protection against varicella in a randomized Phase III varicella-containing vaccine efficacy trial in healthy infants. Vaccine39, 3445–3454 (2021). PubMed

Dudasova, J. vaxpmx, R package, https://cran.r-project.org/web/packages/vaxpmx/index.html (2024).

Oxman, M. N. et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N. Engl. J. Med.352, 2271–2284 (2005). PubMed

Sridhar, S. et al. Effect of dengue serostatus on dengue vaccine safety and efficacy. N. Engl. J. Med.379, 327–340 (2018). PubMed

Thomas, S. J. & Yoon, I.-K. A review of Dengvaxia®: development to deployment. Hum. Vaccines Immunother.15, 2295–2314 (2019). PubMed PMC

Prentice, R. L. Surrogate endpoints in clinical trials: definition and operational criteria. Stat. Med.8, 431–440 (1989). PubMed

Levin, M. J. et al. Varicella-zoster virus-specific immune responses in elderly recipients of a herpes zoster vaccine. J. Infect. Dis.197, 825–835 (2008). PubMed PMC

Gilbert, P. B. et al. Fold rise in antibody titers by measured by glycoprotein-based enzyme-linked immunosorbent assay is an excellent correlate of protection for a herpes zoster vaccine, demonstrated via the vaccine efficacy curve. J. Infect. Dis.210, 1573–1581 (2014). PubMed PMC

Schwarz, G. Estimating the dimension of a model. Ann. Stat.6, 461–464 (1978).

Schoenfeld, D. Partial residuals for the proportional hazards regression model. Biometrika69, 239–241 (1982).

Salje, H. et al. Evaluation of the extended efficacy of the Dengvaxia vaccine against symptomatic and subclinical dengue infection. Nat. Med.27, 1395–1400 (2021). PubMed PMC

Capeding, M. R. et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet384, 1358–1365 (2014). PubMed

Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model. (Springer-Verlag, 2000).

Austin, P. C., Lee, D. S. & Fine, J. P. Introduction to the analysis of survival data in the presence of competing risks. Circulation133, 601–609 (2016). PubMed PMC

Fine, J. P. & Gray, R. J. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc.94, 496–509 (1999).

Buddhari, D. et al. Dengue virus neutralizing antibody levels associated with protection from infection in Thai cluster studies. PLoS Negl. Trop. Dis.8, e3230 (2014). PubMed PMC

Henein, S. et al. Dengue vaccine breakthrough infections reveal properties of neutralizing antibodies linked to Protection. J. Clin. Invest.131, e147066 (2021). PubMed PMC

Plotkin, S. A. Recent updates on correlates of vaccine-induced protection. Front. Immunol.13, 1081107 (2023). PubMed PMC

James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning 101–114 (Springer, 2017).

Qi, L. et al. Neutralizing antibody correlates of sequence specific dengue disease in a tetravalent dengue vaccine efficacy trial in Asia. Vaccine40, 5912–5923 (2022). PubMed PMC

Villar, L. et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med.372, 113–123 (2015). PubMed

Sabchareon, A. et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet380, 1559–1567 (2012). PubMed

Frangakis, C. E. & Rubin, D. B. Principal stratification in causal inference. Biometrics58, 21–29 (2002). PubMed PMC

Follmann, D. Augmented designs to assess immune response in vaccine trials. Biometrics62, 1161–1170 (2006). PubMed PMC

Hejazi, N. S., van der Laan, M. J., Janes, H. E., Gilbert, P. B. & Benkeser, D. C. Efficient nonparametric inference on the effects of stochastic interventions under two-phase sampling, with applications to vaccine efficacy trials. Biometrics77, 1241–1253 (2021). PubMed PMC

Khoury, D. S. et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med.27, 1205–1211 (2021). PubMed

Maas, B. M. et al. Forward and reverse translational approaches to predict efficacy of neutralizing respiratory syncytial virus (RSV) antibody prophylaxis. EBioMedicine73, 103651 (2021). PubMed PMC

Gilbert, P. B. et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science375, 43–50 (2022). PubMed PMC

Kandala, B. et al. Accelerating model-informed decisions for COVID-19 vaccine candidates using a model-based meta-analysis approach. EBioMedicine84, 104264 (2022). PubMed PMC

Ryman, J. et al. Predicting vaccine effectiveness against invasive pneumococcal disease in children using immunogenicity data. NPJ Vaccines7, 140 (2022). PubMed PMC

Khoury, D. S. et al. Predicting the efficacy of variant-modified COVID-19 vaccine boosters. Nat. Med.29, 574–578 (2023). PubMed

Berry, M. T. et al. Predicting vaccine effectiveness for mpox. Nat. Commun.15, 3856 (2024). PubMed PMC

Stoddard, M. et al. Heterogeneity in vaccinal immunity to SARS-CoV-2 can be addressed by a personalized booster strategy. Vaccines11, 806 (2023). PubMed PMC

Aalen, O. Nonparametric inference for a family of counting processes. Ann. Stat.6, 701–726 (1978).

Gray, R. J. Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis. J. Am. Stat. Assoc.87, 942–951 (1992).

Scheike, T. H. & Zhang, M.-J. An additive-multiplicative Cox-Aalen regression model. Scand. J. Stat.29, 75–88 (2002).

Russell, P. K., Nisalak, A., Sukhavachana, P. & Vivona, S. A plaque reduction test for dengue virus neutralizing antibodies. J. Immunol.99, 285–290 (1967). PubMed

Thomas, S. J. et al. Dengue plaque reduction neutralization test (PRNT) in primary and secondary dengue virus infections: how alterations in assay conditions impact performance. Am. J. Trop. Med. Hyg.81, 825–833 (2009). PubMed PMC

Qin, L., Gilbert, P. B., Corey, L., McElrath, M. J. & Self, S. G. A framework for assessing immunological correlates of protection in vaccine trials. J. Infect. Dis.196, 1304–1312 (2007). PubMed

Cox, D. R. Regression models and life-tables (with discussion). J. R. Stat. Soc. Ser. B34, 187–220 (1972).

Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control19, 716–723 (1974).

Gilbert, P. B., Qin, L. & Self, S. G. Response to Andrew Dunning’s comment on ‘Evaluating a surrogate endpoint at three levels, with application to vaccine development’. Stat. Med.28, 716–719 (2009). PubMed PMC

Xu, X. S. et al. Full covariate modelling approach in population pharmacokinetics: understanding the underlying hypothesis tests and implications of multiplicity. Br. J. Clin. Pharmacol.84, 1525–1534 (2018). PubMed PMC

Tartof, S. Y. et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet398, 1407–1416 (2021). PubMed PMC

Satagopan, J. M. et al. A note on competing risks in survival data analysis. Br. J. Cancer91, 1229–1235 (2004). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...